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Safety Verification

X := 1;  
repeat  
   a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  
X := 0;

Y := 1;  
repeat  
   b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  
Y := 0;
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Simple Solution

For programs with a bounded data domain, this problem is clearly decidable:

• Reduction to reachability in finite-state systems

• PSPACE-complete
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Sequential Consistency (SC)

…

Memory

CPU CPU CPU

X ↦ 0 Y ↦ 1 Z ↦ 1 …

• We assumed the classical shared-memory model.


• But it is unrealistic:  
for better performance/scalability/availability/
fault-tolerance shared-memory implementations 
provide weaker semantics.


• Similar situation in distributed data-stores
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Weaker Memory Models
• x86-TSO


• POWER


• ARM


• RISC-V


• C/C++11


• many many more…

[Atig, Bouajjani, Burckhardt, Musuvathi. POPL’2010]
[Abdulla, Atig, Bouajjani, Ngo. CUNCUR’2016]

Decidable

Undecidable
[Abdulla, Arora, Atig, Krishna. PLDI’2019]

• Even for the Release/Acquire fragment:  
memory_order_release & memory_order_acquire 

• Reduction from Post correspondence problem
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Causal Consistency
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• A classical model originated from replicated data stores: 

• nodes may disagree on the order of some operations

• consensus on the order of “causally related” operations


• Relatively simple and intuitive but more scalable than SC Causal  
Consistency

Sequential 
Consistency

x86-TSO



Safety Verification
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X := 1;  
repeat  
   a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  
X := 0;

Y := 1;  
repeat  
   b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  
Y := 0;

Both can read 0 in the same execution!

// 0   // 0  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https://en.wikipedia.org/wiki/Dekker's_algorithm

• How come airplanes don’t crash?


• There are ways to demand sequential consistency when we need it.


• We often don’t need sequential consistency in its full power.


Is it a Problem?

We have to define and understand  
the semantics of shared-memory concurrency.

https://en.wikipedia.org/wiki/Dekker%27s_algorithm
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Flag-Based Synchronization

Y := 1  
X := 1 

X = Y = 0

a := X // 1  
b := Y // 0

This behavior is forbidden under causal consistency



Formal Semantics

Defined declaratively using execution graphs

W Y 1

W Y 0 W X 0

R X 1

R Y 0W X 1

rf

inconsistent execution graph 
 

disallowed program outcome

happens-before = ( program-order ⋃ reads-from )+

hb

hb
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hb R xW x hbW x

rf

hb

Y := 1  
X := 1 

a := X // 1  
b := Y // 0

X = Y = 0



X := 1;  
repeat  
   a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  

Y := 1;  
repeat  
   b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  

W X 0 W Y 0

W X 1 W Y 1

R X 0R Y 0

The execution graph is 
consistent. 

 
The annotated 

outcome is allowed.
reads-from

program-order



Non-Multi-Copy-Atomicity
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X = Y = 0

X = 1
a = X // 1  
b = Y // 0

c = Y // 1  
d = X // 0 Y = 1

W X 0 W Y 0

R X 1 R Y 1

R X 0R Y 0

W Y 1W X 1

The execution graph is 
consistent. 

 
The annotated 

outcome is allowed.
reads-from

program-order

Weaker than x86-TSO: different threads can observe writes in different orders
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What about concurrent writes?

X = 1
a = X // 1  
b = X // 2  
c = X // 1

X = 2

R X 1

R X 1

R X 2

W X 2W X 1

reads-from
program-order

The execution graph is 
consistent. 

 
The annotated 

outcome is allowed.
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nothing
make sure that 
they are totally 

ordered


Release/Acquire 
(RA)

Strong Release/Acquire 
 (SRA)

Weak Release/Acquire 
(WRA)

What about concurrent writes?



