
What's Decidable about
Causally Consistent

Shared Memory?

OWLS 
January 20, 2021

Ori Lahav Udi Boker

Safety Verification

X := 1;  
repeat  
 a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  
X := 0;

Y := 1;  
repeat  
 b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  
Y := 0;

2

Simple Solution

For programs with a bounded data domain, this problem is clearly decidable:

• Reduction to reachability in finite-state systems

• PSPACE-complete

∥ ∩)(
𝖶𝚇1

𝖱𝚈0

𝖶𝚉0

𝖶𝚇0

𝖱𝚉1 𝖱𝚉0

𝖱𝚈1

𝖶𝚈1

𝖱𝚇0

𝖶𝚉1

𝖶𝚈0

𝖱𝚉0 𝖱𝚉1

𝖱𝚇1

𝖱𝚇0,𝖱𝚈0,𝖱𝚉0
𝖶𝚇0,𝖶𝚈0,𝖶𝚉0

𝖱𝚇1,𝖱𝚈0,𝖱𝚉0
𝖶𝚇1,𝖶𝚈0,𝖶𝚉0

𝖶𝚇1 𝖶𝚉1

𝖶𝚈1

𝖶𝚉1

𝖶𝚈1

𝖶𝚇1

𝖱𝚇1,𝖱𝚈1,𝖱𝚉0
𝖶𝚇1,𝖶𝚈1,𝖶𝚉0

𝖱𝚇1,𝖱𝚈1,𝖱𝚉1
𝖶𝚇1,𝖶𝚈1,𝖶𝚉1

𝖱𝚇0,𝖱𝚈1,𝖱𝚉1
𝖶𝚇0,𝖶𝚈1,𝖶𝚉1

𝖱𝚇0,𝖱𝚈0,𝖱𝚉1
𝖶𝚇0,𝖶𝚈0,𝖶𝚉1

3

Sequential Consistency (SC)

…

Memory

CPU CPU CPU

X ↦ 0 Y ↦ 1 Z ↦ 1 …

• We assumed the classical shared-memory model.

• But it is unrealistic:  
for better performance/scalability/availability/
fault-tolerance shared-memory implementations
provide weaker semantics.

• Similar situation in distributed data-stores

4

Weaker Memory Models
• x86-TSO

• POWER

• ARM

• RISC-V

• C/C++11

• many many more…

[Atig, Bouajjani, Burckhardt, Musuvathi. POPL’2010]
[Abdulla, Atig, Bouajjani, Ngo. CUNCUR’2016]

Decidable

Undecidable
[Abdulla, Arora, Atig, Krishna. PLDI’2019]

• Even for the Release/Acquire fragment:  
memory_order_release & memory_order_acquire

• Reduction from Post correspondence problem

5

Causal Consistency

6

• A classical model originated from replicated data stores:

• nodes may disagree on the order of some operations

• consensus on the order of “causally related” operations

• Relatively simple and intuitive but more scalable than SC Causal  
Consistency

Sequential
Consistency

x86-TSO

Safety Verification

7

X := 1;  
repeat  
 a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  
X := 0;

Y := 1;  
repeat  
 b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  
Y := 0;

Both can read 0 in the same execution!

// 0   // 0  

8

https://en.wikipedia.org/wiki/Dekker's_algorithm

• How come airplanes don’t crash?

• There are ways to demand sequential consistency when we need it.

• We often don’t need sequential consistency in its full power.

Is it a Problem?

We have to define and understand  
the semantics of shared-memory concurrency.

https://en.wikipedia.org/wiki/Dekker%27s_algorithm

9

Flag-Based Synchronization

Y := 1  
X := 1

X = Y = 0

a := X // 1  
b := Y // 0

This behavior is forbidden under causal consistency

Formal Semantics

Defined declaratively using execution graphs

W Y 1

W Y 0 W X 0

R X 1

R Y 0W X 1

rf

inconsistent execution graph 
 

disallowed program outcome

happens-before = (program-order ⋃ reads-from)+

hb

hb

10

hb R xW x hbW x

rf

hb

Y := 1  
X := 1

a := X // 1  
b := Y // 0

X = Y = 0

X := 1;  
repeat  
 a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  

Y := 1;  
repeat  
 b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  

W X 0 W Y 0

W X 1 W Y 1

R X 0R Y 0

The execution graph is
consistent. 

 
The annotated

outcome is allowed.
reads-from

program-order

Non-Multi-Copy-Atomicity

12

X = Y = 0

X = 1
a = X // 1  
b = Y // 0

c = Y // 1  
d = X // 0 Y = 1

W X 0 W Y 0

R X 1 R Y 1

R X 0R Y 0

W Y 1W X 1

The execution graph is
consistent. 

