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Motivation: monads and monad compositions

A monad is a categorical structure used for:


 Modelling of data structures (lists, trees, etc)


 Modelling of computation (exception, reader, writer, etc)

Compositions of monads allow simultaneous modelling of multiple
computational aspects.
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Monads: What are they?

A monad is a triple xT , η, µy, with T an endofunctor and η : 1 ñ T ,
µ : TT ñ T natural transformations, such that:

T TT TTT TT

TT T TT T

ηT

Tη Id µ

Tµ

µT µ

µ µ

Examples:


 List


 Multiset/Bag


 Powerset


 Distribution


 Exception


 Writer


 Reader
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Composing Monads


 Find ηTS , µTS such that xTS, ηTS , µTSy is a monad.


 Good candidate for ηTS :

ηTηS : 1 ñ TS


 Same for µTS?


 Need:
µTS : TSTS ñ TS


 Have:
µTµS : TTSS ñ TS


 Solution:
λ : ST ñ TS


 If λ is a distributive law, then the above choices form a monad.
- Beck 1969.
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Motivation: monads and distributive laws

Problem:


 Distributive laws are hard to find.
(time consuming)


 Axioms are hard to check.
(resulting in mistakes in the literature!)


 Distributive laws might not even exist.

What I do:


 Find no-go theorems for
distributive laws.

My weapon of choice:


 Algebra.
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A quick reminder: algebraic theories

Algebraic theory:


 Signature Σ and a set of variables give terms.


 Axioms E and equational logic give equivalence of terms.

Reflexivity: t � t Axiom:
ps, tq P E
s � t

Symmetry:
t � t1

t1 � t
Substitution:

t � t1

trf s � t1rf s

Transitivity:
t � t1, t1 � t2

t1 � t2
For any σ:

t1 � t11 , . . . , tn � t1n
σpt1, . . . , tnq � σpt11 , . . . , t

1
nq

Monads arise from free/forgetful adjunction between Set and
category of pΣ, Eq-algebras.
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Composite theories: the equivalent of distributive laws

Example: Rings are a composite theory1 of Abelian groups after
Monoids.

Rings:

Σ � ΣA Z ΣM

� t0p0q, 1p0q,�p1q,�p2q, �p2qu

E � EA Y EMY

ta � pb� cq � pa � bq � pa � cq

pa � bq � c � pa � cq � pb � cqu

1Piróg and Staton 2017.
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My strategy: no-go theorems for distributive laws

Using composite theories:


 Choose two theories to compose.


 Assume composite theory exists.


 Manipulate terms.


 Derive contradiction of form x � y.


 Conclusion: no such theory possible.


 List equations in the proof.


 ñ No-go theorem.
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Lists

Bags
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The Boom Hierarchy

The Boom Hierarchy is a set of data structures:

Trees Magmas:

Lists Monoids

Bags Commutative Monoids

Sets Join-semilattices

plus associativity

plus commutativity

plus idempotence

Why this hierarchy?


 Practical
Monads


 Simple
Theories


 Interesting
Properties
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A first look

– Manes and Mulry 2007, 2008
– Klin and Salamanca 2018
– Zwart and Marsden 2019, 2020 (under review)
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Extending the Boom hierarchy


 Boom Hierachy: 4 structures (8 if non-empty are considered)


 Extension: all combinations of axioms gives 16 structures.


 Unit (U): Y/N

 Associativity (A): Y/N

 Commutativity (C): Y/N

 Idempotence (I): Y/N


 UAC stands for a structure with signature Σ � t0p0q,�p2qu and
the equations Unit, Associativity, Commutativity: bags.
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A dramatic result

Combinations where both structures have units:
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Venturing into unknown territory

The non-empty equivalents are more promising:



Intro The Boom Hierarchy Too Many Constants Theorem Conclusion

The full picture
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Lessons from the Boom hierarchy


 Idempotence/Units are bad.

(but not always)

x � x � x x � 1 � x x _ px ^ yq � x


 Key property: reducing a term to a variable.


 Conjecture:
Equations that reduce a term to a variable are necessary for
distributive laws to fail.

(but not su�cient)
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Predictions
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When it’s just too much

Too Many Constants Theorem

But first, a proposition.
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An important proposition

We need an interaction law:

Proposition (Multiplicative Zeroes)

Let S be an algebraic theory with a term s such that:


 s can be reduced to a variable via a substitution.
e.g. x � y with � idempotent, x _ py ^ zq with absorption, etc.

And let T be an algebraic theory with a constant 0 such that:

trf s �T 0 ñ t �T 0

Any composite theory U of T after S has the following interaction:
For any x P varpsq:

sr0{xs �U 0.
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Theorem (No-Go Theorem: Too Many Constants)

Let S be an algebraic theory with a term s such that:


 s can be reduced to a variable via a substitution.


 s has two or more free variables.

And let T be an algebraic theory with at least two constants 0, 1
such that for both constants:

trf s �T 0 ñ t �T 0 trf s �T 1 ñ t �T 1

Then there exists no composite theory of T after S.
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Proof of the Too Many Constants Theorem

Proof.

Suppose that U is a composite theory of T after S

Then by Proposition 1 we have:

Contradiction. So U cannot be a
composite of T after S.
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Conclusion


 Not all monads compose via a distributive law.


 Boom hierarchy provides some intuition.


 Reducing a term to a variable key property for no-go theorems.


 Too many constants / multiplicative zeroes prevent iterated
distributive laws within the Boom hierarchy.


 https://www.cs.ox.ac.uk/people/maaike.zwart/


 maaike.annebeth@gmail.com
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