
Verification of Uninterpreted and Partially

Interpreted Programs

Umang Mathur
Joint work with

Madhusudan Parthasarathy and Mahesh Viswanathan

University of Illinois at Urbana Champaign



Table of contents

1. Introduction

2. Uninterpreted Programs

Syntax and Semantics

Verification

3. Coherence

Verification of Coherent Programs

Checking Coherence

4. k-Coherence

5. Verification Modulo Theories

1



Introduction



Program Verification

Program verification is undecidable, in general.

However, decidable classes do exist:

• Programs without loops or recursion (straight-line)

• Programs working over finite domains (Boolean programs)

• Models like Petri Nets - not natural for modeling programs

Today : Decidable verification for programs with loops/recursion while

working over infinite domains.
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Uninterpreted Programs



What are Uninterpreted Programs?

• Programs over an uninterpreted vocabulary

- Constant, function and relation symbols are completely

uninterpreted.

• Work over arbitrary data models

- Data models provide interpretations to symbols in the program.

• Satisfy φ if φ holds in all data models
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Uninterpreted Programs: Syntax

Fix a finite set V of program variables.

Fix a first order vocabulary Σ = (C,F ,R).

Program Syntax

〈stmt〉 ::= skip | x := c | x := y | x := f (z)

| if (〈cond〉) then 〈stmt〉 else 〈stmt〉 | while (〈cond〉) 〈stmt〉
| assume (〈cond〉) | 〈stmt〉 ; 〈stmt〉

〈cond〉 ::= true | x = y | x = c | c = d | R(z)

| 〈cond〉 ∨ 〈cond〉 | ¬〈cond〉

where, x , y , z ∈ V , c ∈ C, f ∈ F and R ∈ R.
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Example

assume (T 6= F);

b := F;

while (x 6= y) {
d := key(x);

if (d = k) then {
b := T;

r := x;

}
x := n(x);

}

• Searches for an element with

key k in a list starting at x and

ending at y.

• T and F are uninterpreted

constants

• key and n are uninterpreted

functions
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Uninterpreted Programs: Executions

Executions are finite sequences over the following alphabet

Π =


“x := y”, “x := f (z)”,

“assume(x = y)”, “assume(x 6= y)”,

“assume(R(z))”, “assume(¬R(z))”

∣∣∣∣∣ x , y , z ∈ V ,

f ∈ F ,R ∈ R



Set of executions is a regular language defined inductively:

Exec(skip) = {ε}
Exec(x := y) = {“x := y”}
Exec(x := f (z)) = {“x := f (z)”}
Exec(assume(c)) = {“assume(c)”}

Exec(if c then s1 else s2) =
{“assume(c)”} · Exec(s1)

∪{“assume(¬c)”} · Exec(s2)

Exec(s1; s2) = Exec(s1) · Exec(s2)

Exec(while c {s}) =
(
{“assume(c)”}·Exec(s)

)∗
·{“assume(¬c)”}
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Uninterpreted Programs: Semantics

Semantics given by a first order structure M = (UM, JKM) on Σ.

Definition (Values of Variables)

valM(ε, x) = Jx̂KM for every x ∈ V

valM(ρ·“x := y”, z) = valM(ρ, y) if z is x

valM(ρ·“x := f (z1, . . .)”, y) = Jf KM(valM(ρ, z1), . . .) if y is x

valM(ρ·a, x) = valM(ρ, x) otherwise
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Uninterpreted Programs: Semantics

Semantics given by a first order structure M = (UM, JKM) on Σ.

Definition (Feasibility of Execution)

An execution ρ is feasible in M if for every prefix σ′ = σ · “assume(c)” of

ρ, we have

1. valM(σ, x) = valM(σ, y) if c is (x = y),

2. valM(σ, x) 6= valM(σ, y) if c is (x 6= y),

3. (valM(σ, z1), . . . , valM(σ, zr )) ∈ JRKM if c is R(z1, . . . , zr ), and

4. (valM(σ, z1), . . . , valM(σ, zr )) 6∈ JRKM if c is ¬R(z1, . . . , zr ).
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Uninterpreted Programs: Verification

Definition (Verification of Uninterpreted Programs)

Let P ∈ 〈stmt〉 be an uninterpreted program and let ϕ be an assertion in

the following grammar.