 
The annotated

outcome is allowed.
reads-from

program-order

Weaker than x86-TSO: different threads can observe writes in different orders

13

What about concurrent writes?

X = 1
a = X // 1  
b = X // 2  
c = X // 1

X = 2

R X 1

R X 1

R X 2

W X 2W X 1

reads-from
program-order

The execution graph is
consistent. 

 
The annotated

outcome is allowed.

14

nothing
make sure that
they are totally

ordered

Release/Acquire 
(RA)

Strong Release/Acquire 
 (SRA)

Weak Release/Acquire
(WRA)

What about concurrent writes?

W x W x
hb

mo
15

Release/Acquire 
(RA)

Strong Release/Acquire 
 (SRA)

Weak Release/Acquire
(WRA)

Three Variants

R xW x hbW x

rf

hb

 total order on writes to the same
location (modification-order) s.t.:
∃

R xW x hbW x

rf

mo

hb

mo

mo

mo

mo

hb

hb

hb

WRA is strictly weaker than RA
w.l.o.g

WRA RA

reads-from
modification-order

program-order

happens-before

R X 1

R X 1

R X 2

W X 2W X 1

16

17

X = 1  
Y = 2  
a = Y // 1

Y = 1  
X = 2  
b = X // 1

RA SRA

W X 1

W Y 2

R Y 1

W Y 1

W X 2

R X 1

reads-from
modification-order

program-order

RA is strictly weaker than SRA

18

Causal  
Consistency

Sequential
Consistency

x86-TSO SRA

RA

WRA

C/C++11 
Java 9

Distributed data-stores  
POWER architecture [L, Giannarakis, Vafeiadis. POPL'16]

CC in [Bouajjani, Enea, Guerraoui, Hamza. POPL'17] 
[Kokologiannakis, L, Sagonas, Vafeiadis. POPL'18]

Causal Consistency

19

 has no WW-races under SRA Prog ⟹ [|Prog |]𝖶𝖱𝖠
= [|Prog |]𝖱𝖠

= [|Prog |]𝖲𝖱𝖠

Write-Write-Race Freedom

• In contrast with RA [Abdulla, Arora, Atig, Krishna. PLDI’2019]

• To obtain this result we develop a new semantics for SRA and WRA.

20

The verification problems under SRA and WRA are decidable.

Theorem

Results

The verification problem under RA is decidable for write-write-race-free programs.

Corollary

• For causal consistency, the problem is non-primitive recursive

• We can simulate a lossy FIFO channel machine

• as for x86-TSO [Atig, Bouajjani, Burckhardt, Musuvathi. POPL’2010]

Lower Complexity Bound

21

DFA

Lossy FIFO channel

DFA
Lossy FIFO channel

22

X := 1;  
repeat  
 a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  

Y := 1;  
repeat  
 b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  

Error stateInitial state

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

G2

W X 0 W Y 0

W X 1

R Y 0

W X 0 W Y 0

W X 1 W Y 1

R Y 0

G3

W X 0 W Y 0

W X 1 W Y 1

R X 0R Y 0

G4
1 : 𝖶𝚇1 1 : 𝖱𝚈0 2 : 𝖶𝚈1 2 : 𝖱𝚇0 1 : 𝖶𝚉0 1 : 𝖱𝚉1 G7

2 : 𝖶𝚉1

…

Even when the program is finite state,  
its synchronization with a causally consistent memory is infinite state.

23

• To establish decidablity:

• We use the framework of well-structured transition systems (WSTS) 
 [Abdullah] [Finkel, Schnoebelen] …

• Challenge: find a WSTS equivalent to a casually consistent memory

Backward Reachability

24

Input: LTS , state

Output: is reachable?

(Q, Q0, →) q𝖻𝖺𝖽
q𝖻𝖺𝖽

S := {q𝖻𝖺𝖽}
𝗋𝖾𝗉𝖾𝖺𝗍

S𝗉𝗋𝖾𝗏 := S
S := S ∪ 𝗉𝗋𝖾(S)

𝗎𝗇𝗍𝗂𝗅 (S = S𝗉𝗋𝖾𝗏)
𝗋𝖾𝗍𝗎𝗋𝗇 (Q0 ∩ S ≠ ∅)

