What's Decidable about
Causally Consistent
Shared Memory?

Ori Lahav Udi Boker

<«

x
* 1IDC
HERZLIYA
~ o .

TEL AVIV UNIVERSITY

OWLS
January 20, 2021

Safety Verification

X := 1;

repeat
a :

until (a
2z := 0;

assert

X := 0;

Y;

(2 = 0);

Y := 1;
repeat
b := X;

until (b = 0);

Z = 1;
assert (2
Y := 0;

1);

Simple Solution

) RX1,RY1,RZ1
t wxo wxLwylwzl C
e~ WZ.// | \\fvm
RZI\/RZO
D RX1,RY1,RZ0 D D RXO,RY1,RZ1
T W70 ‘ ‘ WXl,WYl,WZO WXO, WY1 JWZ1
() WYl XU WY1
1 RyO RX1,RYO0,RZ0 D > RXORYORZI
RY1 C WXl,WYO,WZO WXO,WYO,WZI
WXI \U /
() RX0,RYO,RZ0
wxo,wyowzo

For programs with a bounded data domain, this problem is clearly decidable:

e Reduction to reachabillity in finite-state systems
e PSPACE-complete

Sequential Consistency (SC)

 \We assumed the classical shared-memory model.

CPU CPU .. CPU

e But it Is unrealistic: * .
for better performance/scalability/availability/ \ Ty
fault-tolerance shared-memory implementations Memory

provide weaker semantics.
X—0 Y1 Z1

e Similar situation in distributed data-stores
o "

Weaker Memory Models =

Decidable
- —
X80 TSO Atig, Bouajjani, Burckhardt, Musuvathi. POPL’2010]

Abdulla, Atig, Bouajjani, Ngo. CUNCUR’2016]

POWER
ARM Undecidable
[Abdulla, Arora, Atig, Krishna. PLDI’2019]
_ Even for the Release/Acquire fragment:
RISC-V memory order release &memory order acqulre
e Reduction from Post correspondence problem
C/C++11 —» -

bba ab bba a

bb aa 0o baa

\——

many many more...

Causal Consistency

* A classical model originated from replicated data stores:
* nodes may disagree on the order of some operations
e consensus on the order of “causally related” operations

e Relatively simple and intuitive but more scalable than SC

Sequential
Consistency

Xx86-TSO

Causal
Consistency

Safety Verification

X := 1: Y := 1;
repeat repeat

a :=Y;// 0 b := X:// 0
until (a = 0); until (b = 0);
7 := 03 Zz = 1;
assert (Z = 0); assert (Z2 = 1);
X := 0; Y := 0;

Both can read O in the same execution!

v

Is it a Problem?

https://en.wikipedia.org/wiki/Dekker's algorithm

e How come airplanes don’t crash??
* There are ways to demand sequential consistency when we need it.

 \We often don’t need sequential consistency in its full power.

We have to define and understand
the semantics of shared-memory concurrency.

8

https://en.wikipedia.org/wiki/Dekker%27s_algorithm

Flag-Based Synchronization

X =Y =0

X // 1
Y // O

1 a
1 b :

Y
X

X This behavior is forbidden under causal consistency

Formal Semantics

Defined declaratively using execution graphs

happens-before = (program-order U reads-from

X

10

)+

O 0 S
|l

iInconsistent execution graph
disallowed program outcome

X = 1; Y := 1;
repeat repeat

a := Y; b := X;
until (a = 0); until (b = 0);
7 := 0; 2 = 1;
assert (Z = 0); assert (Z = 1);

The execution graph is

program-order consistent.

reads-from The annotated

outcome Is allowed.

Non-Multi-Copy-Atomicity

Weaker than x86-TSO: different threads can observe writes in different orders

_—

--

program-order
reads-from

X =Y =0

a=XxX//1 c =Y // 1
Y = 1

b=Y // 0 d=X//0

WX 0 WYO

_ D

WX1------~-- »RX1 ‘e RY1 €«------- WY1

RYo” “‘Rx0

12

The execution graph is
consistent.

The annotated
outcome is allowed.