ϕ ::= true | x = y | R(z) | ϕ ∨ ϕ | ¬ϕ

P |= ϕ iff for every execution ρ ∈ Exec(P) and for every FO structure M

such that ρ is feasible in M, M satisfies ϕ[valM(ρ,V )/V ].

Theorem [1, 3]

Verification of uninterpreted programs is undecidable.
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Coherence



How do we verify a single execution?

Execution ρ

assume(T 6= F)

b := F

assume(x 6= y)

d := key(x)

assume(d = k)

b := T

r := x

x := n(x)

assume(x = y)

ϕ ≡ b=T⇒ key(r)=k

VC (ρ, ϕ)

T 6= F

∧ b1 = F

∧ x0 6= y0

∧ d1 = key(x0)

∧ d1 = k0

∧ b2 = T

∧ r1 = x0

∧ x1 = n(x0)

∧ x1 = y0

⇒ (b2 = T⇒ key(r1) = k0)

ϕ holds in every M in

which ρ is feasible
iff VC (ρ, ϕ) is valid in TEUF
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How do we verify a single execution?

• Verification of a single execution can be reduced to checking validity

of a quantifier-free formula in TEUF.

- Congruence closure algorithm

- Polynomial time when ϕ is a single atom.

• But programs have infinitely many executions.

• How do we recover decidability?

• Coherence to the rescue!

- Allows congruence closure to be performed in a streaming fashion.
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Congruence Closure

Congruence on Ground Terms

Let Σ = (C,F) be a FO-vocabulary. Let t1, t
′
1, t2, . . . , tk , t

′
k be ground

terms on Σ and let f ∈ F be a k-ary function. Then,

t1 = t ′1 t2 = t ′2 . . . tk = t ′k
f (t1, t2, . . . , tk) = f (t ′1, t

′
2, . . . , t

′
k)

Interpretation

In every FO structure M,

if Jt1KM = Jt ′1KM, Jt2KM = Jt ′2KM, . . . , and JtkKM = Jt ′kKM
then Jf (t1, t2, . . . , tk)KM = Jf (t ′1, t

′
2, . . . , t

′
k)KM
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Congruence Closure on Executions

assume(x = y) x1 := f (x) y1 := f (y)
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ŷ

y

=

f (x̂)

x1

y1 := f (y)

x̂

x

ŷ
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Congruence Closure on Executions

assume(x = y) x := f (x) x := f (x)

n times

y := f (y) y := f (y)

n times
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f (ŷ) f n(ŷ)
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Congruence Closure on Executions

x1 := f (x) y1 := f (y) x1 := f (x)

n times

y1 := f (y1) assume(x = y)
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y1

=

ϕ : x1 = y1

14



Congruence Closure on Executions

x1 := f (x) y1 := f (y) x1 := f (x)

n times

y1 := f (y1)

x̂

x

ŷ
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Again, unbounded memory required to infer equality relationships in a

streaming setting.
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Algebraic View of Executions

Terms Computed

Term(ε, x) = x̂ for every x ∈ V

Term(ρ · “x := y”, z) = Term(ρ, y) if z is x

Term(ρ · “x := f (z1, . . .)”, y) = f (Term(ρ, z1), . . .) if y is x

Term(ρ · a, x) = Term(ρ, x) otherwise

Equalities

α(ε) = ∅

α(ρ · “assume(x = y)”) = α(ρ) ∪ {(Term(ρ, x),Term(ρ, y))}
α(ρ · a) = α(ρ) otherwise