To make this an algorithm we
need to work with  

finitely representable sets &  
guarantee termination

q1 q2

q′ 1 q′ 2
∃

⪯

*

⪯

⪯

 should be compatible with ⪯ →

q′ q(lose)
q′ q⪯

25

• Challenge: characterize casually consistent shared memory as a lossy system

Compatibility is guaranteed
in “lossy” systems 

Well-Structured Transition Systems
• Equip the transition system with a well quasi-order

• Work with upward closed sets of states  
represented by their finite basis

⪯

Causal Consistency as a WSTS

Two critical obstacles:

• Partial order embedding is not a well-quasi-order

• Execution histories are not lossy

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

G2

W X 0 W Y 0

W X 1

R Y 0

W X 0 W Y 0

W X 1 W Y 1

R Y 0

G3

W X 0 W Y 0

W X 1 W Y 1

R X 0R Y 0

G4
1 : 𝖶𝚇1 1 : 𝖱𝚈0 2 : 𝖶𝚈1 2 : 𝖱𝚇0 1 : 𝖶𝚉0 2 : 𝖶𝚉1 1 : 𝖱𝚉1 G7

…

26

Record the threads’ potentials in memory states: 
 
 what possible sequences of reads each thread can execute?

Key Idea

27

Lossy SRA

28

Q = Threads → {𝖱xv ∣ x ∈ 𝖵𝖺𝗋, v ∈ 𝖵𝖺𝗅}*
Q0 = Threads → {𝖱x0 ∣ x ∈ 𝖵𝖺𝗋}*
q ⪯ q′ ⟺ ∀τ ∈ Threads . q(τ) ⊑ q′ (τ)

subsequence

𝖱𝚇2
𝖱𝚈2
𝖱𝚇0
𝖱𝚈0

𝖱𝚇2

𝖱𝚈2
𝖱𝚇0
𝖱𝚈0

𝖱𝚈2
 𝖱𝚇0

𝖱𝚈0

ε

𝖱𝚈0

𝖱𝚈0

29

X := 1;  
repeat  
 a := Y;  
until (a = 0);  
Z := 0;  
assert (Z = 0);  

Y := 1;  
repeat  
 b := X;  
until (b = 0);  
Z := 1;  
assert (Z = 1);  

1 : 𝖶𝚇1 2 : 𝖶𝚈1 1 : 𝖱𝚈0

2 : 𝖱𝚇0
…

𝖱𝚇0𝖱𝚈0 ∥ 𝖱𝚇0
𝖱𝚇1𝖱𝚈0 ∥ 𝖱𝚇0

𝖱𝚇1
 𝖱𝚈0

𝖱𝚈1 ∥

 𝖱𝚇0
𝖱𝚇1𝖱𝚈1 ∥ 𝖱𝚇1𝖱𝚈1 ∥ Error

state

Potential Maintenance for SRA

30

Read steps 
Precondition: first element in ’s potential is τ 𝖱xv

Write steps 
Precondition: no in ’s potential 
All threads may get new options → where?

𝖱x_ τ
𝖱xv

Lose step 
Remove some elements from the potentials

ε

τ : 𝖱xv

τ : 𝖶xv

Deterministic

Non-Deterministic

Where?

31

X = 1
a = X // 1  
b = Y // 0

X = Y = 0

𝖱𝚈0𝖱𝚈0 ∥ 1 : 𝖶𝚇1 𝖱𝚈0 ∥ 𝖱𝚇1
𝖱𝚈0

This transition should be allowed

𝖱𝚈0∥ 1 : 𝖶𝚇1 ∥ 𝖱𝚇1
𝖱𝚈0

This transition should not be allowed

Y = 1 a = X // 1  
b = Y // 0

X = Y = 0

X = 1

Shared-Memory Causality Principle

32

𝖱𝚈1
𝖱𝚇0
𝖱𝚈0

𝖱𝚇2
𝖱𝚈2
𝖱𝚇0
𝖱𝚈0

1 : 𝖶𝚉1

𝖱𝚈1
𝖱𝚇0
𝖱𝚈0

𝖱𝚇2
𝖱𝚈2
𝖱𝚉1
𝖱𝚇0
𝖱𝚈0{

}
∥
∥
∥

Thread 1 Thread 2 Thread 1 Thread 2

Every sequence of reads that thread can perform
after reading from a certain write executed by thread

could be performed by thread immediately after it executed the write.

π
τ

τ

∥
∥
∥⊑

Where?