W x W x
hb

mo
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Release/Acquire 
(RA)

Strong Release/Acquire 
 (SRA)

Weak Release/Acquire 
(WRA)

Three Variants

R xW x hbW x

rf

hb

 total order on writes to the same 
location (modification-order) s.t.:
∃

R xW x hbW x

rf

mo

hb

mo

mo

mo

mo

hb

hb

hb



WRA is strictly weaker than RA
w.l.o.g

WRA RA

reads-from
modification-order

program-order

happens-before

R X 1

R X 1

R X 2

W X 2W X 1
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X = 1  
Y = 2  
a = Y // 1

Y = 1  
X = 2  
b = X // 1

RA SRA

W X 1

W Y 2

R Y 1

W Y 1

W X 2

R X 1

reads-from
modification-order

program-order

RA is strictly weaker than SRA
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Causal  
Consistency

Sequential 
Consistency

x86-TSO SRA

RA

WRA

C/C++11 
Java 9

Distributed data-stores  
POWER architecture [L, Giannarakis, Vafeiadis. POPL'16]

CC in [Bouajjani, Enea, Guerraoui, Hamza. POPL'17] 
[Kokologiannakis, L, Sagonas, Vafeiadis. POPL'18]

Causal Consistency
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 has no WW-races under SRA   Prog ⟹ [|Prog |]𝖶𝖱𝖠
= [|Prog |]𝖱𝖠

= [|Prog |]𝖲𝖱𝖠

Write-Write-Race Freedom



• In contrast with RA [Abdulla, Arora, Atig, Krishna. PLDI’2019]

• To obtain this result we develop a new semantics for SRA and WRA.
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The verification problems under SRA and WRA are decidable.

Theorem

Results

The verification problem under RA is decidable for write-write-race-free programs.

Corollary



• For causal consistency, the problem is non-primitive recursive 


• We can simulate a lossy FIFO channel machine

• as for x86-TSO                     [Atig, Bouajjani, Burckhardt, Musuvathi. POPL’2010] 

Lower Complexity Bound
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DFA

Lossy FIFO channel

DFA
Lossy FIFO channel
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X := 1;  
repeat  
   a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  

Y := 1;  
repeat  
   b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  

Error stateInitial state

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

G2

W X 0 W Y 0

W X 1

R Y 0

W X 0 W Y 0

W X 1 W Y 1

R Y 0

G3

W X 0 W Y 0

W X 1 W Y 1

R X 0R Y 0

G4
1 : 𝖶𝚇1 1 : 𝖱𝚈0 2 : 𝖶𝚈1 2 : 𝖱𝚇0 1 : 𝖶𝚉0 1 : 𝖱𝚉1 G7

2 : 𝖶𝚉1

…

Even when the program is finite state,  
its synchronization with a causally consistent memory is infinite state.
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• To establish decidablity: 


• We use the framework of well-structured transition systems (WSTS) 
                                                                       [Abdullah] [Finkel, Schnoebelen] …


• Challenge: find a WSTS equivalent to a casually consistent memory



Backward Reachability
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Input: LTS , state 

Output: is  reachable?







 









(Q, Q0, → ) q𝖻𝖺𝖽
q𝖻𝖺𝖽

S := {q𝖻𝖺𝖽}
𝗋𝖾𝗉𝖾𝖺𝗍

S𝗉𝗋𝖾𝗏 := S
S := S ∪ 𝗉𝗋𝖾(S)

𝗎𝗇𝗍𝗂𝗅 (S = S𝗉𝗋𝖾𝗏)
𝗋𝖾𝗍𝗎𝗋𝗇 (Q0 ∩ S ≠ ∅)

To make this an algorithm we 
need to work with  

finitely representable sets &  
guarantee termination



q1 q2

q′ 1 q′ 2
∃

⪯

*

⪯

⪯

 should be compatible with ⪯ →

q′ q(lose)
q′ q⪯
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• Challenge: characterize casually consistent shared memory as a lossy system