Disequalities

β(ε) = ∅

β(ρ · “assume(x 6= y)”) = β(ρ) ∪ {(Term(ρ, x),Term(ρ, y))}
β(ρ · a) = β(ρ) otherwise
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Term(ρ · “x := f (z1, . . .)”, y) = f (Term(ρ, z1), . . .) if y is x

Term(ρ · a, x) = Term(ρ, x) otherwise

Equalities

α(ε) = ∅

α(ρ · “assume(x = y)”) = α(ρ) ∪ {(Term(ρ, x),Term(ρ, y))}
α(ρ · a) = α(ρ) otherwise

Disequalities

β(ε) = ∅

β(ρ · “assume(x 6= y)”) = β(ρ) ∪ {(Term(ρ, x),Term(ρ, y))}
β(ρ · a) = β(ρ) otherwise
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Coherence

An execution is coherent if it is memoizing and has early assumes.

Coherence = Memoizing + Early Assumes
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Coherence

An execution is coherent if it is memoizing and has early assumes.

Coherence = Memoizing + Early Assumes

Remember terms

until re-computation

Equality assumes

occur before

superterms are forgotten
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Coherence: Memoizing

Definition (Memoizing Execution)

An execution ρ is memoizing if for every prefix of ρ of the form

σ′ = σ · “x := f (y1, . . . , yr )”

we have the following.

If there is a term t ∈ ComputedTerms(σ) such that t ∼=α(σ) Term(σ′, x),

then there is a variable z ∈ V such that Term(σ, z) ∼=α(σ) Term(σ′, x).

Here,

• ComputedTerms(σ) = {Term(π, v) | v ∈ V , π is a prefix of σ},
• ∼=α(ρ) is the smallest congruence induced by α(ρ).

17



Coherence: Memoizing

assume (T 6= F);

b := F;

while (x 6= y) {
d := key(x);

if (d = k) then {
b := T;

r := x;

}
x := n(x);

}

• All executions of this program

are vacuously memoizing.

• No term is recomputed.
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Example exeuction: Non Memoizing

assume(x = y)

x̂

x

ŷ

y

=

x := f (x) x := f (x)

n times

x̂

ŷ

y

=

f (x̂) f n(x̂)

x

y := f (y) y := f (y)

n times

x̂

ŷ

=

f (x̂) f n(x̂)

x

f (ŷ) f n(ŷ)

y

Re-computation of terms deemed

equivalent by x̂ = ŷ .

The older term f (x̂) has been dropped.

NOT a memoizing execution
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Example exeuction: Memoizing

assume(x = y) x := f (x) y := f (y) x := f (x)

n times

y := f (y)

Re-computation happens in tandem

(at least one older equivalent terms is available

in some variable at the time of re-computation)

X memoizing execution

20



Coherence: Early Assumes

Definition (Early Assumes)

An execution ρ is said to have early assumes if for every prefix of ρ of the

form

σ′ = σ · “assume(x = y)”

we have the following.

If there is a term s ∈ ComputedTerms(σ) such that s is a

α(σ)-superterm of either Term(σ, x) or Term(σ, y), then there is a

variable z ∈ V such that Term(σ, z) ∼=α(σ) s.

Here, t1 is a α(σ)-superterm of t2 if there are terms t ′1 and t ′2 such that

t ′1 is a superterm of t ′2, t1
∼=α(σ) t

′
1 and t2

∼=α(σ) t
′
2.
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Example exeuction: Violation of Early Assumes

x1 := f (x) y1 := f (y) x1 := f (x)

n times

y1 := f (y1)

x̂

x

ŷ

y

f (x̂) f n(x̂)

x1

f (ŷ) f n(ŷ)

y1

assume(x = y)

Superterms of x̂ and ŷ

dropped before equality assume.

Does NOT satisfy early assumes

22



Example exeuction: Early Assumes

assume(x = y) x := f (x) y := f (y) x := f (x)

n times

y := f (y)

X Early Assume

23



Coherence

assume (T 6= F);

b := F;

while (x 6= y) {
d := key(x);

if (d = k) then {
b := T;

r := x;

}
x := n(x);

}

• In every execution, equality

assume assume(x = y) occurs

on terms without any

superterms.