What about concurrent writes”?

a=XxX//1
X =1 b =X// 2 X = 2
c =X //1
WX1------- » RX1 «-------- W X 2 The execution graph is
— program-order consistent.
- == - v
reads-from e The annotated
RX2 4 outcome is allowed.
“a
RX1

What about concurrent writes?

| make sure that
nothing they are totally
ordered

Weak Release/Acquire Release/Acquire Strong Release/Acquire
(WRA) (RA) (SRA)

14

Three Variants

Weak Release/Acquire , Release/Acquire | Strong Release/Acquire
(WRA) (RA) (SRA)

1 total order on i rites to the same
location (modification-order) s.t.:

15

WRA Is strictly weaker than RA

w.l.0.g

16

program-order

reads-from
modification-order

happens-before

RA is strictly weaker than SRA

X =1 Y =1
Y = 2 X = 2
a =Y //1 b=X//1
WX 1 WY1
[1 — program-order
WY2 ' WX2 e reads-from
l l modification-order
K' S‘
RY 1 R X 1

17

Sequential
Consistency

x86-TSO

Causal
Consistency

Causal Consistency

SRA

RA

WRA

Distributed data-stores
POWER architecture [L, Giannarakis, Vafeiadis. POPL'16]

C/C++11
Java 9

CC in [Bouajjani, Enea, Guerraoui, Hamza. POPL'17]
[Kokologiannakis, L, Sagonas, Vafeiadis. POPL'18]

18

Write-Write-Race Freedom

Theorem

Prog has no WW-races under SRA — [| Prog |] WRA [\ Prog ‘] RA [| Prog |]SRA

Results

Theorem

The verification problems under SRA and WRA are decidable.

* |n contrast with RA [Abdulla, Arora, Atig, Krishna. PLDI’2019]
* Jo obtain this result we develop a new semantics for SRA and WRA.

Corollary

The verification problem under RA is decidable for write-write-race-free programs.

20

Lower Complexity Bound

* For causal consistency, the problem is non-primitive recursive

e \We can simulate a lossy FIFO channel machine
e as for x86-TSO [Atig, Bouajjani, Burckhardt, Musuvathi. POPL2010]

Lossv FIFO channel

Lossy FIFO channel

21

Even when the program is finite state,
Its synchronization with a causally consistent memory is infinite state.

1:wmq 2:WZ£ I:RZR(}7

Wx0 Wy o Wx0 Wy @ Wx0 Wy @ Wx0 Wy @ Wx0 WYy
[] "‘
|
|
| [| 1 [|
I q . q
Wx1 Wx1 N Wx1 J o wy1l| |wx1 Y) Wyl
’ ’ A ’
’ 4 A I
V4 ¢ v
4 4 A
| . | . N
Y 4 Y 4 Y 4 ‘
RY@‘ RY@‘ RY@‘ RxX0
1 : WXI1 RYO 2 WY1 2 : RX0
GO > Gl > G2 > G3 > G4
Initial state

22

Error state

* Jo establish decidablity:

 \We use the framework of well-structured transition systems (WSTS)
[Abdullah] [Finkel, Schnoebelen] ...

e Challenge: find a WSTS equivalent to a casually consistent memory

23

Backward Reachability

Input: LTS (Q, Oy, —), state g, 4
Output: is g,,., reachable?

S 1= 1Gpad} To make this an algorithm we
repeat need to work with
q .— finitely representable sets &
prev guarantee termination
S =S5 Upre(s)
until (5 = Spey)

return (O, N S # @)

24

Well-Structured Transition Systems

e Equip the transition system with a well quasi-order <

Yi
e Work with upward closed sets of states
represented by their finite basis .:
< should be compatible with — Compatibility is guaranteed
INn “lossy” systems
/ K /3

91 — 9 qg > q

Y Y (lose) — —

91 — 9> q — {4

 Challenge: characterize casually consistent shared memory as a lossy system

25

Causal Consistency as a WSTS

Wx0 Wy @ Wx0 Wy @ Wx0 Y Wx0 Wy @ Wx0 Wy®o
|
’ ! 1 ’
| Y j
Wx 1 Wx 1 , Wx 1 J o wy1l| (wx1 Y) wy1l
’ ’ A ’
Y 4 ’ A I
Y 4 Y 4 Y 4
l' ¢' ¢' \
Ry o & Ry o & Ryo & Arxo
1 : WX1 RYO 2 : WY1 2 : RX0 1:WZ0 2:WZ1 1 :RZI1
GO > Gl > G2 > G3 > G4 > > > G7

Two critical obstacles:

e Partial order embedding is not a well-quasi-order

 EXxecution histories are not lossy

20

Key ldea

Why do | keep focusing on the past instead of the future?

& 16 Answers ® Last Updated: 05/01/2018 at 12:47pm

Record the threads’ potentials in memory states:

what possible sequences of reads each thread can execute?

27

Lossy SRA

() = Threads — {Rxv | x € Var,v € Val}*
(o = Threads — {Rx0 | x € Var}*

g <q < V1 &€ Threads. g(7) E g'(7)
!

subsequence

28

X = 1;

repeat

a := Y;
until (a = 0);
Z := 0;
assert (Z = 0);

. RYO
RY RYX 1 : WXI1 RX0 X WYl H
| = G |

H 2 - RXO
RXI

29

Y := 1;
repeat

b := X
until (b
Z := 1;
assert (42

|| ~e

0);

1);

RXO

RX1

l: RYO

Error
state

Potential Maintenance for SRA

p Lose step
—P Remove some elements from the potentials

.. Ry, Headsteps Deterministic
—» Precondition: first element in 7’s potential is Rxv

Write steps Non-Deterministic

7: Wxv Precondition: no Rx_ in 7’s potential
All threads may get new options Rxy — where?