Compatibility is guaranteed 
in “lossy” systems 

Well-Structured Transition Systems
• Equip the transition system with a well quasi-order 


• Work with upward closed sets of states  
represented by their finite basis

⪯



Causal Consistency as a WSTS

Two critical obstacles:


• Partial order embedding is not a well-quasi-order


• Execution histories are not lossy

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

G2

W X 0 W Y 0

W X 1

R Y 0

W X 0 W Y 0

W X 1 W Y 1

R Y 0

G3

W X 0 W Y 0

W X 1 W Y 1

R X 0R Y 0

G4
1 : 𝖶𝚇1 1 : 𝖱𝚈0 2 : 𝖶𝚈1 2 : 𝖱𝚇0 1 : 𝖶𝚉0 2 : 𝖶𝚉1 1 : 𝖱𝚉1 G7

…
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Record the threads’ potentials in memory states: 
 
            what possible sequences of reads each thread can execute?

Key Idea
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Lossy SRA
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Q = Threads → {𝖱xv ∣ x ∈ 𝖵𝖺𝗋, v ∈ 𝖵𝖺𝗅}*
Q0 = Threads → {𝖱x0 ∣ x ∈ 𝖵𝖺𝗋}*
q ⪯ q′ ⟺ ∀τ ∈ Threads . q(τ) ⊑ q′ (τ)

subsequence

 
 
 

𝖱𝚇2
𝖱𝚈2
𝖱𝚇0
𝖱𝚈0

𝖱𝚇2  
 

𝖱𝚈2
𝖱𝚇0
𝖱𝚈0

𝖱𝚈2
 𝖱𝚇0

𝖱𝚈0

ε

𝖱𝚈0

𝖱𝚈0
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X := 1;  
repeat  
   a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  

Y := 1;  
repeat  
   b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  

1 : 𝖶𝚇1 2 : 𝖶𝚈1 1 : 𝖱𝚈0

2 : 𝖱𝚇0
…

𝖱𝚇0𝖱𝚈0 ∥  𝖱𝚇0
𝖱𝚇1𝖱𝚈0 ∥  𝖱𝚇0

𝖱𝚇1
 𝖱𝚈0

𝖱𝚈1 ∥

 𝖱𝚇0
𝖱𝚇1𝖱𝚈1 ∥ 𝖱𝚇1𝖱𝚈1 ∥ Error 

state



Potential Maintenance for SRA
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Read steps 
Precondition: first element in ’s potential is τ 𝖱xv

Write steps 
Precondition: no  in ’s potential 
All threads may get new options      → where?

𝖱x_ τ
𝖱xv

Lose step 
Remove some elements from the potentials

ε

τ : 𝖱xv

τ : 𝖶xv

Deterministic

Non-Deterministic



Where?
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X = 1
a = X // 1  
b = Y // 0

X = Y = 0

𝖱𝚈0𝖱𝚈0 ∥ 1 : 𝖶𝚇1 𝖱𝚈0 ∥  𝖱𝚇1
𝖱𝚈0

This transition should be allowed

𝖱𝚈0∥ 1 : 𝖶𝚇1 ∥  𝖱𝚇1
𝖱𝚈0

This transition should not be allowed

Y = 1 a = X // 1  
b = Y // 0

X = Y = 0

X = 1



Shared-Memory Causality Principle
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𝖱𝚈1
𝖱𝚇0
𝖱𝚈0

 
 
 

𝖱𝚇2
𝖱𝚈2
𝖱𝚇0
𝖱𝚈0

1 : 𝖶𝚉1  
 

𝖱𝚈1
𝖱𝚇0
𝖱𝚈0

 
 
 
 

𝖱𝚇2
𝖱𝚈2
𝖱𝚉1
𝖱𝚇0
𝖱𝚈0{

}
∥
∥
∥

Thread 1 Thread 2 Thread 1 Thread 2

Every sequence of reads that thread  can perform  
after reading from a certain write executed by thread  

could be performed by thread  immediately after it executed the write.