• All executions are coherent!

24



Coherent Programs and their Verification

An uninterpreted program P ∈ 〈stmt〉 is coherent if all executions of P

are coherent.

Decidability of Verification of Coherent Programs [1]

Verification of uninterpreted coherent programs is PSPACE-complete.

Proof.

• Regular language Lϕcoherent such that for any coherent execution ρ,

ρ ∈ Lϕcoherent iff ρ |= ϕ

• The question Exec(P) ⊆ Lϕcoherent is decidable.

25
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Regularity of Feasible Coherent Executions

• P |= ϕ iff P¬ϕ |= false, where P¬ϕ = P; assume(¬ϕ)

• Regular language Lcoh-feas such that for any coherent execution ρ,

ρ ∈ Lcoh-feas iff ρ is feasible in some FO-structure M

• P |= ϕ iff Exec(P¬ϕ) ∩ Lcoh-feas = ∅
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Streaming Congruence Closure

• Acoh-feas = (Q ] {qreject}, q0, δ) with L(Acoh-feas) = Lcoh-feas.

• All states in Q are accepting.

• qreject is absorbing reject state, represents an infeasible execution.

• States in Q are triplets:

(∼, d , F )

Equivalence

on variables

[x1, x3]

[x2, x4, x5]
...

Disequalities b/w

eq. classes

[x1, x3] 6= [x6]
...

Partial func.

relationships b/w

eq. classes

f ([x1, x3]) = [x2, x4, x5]
...

27



Streaming Congruence Closure

Transitions δ update these relationships in a streaming fashion.

x1 = f (x)

x y

x1 y1

f

y1 = f (y)

x y

x1 y1

f f

assume(x = y)

x y

x1 y1

f f

Congruence Closure

assume(x 6= y)

qreject
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Streaming Congruence Closure

Correctness of Acoh-feas

Let ρ ∈ Π∗ be a coherent execution. Let q = δ∗(q0, ρ). Then,

• If ρ is not feasible in any M, then q = qreject

• Otherwise, q = (∼, d ,P) with

− Term(ρ, x) ∼=α(ρ) Term(ρ, y) iff [x ]∼ = [y ]∼.

− ([x ]∼, [y ]∼) ∈ d iff there is (tx , ty ) ∈ β(ρ) such that

tx ∼=α(ρ) Term(ρ, x) and ty ∼=α(ρ) Term(ρ, y).

− f (Term(ρ, x)) ∼=α(ρ) Term(ρ, y) iff F (f )([x ]∼) = [y ]∼

29



Checking Coherence

Decidability of Checking Coherence [1]

There is a DFA Acheck-coh such that for an execution ρ ∈ Π∗, we have

ρ ∈ L(Acheck-coh) iff ρ is coherent

• Acheck-coh ignores all letters of the form “assume(x 6= y)”.

• States of Acheck-coh maintain (∼,F ,B):

• ∼ and F are as in Acoh-feas

• B keeps track of the following information: for a given equiv. class c

and for a function f , if f (c) has been computed before.
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Checking Coherence

Decidability of Checking Coherence [1]

There is a DFA Acheck-coh such that for an execution ρ ∈ Π∗, we have
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k-Coherence



k-Coherence

assume (x 6= z);

y := n(x);

assume (y 6= z);

y := n(y);

while (y 6= z) {
x := n(x);

y := n(y);

}

ϕ ≡ z = n(n(x))

31



k-Coherence

assume (x 6= z);

y := n(x);

assume (y 6= z);

y := n(y);

while (y 6= z) {
x := n(x);

y := n(y);

}

ϕ ≡ z = n(n(x))

n(x̂)

n(n(x̂))

NOT coherent

• Re-computation without storing

prior equivalent terms.