30

o o

o

Where?

This transition should be allowed

This transition should not be allowed

31

Shared-Memory Causality Principle

Every sequence of reads that thread = can perform
after reading from a certain write executed by thread t
could be performed by thread t immediately after it executed the write.

Thread 1 Thread 2 Thread 1 Thread 2

32

o o

o

Where?

Thread 1 This transition should be allowed
can read
Y=0
1 : WXl
Thread 1

This transition should not be allowed
cannot read

Y=0

33

More Detalls

* Multiple lists per thread
 Writer thread’s id in “read options”

e Additional flags to handle RMWs (atomic Read-Modify-Writes)

WRITE
Vﬂ: € Tida L, € B,(”)- 3" 2 O, u]_, ...,un, LO, ...,Ln. RMW
L' =Lo-{(r,x,oq,u1) - L1 -...- {7, X, 0y, un) - Ly, loc(o) = x val(o) = ug
rmw(o) = RMW

ANLy-...Lp€B(rxr) AN Li-...- L, € B(7)

AYo €Lq-....-L,. 1loc(0) # x B = Bnid[7 > 0 Byia(7)]

AVYo € Lg.loc(o) =x = mw#tArmw(o) =R B T’w(x’UW)>|05RA B’
7,W (x,0y) 7,RMW (x, 0,0y)
B >loSRA B’ B >loSRA B’
READ LOWER
loc(o) = x val(o) = ug B=B'[tr—o0-B'(1)] B'C B
T,R(x,0R)
B s1oSRA B’ B i>IoSRA B’

34

Multiple Lists per Thread

35

d1 :=X//1
dz I=y//1
d3 I:Z//O

€1 ::y//1
€9 :=Z//1
€3 ::X//O

Writer Thread in “Read Options”

_— = O
| V.
—_— = O
1l
A
—~

X = N

N X X
1.1
N < <
O = o
A
S

_Three Variants

,. Weak Release/Acquire | | Release/Acquire | Strong Release/Acquire
‘ (WRA) - (RA) ‘ (SRA)

 total order on writes to the same
location (modification-order) s.t.:

Potential-Based System for WRA

Write steps

T Wxv g W :
, Precondition: no Rx_in 7’s potential

All threads may get new options Rxv

a=XxX1//1
X =1 X = 2 X = 3 X =1 X = 2 X = 3
a=XxX1//1

38

Potential-Based System for WRA

Use "write options” to mark when writes are allowed

+ Simple constraints on where read options are added wrt write options

X // 1

P<
|
—
P
|
N
P<
|
Y
P<
|
—
P<
|
N
Q
|

3

P<
|

39

Shared-Memory Causality Principle

Every sequence of reads and writes that thread = can perform
after reading from a certain write executed by thread
could be performed by thread T immediately after it executed the write.

Thread 1 Thread 2 Thread 1 Thread 2

1:WzI1

40

a=1Y // 2

X = 3
b=X//1
| WY2
RX1
Thread 1
cannot write This transition is disallowed
to X and then

read X=1

41

Results

Theorem

The potential-based memory systems are equivalent to the SRA/WRA systems.

Theorem

When synchronized with a (finite-state) concurrent program, the potential-based
memory systems form WSTS.

42

Results

Theorem

The verification problems under SRA and WRA are decidable.

Corollary

The verification problem under RA is decidable for write-write-race-free programs.

43

Research Questions

e Useful implementation

e RA without RMWSs?

e Other models and extensions of causal consistency (get closer to RA?)
e Parametrized programs

e Use the potential-based semantics for other verification approaches

44

el Yy & verification?

~ !l‘ > i -
. ¢
Y

—— m
5 ——-t spe

——
I8 44
e - — '-»4:

.-

-
.- —

aabiah BaniiaiN

b anbiany

=

1
&
l

-
-

1
o
IR
S
F

-
.
%
: 8
v

'
.
'
-
'14
»-..~
)
- -
. s
| B
- B
:

)
By

» £
F 4

‘o.g * ’- -
— s T : - M‘*“‘ o1 . 13 %
- - > - " - *
R —~— WO--‘..'.._ R e e pav «]‘ 1 -
. = - - o - L %

!‘
A

- -
P—
— A ——
. g
-
- N
-
.
-
»
-
-
v
-
- -