π
τ

τ

∥
∥
∥⊑



Where?
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X = 1
a = X // 1  
b = Y // 0

X = Y = 0

𝖱𝚈0𝖱𝚈0 ∥ 1 : 𝖶𝚇1 𝖱𝚈0 ∥  𝖱𝚇1
𝖱𝚈0

This transition should be allowed

𝖱𝚈0∥ 1 : 𝖶𝚇1 ∥  𝖱𝚇1
𝖱𝚈0

This transition should not be allowed

Y = 1 a = X // 1  
b = Y // 0

X = Y = 0

X = 1

Thread 1 
can read 

Y=0

Thread 1 
cannot read 

Y=0



More Details
• Multiple lists per thread


• Writer thread’s id in “read options”


• Additional flags to handle RMWs (atomic Read-Modify-Writes)

34



Multiple Lists per Thread
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�����
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, W (G, EW))
⌧ 0 = h⇢ [ {4}, rf ,mo [ (⌧ .WG ⇥ {4})i

⌧
g,W (G,EW)�������!opSRA ⌧ 0

����
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, R (G, ER))
⌧ 0 = h⇢ [ {4}, rf [ {hF , 4i},moi
F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo ;⌧ .hb? ; [Eg ])

⌧
g,R (G,ER)�������!opSRA ⌧ 0

���
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, RMW (G, ER, EW))
⌧ 0 = h⇢ [ {4}, rf [ {hF , 4i},mo [ (⌧ .WG ⇥ {4})i

F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo)

⌧
g,RMW (G,ER,EW)������������!opSRA ⌧ 0

Figure 3. Transitions of opSRA.

The restriction we impose on the positions of the added
read options stems from the following key observation:2

Shared-memory causality principle:After threadc reads
from a certain write executed by thread g , it can perform a
sequence of operations only if thread g could perform the same
sequence immediately after it executed the write.
Indeed, if thread g has just performed a writeF , then after
thread c reads from F , it “synchronizes” with g and it is
thus con�ned by the sequences of reads that g may perform.
Hence, to allow the addition of a read option > in certain
positions of a list ! of some thread c , we require a justi�ca-
tion: the su�x of ! after the �rst occurrence of > should be
a subsequence of a read-option list of the writing thread g .
This guarantees that after c reads from a writeF of g , it will
not be able to read something that g could not read at the
time that it wroteF . (Revisiting Ex. 5.2, the read option >1y
cannot be placed before >0x, because T1 cannot have >0x in its
lists at the point of writing 1 to y.)

Now, since the potential of thread g is used both for 1. dic-
tating future reads of g , and 2. justifying placement of read
options that are generated by g ’s write steps, we may need
more than one option list for each thread. We also allow to
discard existing lists in silent moves of the memory system.
This is demonstrated in the following example.

Example 5.3. Consider the following program, whose an-
notated outcome is allowed under SRA:
x := 0
x := 1
a1 := z //1
a2 := y //0

y := 0
y := 1
b1 := x //1
b2 := z //0

z := 0
z := 1
c1 := y //1
c2 := x //0

d1 := x //1
d2 := y //1
d3 := z //0

e1 := y //1
e2 := z //1
e3 := x //0

f1 := z //1
f2 := x //1
f3 := y //0

Suppose that it can be obtained by the memory system out-
lined above with one read-option list per thread (i.e., single-
ton potentials). Suppose, w.l.o.g., that z := 1 is the last write
performed in the execution. Later, T3 has to read 1 from y
and 0 from x. Hence, its read-option list must include >1y and
>0x in this order. In addition, a read option >1z should be placed
in T6’s list before >1x ·>0y. The justi�cation for it requires >1x ·>0y
to be a subsequence of T3’s list. This implies that T3’s list
should contain some interleaving of >1y ·>0x and >1x ·>0y. But, no
such interleaving is a possible future for T3 (and thus cannot
be generated by loSRA): reading >1y does not allow to read
2A weaker observation, which only considers single reads, was essential for
the soundness of OGRA—an Owicki Gries logic for RA introduced in [29].