• Insufficient number of program

variables to store intermediate

terms.
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k-Coherence

assume (x 6= z);

y := n(x);

assume (y 6= z);

y := n(y);

while (y 6= z) {
x := n(x);

y := n(y);

}

ϕ ≡ z = n(n(x))

g := y;

g := y;

1-coherent

• Can be made coherent.

• By adding additional ghost

variables and assignments to

them.

• Write-only and do not change

semantics.
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k-Coherence

Definition (k-Coherent Executions and Programs)

Let k ∈ N. Let V be a set of variables and let G = {g1, . . . , gk} be

additional ghost variables (V ∩ G = ∅).

Let ΠG = Π ∪ {“g := x” | g ∈ G , x ∈ V }.
An execution over V is k-coherent if there is an execution ρ′ over ΠG

such that ρ′ is coherent and ρ′�Π= ρ.

A programs is k-coherent if all its executions are.

Theorem [1]

Checking k-coherence is decidable in PSPACE. Further, verification of

k-coherent programs is decidable in PSPACE.
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Verification Modulo Theories



Adding Interpretations

assume (T 6= F);

if (a ≤ b) then {
if (a ≤ c) then

min := a;

else min := c;

}
else {

if (b ≤ c) then

min := b;

else min := c;

}

ϕ ≡ min ≤ a ∧ min ≤ b

∧ min ≤ c

Find the minimum of a, b and c
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Adding Interpretations

assume (T 6= F);

if (a ≤ b) then {
if (a ≤ c) then

min := a;

else min := c;

}
else {

if (b ≤ c) then

min := b;

else min := c;

}

ϕ ≡ min ≤ a ∧ min ≤ b

∧ min ≤ c

Find the minimum of a, b and c

Does not

hold in

all M.
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}
else {

if (b ≤ c) then

min := b;

else min := c;

}

ϕ ≡ min ≤ a ∧ min ≤ b

∧ min ≤ c

Find the minimum of a, b and c

Does not

hold in

all M.

â

a

b̂

b

ĉ

c

â ≤ b̂

b̂ ≤ ĉ

ĉ ≤ â
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Adding Interpretations

assume (T 6= F);

if (a ≤ b) then {
if (a ≤ c) then

min := a;

else min := c;

}
else {

if (b ≤ c) then

min := b;

else min := c;

}

ϕ ≡ min ≤ a ∧ min ≤ b

∧ min ≤ c

Find the minimum of a, b and c

This program satisfies ϕ if ≤ is

interpreted as a total order:

• ∀x · x ≤ x

• ∀x , y , z ·x ≤ y ∧y ≤ z =⇒ x ≤ z

• ∀x , y · x ≤ y ∧ y ≤ x =⇒ x = y
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Adding Interpretations

Definition (Verification Modulo Axioms)

Let P ∈ 〈stmt〉 be an uninterpreted program over vocabulary Σ. Let A be

a set of first order sentences over Σ and let ϕ be an assertion in the

following grammar.

ϕ ::= true | x = y | R(z) | ϕ ∨ ϕ | ¬ϕ

P |= ϕ modulo A iff for every execution ρ ∈ Exec(P) and for every FO

structure M such that M |= A and ρ is feasible in M, M satisfies

ϕ[valM(ρ,V )/V ].
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Coherence Modulo Axioms

Coherence

modulo axioms
=

Memoizing

modulo axioms
+

Early Assumes

modulo axioms
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Example

A = {∀x , y ·f (x , y) = f (y , x)}

x1 := f (x , y) y1 := f (y , x)
re-computation

modulo A

x1 := f (x , y) y1 := f (y , x ′) z := g(x1) z ′ := g(y1) assume(x = x ′)

Implied equality

z = z ′

36



Example

A = {∀x , y ·f (x , y) = f (y , x)}

x1 := f (x , y) y1 := f (y , x)

re-computation

modulo A

x1 := f (x , y) y1 := f (y , x ′) z := g(x1) z ′ := g(y1) assume(x = x ′)