33

X = 1
a = X // 1  
b = Y // 0

X = Y = 0

𝖱𝚈0𝖱𝚈0 ∥ 1 : 𝖶𝚇1 𝖱𝚈0 ∥ 𝖱𝚇1
𝖱𝚈0

This transition should be allowed

𝖱𝚈0∥ 1 : 𝖶𝚇1 ∥ 𝖱𝚇1
𝖱𝚈0

This transition should not be allowed

Y = 1 a = X // 1  
b = Y // 0

X = Y = 0

X = 1

Thread 1
can read

Y=0

Thread 1
cannot read

Y=0

More Details
• Multiple lists per thread

• Writer thread’s id in “read options”

• Additional flags to handle RMWs (atomic Read-Modify-Writes)

34

Multiple Lists per Thread

35

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PL’18, January 01–03, 2018, New York, NY, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

�����
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, W (G, EW))
⌧ 0 = h⇢ [{4}, rf ,mo [(⌧ .WG ⇥ {4})i

⌧
g,W (G,EW)�������!opSRA ⌧ 0

����
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, R (G, ER))
⌧ 0 = h⇢ [{4}, rf [{hF , 4i},moi
F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo ;⌧ .hb? ; [Eg])

⌧
g,R (G,ER)�������!opSRA ⌧ 0

���
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, RMW (G, ER, EW))
⌧ 0 = h⇢ [{4}, rf [{hF , 4i},mo [(⌧ .WG ⇥ {4})i

F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo)

⌧
g,RMW (G,ER,EW)������������!opSRA ⌧ 0

Figure 3. Transitions of opSRA.

The restriction we impose on the positions of the added
read options stems from the following key observation:2

Shared-memory causality principle:After threadc reads
from a certain write executed by thread g , it can perform a
sequence of operations only if thread g could perform the same
sequence immediately after it executed the write.
Indeed, if thread g has just performed a writeF , then after
thread c reads from F , it “synchronizes” with g and it is
thus con�ned by the sequences of reads that g may perform.
Hence, to allow the addition of a read option > in certain
positions of a list ! of some thread c , we require a justi�ca-
tion: the su�x of ! after the �rst occurrence of > should be
a subsequence of a read-option list of the writing thread g .
This guarantees that after c reads from a writeF of g , it will
not be able to read something that g could not read at the
time that it wroteF . (Revisiting Ex. 5.2, the read option >1y
cannot be placed before >0x, because T1 cannot have >0x in its
lists at the point of writing 1 to y.)

Now, since the potential of thread g is used both for 1. dic-
tating future reads of g , and 2. justifying placement of read
options that are generated by g ’s write steps, we may need
more than one option list for each thread. We also allow to
discard existing lists in silent moves of the memory system.
This is demonstrated in the following example.

Example 5.3. Consider the following program, whose an-
notated outcome is allowed under SRA:
x := 0
x := 1
a1 := z //1
a2 := y //0

y := 0
y := 1
b1 := x //1
b2 := z //0

z := 0
z := 1
c1 := y //1
c2 := x //0

d1 := x //1
d2 := y //1
d3 := z //0

e1 := y //1
e2 := z //1
e3 := x //0

f1 := z //1
f2 := x //1
f3 := y //0

Suppose that it can be obtained by the memory system out-
lined above with one read-option list per thread (i.e., single-
ton potentials). Suppose, w.l.o.g., that z := 1 is the last write
performed in the execution. Later, T3 has to read 1 from y
and 0 from x. Hence, its read-option list must include >1y and
>0x in this order. In addition, a read option >1z should be placed
in T6’s list before >1x ·>0y. The justi�cation for it requires >1x ·>0y
to be a subsequence of T3’s list. This implies that T3’s list
should contain some interleaving of >1y ·>0x and >1x ·>0y. But, no
such interleaving is a possible future for T3 (and thus cannot
be generated by loSRA): reading >1y does not allow to read
2A weaker observation, which only considers single reads, was essential for
the soundness of OGRA—an Owicki Gries logic for RA introduced in [29].

>0y later; and reading >1x does not allow to read >0x later. By
allowing more than one read-option list per thread, we can
have >1y ·>0x and >1x ·>0y in two separate lists in the potential of
T3—both are possible continuations for it after z := 1. Then,
after executing z := 1, T3 may “lose” the justifying list >1x · >0y,
and choose to continue with >1y · >0x for its own reads.