>0y later; and reading >1x does not allow to read >0x later. By
allowing more than one read-option list per thread, we can
have >1y ·>0x and >1x ·>0y in two separate lists in the potential of
T3—both are possible continuations for it after z := 1. Then,
after executing z := 1, T3 may “lose” the justifying list >1x · >0y,
and choose to continue with >1y · >0x for its own reads.

Another complication arises due to the fact that read op-
tions do not uniquely identify write events in the execution
graph (this is unavoidable: for the decision procedure, we
need the alphabet of read options to be �nite):

Example 5.4. Consider the following program:

x := 0
x := 1
z := 1

y := 0
y := 1
z := 1

a := z //1
w := 1
b := x //0

c := w //1
d := y //0 7 SRA (2MP)

Its annotated outcome is disallowed under SRA. Indeed, since
T3 reads x = 0 after z = 1, the read of z must read from the
write of T2. But then, T4, after reading w = 1 (from T3) cannot
read y = 0. However, the semantics described so far allows
this outcome as in the following snippet:

{n} {n} {n} {n} T1����!
W (x,0)

T1����!
W (x,1)

T2����!
W (y,0)

T2����!
W (y,1)

T1����!
W (z,1)

{>0y} {>0x} {>0x,>1z>0y} {>0y}
T2����!

W (z,1)
{>0y} {>0x} {>1z>0x,>1z>0y} {>0y}

T3����!
R (z,1)

{>0y} {>0x} {>0x,>0y} {>0y}
T3����!

W (w,1)
{>0y} {>0x} {>0x,>0y} {>1w>0y} ...

What went wrong? The problem arises when T3 reads 1 from
z. At this point it has two possible futures, >1z>0x and >1z>

0
y.

Since read options, consisting of location and value, do not
uniquely identify writes, it may read 1 from z, and remain
with both >0x and >0y. Now, it uses one of these options to
justify the position of >1w in the list of T4, and the other for its
own read. However, in a single run of opSRA, when reading
1 from z, T3 must pick which write event to read from, and
then, either it cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more
informative. Together with location and value, read options
also include the thread identi�er that performed the write.
When a thread writes, it adds options with its own thread
identi�er in the di�erent lists. For a thread g to read E from
G , a read option > with val(>) = E and loc(>) = G and some
unique writing thread identi�er must be the �rst in every of
g ’s read-option lists. In this example, the two >1z options will

8

 𝖱x1
𝖱y0

 𝖱y1
𝖱x0

 𝖱x1
𝖱y0



Writer Thread in “Read Options”
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⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, W (G, EW))
⌧ 0 = h⇢ [ {4}, rf ,mo [ (⌧ .WG ⇥ {4})i

⌧
g,W (G,EW)�������!opSRA ⌧ 0

����
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, R (G, ER))
⌧ 0 = h⇢ [ {4}, rf [ {hF , 4i},moi
F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo ;⌧ .hb? ; [Eg ])

⌧
g,R (G,ER)�������!opSRA ⌧ 0

���
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, RMW (G, ER, EW))
⌧ 0 = h⇢ [ {4}, rf [ {hF , 4i},mo [ (⌧ .WG ⇥ {4})i

F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo)

⌧
g,RMW (G,ER,EW)������������!opSRA ⌧ 0

Figure 3. Transitions of opSRA.