Implied equality

z = z ′

36



Example

A = {∀x , y ·f (x , y) = f (y , x)}

x1 := f (x , y) y1 := f (y , x)
re-computation

modulo A

x1 := f (x , y) y1 := f (y , x ′) z := g(x1) z ′ := g(y1) assume(x = x ′)

Implied equality

z = z ′

36



Example

A = {∀x , y ·f (x , y) = f (y , x)}

x1 := f (x , y) y1 := f (y , x)
re-computation

modulo A

x1 := f (x , y) y1 := f (y , x ′) z := g(x1) z ′ := g(y1) assume(x = x ′)

Implied equality

z = z ′

36



Example

A = {∀x , y ·f (x , y) = f (y , x)}

x1 := f (x , y) y1 := f (y , x)
re-computation

modulo A

x1 := f (x , y) y1 := f (y , x ′) z := g(x1) z ′ := g(y1) assume(x = x ′)

Implied equality

z = z ′

36



Memoizing Modulo Axioms

Definition (Memoizing modulo axioms)

Let A be a set of axioms and let ρ ∈ Π∗ be an execution. Then, ρ is said

to be memoizing modulo A if the following holds.

Let σ′ = σ · “x :=f (z)” be a prefix of ρ. If there is a term

t ′ ∈ ComputedTerms(σ) such that t ′ ∼=A∪κ(σ) Term(σ′, x), then there

must exist some variable y ∈ V such that Term(σ, y) ∼=A∪κ(σ) t.

Here,

κ(ε) = ∅

κ(ρ · “assume(x = y)”) = κ(ρ) ∪ {(Term(ρ, x) = Term(ρ, y))}
κ(ρ · “assume(x 6= y)”) = κ(ρ) ∪ {(Term(ρ, x) 6= Term(ρ, y))}

κ(ρ · “R(z1, . . .)”) = κ(ρ) ∪ {R(Term(ρ, z1), . . .)}
κ(ρ · a) = κ(ρ) otherwise
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Early Assumes Modulo Axioms

Definition (Early assumes modulo axioms)

Let A be a set of axioms and let ρ ∈ Π∗ be an execution. Then, ρ is said

to have early assumes modulo A if the following holds.

Let σ′ = σ · “assume(c)” be a prefix of ρ, where c is any of x =y , x 6=y ,

R(z), or ¬R(z).

Let t ∈ ComputedTerms(σ) be a term computed in σ such that t has

been dropped, i.e., for every x ∈ V , we have Term(σ, x)�A∪κ(σ)t.

For any term t ′ ∈ ComputedTerms(σ), if t ∼=A∪κ(σ′) t
′, then t ∼=A∪κ(σ) t

′.
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Verification Modulo Axioms - Decidability Landscape [2]

Relational axioms Decidability

EPR 7

Reflexivity 3

Irreflexivity 3

Symmetry 3

Transitivity 3

Partial Order 3

Total Order 3

Functional axioms Decidability

Associativity 7

Commutativity 3

Idempotence 3

Combinations Decidability

All combinations

of decidable

axioms

3
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Thank You!
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Coherence Modulo Commutativity

Homomorphism hfcomm uses auxiliary variable v∗ 6∈ V :

hfcomm(a) =

{
a · “v∗ := f (y , x)” · “assume(z = v∗)” if a = “z := f (x , y)”

a otherwise

Coherence Modulo Commutativity

An execution ρ is coherent modulo A iff hfcomm(a) is coherent modulo ∅.

Feasibility Modulo Commutativity

An execution ρ is feasible modulo A iff hfcomm(a) is feasible modulo ∅.
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M. Müller-Olm, O. Rüthing, and H. Seidl.

Checking herbrand equalities and beyond.

In R. Cousot, editor, Verification, Model Checking, and Abstract

Interpretation, pages 79–96, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg.


	Introduction
	Uninterpreted Programs
	Syntax and Semantics
	Verification

	Coherence
	Verification of Coherent Programs
	Checking Coherence

	k-Coherence
	Verification Modulo Theories
	Appendix