The restriction we impose on the positions of the added
read options stems from the following key observation:2

Shared-memory causality principle:After threadc reads
from a certain write executed by thread g , it can perform a
sequence of operations only if thread g could perform the same
sequence immediately after it executed the write.
Indeed, if thread g has just performed a writeF , then after
thread c reads from F , it “synchronizes” with g and it is
thus con�ned by the sequences of reads that g may perform.
Hence, to allow the addition of a read option > in certain
positions of a list ! of some thread c , we require a justi�ca-
tion: the su�x of ! after the �rst occurrence of > should be
a subsequence of a read-option list of the writing thread g .
This guarantees that after c reads from a writeF of g , it will
not be able to read something that g could not read at the
time that it wroteF . (Revisiting Ex. 5.2, the read option >1y
cannot be placed before >0x, because T1 cannot have >0x in its
lists at the point of writing 1 to y.)

Now, since the potential of thread g is used both for 1. dic-
tating future reads of g , and 2. justifying placement of read
options that are generated by g ’s write steps, we may need
more than one option list for each thread. We also allow to
discard existing lists in silent moves of the memory system.
This is demonstrated in the following example.

Example 5.3. Consider the following program, whose an-
notated outcome is allowed under SRA:
x := 0
x := 1
a1 := z //1
a2 := y //0

y := 0
y := 1
b1 := x //1
b2 := z //0

z := 0
z := 1
c1 := y //1
c2 := x //0

d1 := x //1
d2 := y //1
d3 := z //0

e1 := y //1
e2 := z //1
e3 := x //0

f1 := z //1
f2 := x //1
f3 := y //0

Suppose that it can be obtained by the memory system out-
lined above with one read-option list per thread (i.e., single-
ton potentials). Suppose, w.l.o.g., that z := 1 is the last write
performed in the execution. Later, T3 has to read 1 from y
and 0 from x. Hence, its read-option list must include >1y and
>0x in this order. In addition, a read option >1z should be placed
in T6’s list before >1x ·>0y. The justi�cation for it requires >1x ·>0y
to be a subsequence of T3’s list. This implies that T3’s list
should contain some interleaving of >1y ·>0x and >1x ·>0y. But, no
such interleaving is a possible future for T3 (and thus cannot
be generated by loSRA): reading >1y does not allow to read
2A weaker observation, which only considers single reads, was essential for
the soundness of OGRA—an Owicki Gries logic for RA introduced in [29].

>0y later; and reading >1x does not allow to read >0x later. By
allowing more than one read-option list per thread, we can
have >1y ·>0x and >1x ·>0y in two separate lists in the potential of
T3—both are possible continuations for it after z := 1. Then,
after executing z := 1, T3 may “lose” the justifying list >1x · >0y,
and choose to continue with >1y · >0x for its own reads.

Another complication arises due to the fact that read op-
tions do not uniquely identify write events in the execution
graph (this is unavoidable: for the decision procedure, we
need the alphabet of read options to be �nite):

Example 5.4. Consider the following program:

x := 0
x := 1
z := 1

y := 0
y := 1
z := 1

a := z //1
w := 1
b := x //0

c := w //1
d := y //0 7 SRA (2MP)

Its annotated outcome is disallowed under SRA. Indeed, since
T3 reads x = 0 after z = 1, the read of z must read from the
write of T2. But then, T4, after reading w = 1 (from T3) cannot
read y = 0. However, the semantics described so far allows
this outcome as in the following snippet:

{n} {n} {n} {n} T1����!
W (x,0)

T1����!
W (x,1)

T2����!
W (y,0)

T2����!
W (y,1)

T1����!
W (z,1)

{>0y} {>0x} {>0x,>1z>0y} {>0y}
T2����!

W (z,1)
{>0y} {>0x} {>1z>0x,>1z>0y} {>0y}

T3����!
R (z,1)

{>0y} {>0x} {>0x,>0y} {>0y}
T3����!

W (w,1)
{>0y} {>0x} {>0x,>0y} {>1w>0y} ...

What went wrong? The problem arises when T3 reads 1 from
z. At this point it has two possible futures, >1z>0x and >1z>

0
y.

Since read options, consisting of location and value, do not
uniquely identify writes, it may read 1 from z, and remain
with both >0x and >0y. Now, it uses one of these options to
justify the position of >1w in the list of T4, and the other for its
own read. However, in a single run of opSRA, when reading
1 from z, T3 must pick which write event to read from, and
then, either it cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more
informative. Together with location and value, read options
also include the thread identi�er that performed the write.
When a thread writes, it adds options with its own thread
identi�er in the di�erent lists. For a thread g to read E from
G , a read option > with val(>) = E and loc(>) = G and some
unique writing thread identi�er must be the �rst in every of
g ’s read-option lists. In this example, the two >1z options will

8

 𝖱z1
𝖱y0

 𝖱z1
𝖱x0

 1 : 𝖱z1
𝖱y0

 2 : 𝖱z1
𝖱x0
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Release/Acquire 
(RA)

Strong Release/Acquire 
 (SRA)

Weak Release/Acquire 
(WRA)

Three Variants

 total order on writes to the same 
location (modification-order) s.t.:
∃

R xW x hbW x

rf

hb R xW x hbW x

rf

mo

hb

mo

mo

mo

mo

hb

hb

hb



Potential-Based System for WRA
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Write steps 
Precondition: no  in ’s potential 
All threads may get new options     

𝖱x_ τ
𝖱xv

τ : 𝖶xv

X = 2X = 1 X = 3

 
 

𝖱𝚇1
𝖱𝚇2
𝖱𝚇1

X = 2X = 1
a = X // 1  
X = 3  
a = X // 1  

 
 

𝖱𝚇1
𝖱𝚇2
𝖱𝚇1
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Use "write options" to mark when writes are allowed 
 
+ Simple constraints on where read options are added wrt write options 

X = 2X = 1 X = 3

 

 

𝖶𝚇
𝖱𝚇1
𝖱𝚇2
𝖱𝚇1

X = 2X = 1
a = X // 1  
 
X = 3

 
 

𝖱𝚇1
𝖱𝚇2
𝖱𝚇1

Potential-Based System for WRA
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𝖶𝚉
𝖱𝚈1
𝖶𝚈
𝖱𝚇0
𝖱𝚈1

 
 
 

𝖱𝚇2
𝖶𝚇
𝖱𝚇0
𝖱𝚈1

1 : 𝖶𝚉1
 

 
 
 

𝖱𝚈1
𝖶𝚈
𝖱𝚇0
𝖱𝚈1

 
 
 
 

𝖱𝚇2
𝖶𝚇
𝖱𝚉1
𝖱𝚇0
𝖱𝚈1{}

∥
∥
∥

Thread 1 Thread 2 Thread 1 Thread 2

Every sequence of reads and writes that thread  can perform  
after reading from a certain write executed by thread  

could be performed by thread  immediately after it executed the write.

π
τ

τ

∥
∥
∥⊑
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X = 1  
Y = 2

a = Y // 2  
X = 3  
b = X // 1  

X = Y = 0

 𝖶𝚇
𝖱𝚇1𝖱𝚇1 ∥ 1 : 𝖶𝚈2 𝖱𝚇1 ∥  

 
𝖱𝚈2
𝖶𝚇
𝖱𝚇1

This transition is disallowed
Thread 1 

cannot write 
to X and then 

read X=1



Results
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The potential-based memory systems are equivalent to the SRA/WRA systems.

When synchronized with a (finite-state) concurrent program,  the potential-based 
memory systems form WSTS.
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Results

The verification problems under SRA and WRA are decidable.

Theorem

The verification problem under RA is decidable for write-write-race-free programs.

Corollary



Research Questions
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• Useful implementation


• RA without RMWs?


• Other models and extensions of causal consistency (get closer to RA?)


• Parametrized programs


• Use the potential-based semantics for other verification approaches
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Interested in concurrency & verification? 
I’m looking for students / postdocs!