Another complication arises due to the fact that read op-
tions do not uniquely identify write events in the execution
graph (this is unavoidable: for the decision procedure, we
need the alphabet of read options to be �nite):

Example 5.4. Consider the following program:

x := 0
x := 1
z := 1

y := 0
y := 1
z := 1

a := z //1
w := 1
b := x //0

c := w //1
d := y //0 7 SRA (2MP)

Its annotated outcome is disallowed under SRA. Indeed, since
T3 reads x = 0 after z = 1, the read of z must read from the
write of T2. But then, T4, after reading w = 1 (from T3) cannot
read y = 0. However, the semantics described so far allows
this outcome as in the following snippet:

{n} {n} {n} {n} T1����!
W (x,0)

T1����!
W (x,1)

T2����!
W (y,0)

T2����!
W (y,1)

T1����!
W (z,1)

{>0y} {>0x} {>0x,>1z>0y} {>0y}
T2����!

W (z,1)
{>0y} {>0x} {>1z>0x,>1z>0y} {>0y}

T3����!
R (z,1)

{>0y} {>0x} {>0x,>0y} {>0y}
T3����!

W (w,1)
{>0y} {>0x} {>0x,>0y} {>1w>0y} ...

What went wrong? The problem arises when T3 reads 1 from
z. At this point it has two possible futures, >1z>0x and >1z>

0
y.

Since read options, consisting of location and value, do not
uniquely identify writes, it may read 1 from z, and remain
with both >0x and >0y. Now, it uses one of these options to
justify the position of >1w in the list of T4, and the other for its
own read. However, in a single run of opSRA, when reading
1 from z, T3 must pick which write event to read from, and
then, either it cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more
informative. Together with location and value, read options
also include the thread identi�er that performed the write.
When a thread writes, it adds options with its own thread
identi�er in the di�erent lists. For a thread g to read E from
G , a read option > with val(>) = E and loc(>) = G and some
unique writing thread identi�er must be the �rst in every of
g ’s read-option lists. In this example, the two >1z options will

8

 𝖱x1
𝖱y0

 𝖱y1
𝖱x0

 𝖱x1
𝖱y0

Writer Thread in “Read Options”

36

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PL’18, January 01–03, 2018, New York, NY, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

�����
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, W (G, EW))
⌧ 0 = h⇢ [{4}, rf ,mo [(⌧ .WG ⇥ {4})i

⌧
g,W (G,EW)�������!opSRA ⌧ 0

����
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, R (G, ER))
⌧ 0 = h⇢ [{4}, rf [{hF , 4i},moi
F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo ;⌧ .hb? ; [Eg])

⌧
g,R (G,ER)�������!opSRA ⌧ 0

���
⌧ = h⇢, rf ,moi

4 = NextEvent(⌧ .E, g, RMW (G, ER, EW))
⌧ 0 = h⇢ [{4}, rf [{hF , 4i},mo [(⌧ .WG ⇥ {4})i

F 2 ⌧ .WG valW (F) = ER
F 8 dom(mo)

⌧
g,RMW (G,ER,EW)������������!opSRA ⌧ 0

Figure 3. Transitions of opSRA.

The restriction we impose on the positions of the added
read options stems from the following key observation:2

Shared-memory causality principle:After threadc reads
from a certain write executed by thread g , it can perform a
sequence of operations only if thread g could perform the same
sequence immediately after it executed the write.
Indeed, if thread g has just performed a writeF , then after
thread c reads from F , it “synchronizes” with g and it is
thus con�ned by the sequences of reads that g may perform.
Hence, to allow the addition of a read option > in certain
positions of a list ! of some thread c , we require a justi�ca-
tion: the su�x of ! after the �rst occurrence of > should be
a subsequence of a read-option list of the writing thread g .
This guarantees that after c reads from a writeF of g , it will
not be able to read something that g could not read at the
time that it wroteF . (Revisiting Ex. 5.2, the read option >1y
cannot be placed before >0x, because T1 cannot have >0x in its
lists at the point of writing 1 to y.)

Now, since the potential of thread g is used both for 1. dic-
tating future reads of g , and 2. justifying placement of read
options that are generated by g ’s write steps, we may need
more than one option list for each thread. We also allow to
discard existing lists in silent moves of the memory system.
This is demonstrated in the following example.

Example 5.3. Consider the following program, whose an-
notated outcome is allowed under SRA:
x := 0
x := 1
a1 := z //1
a2 := y //0

y := 0
y := 1
b1 := x //1
b2 := z //0

z := 0
z := 1
c1 := y //1
c2 := x //0

d1 := x //1
d2 := y //1
d3 := z //0

e1 := y //1
e2 := z //1
e3 := x //0

f1 := z //1
f2 := x //1
f3 := y //0

Suppose that it can be obtained by the memory system out-
lined above with one read-option list per thread (i.e., single-
ton potentials). Suppose, w.l.o.g., that z := 1 is the last write
performed in the execution. Later, T3 has to read 1 from y
and 0 from x. Hence, its read-option list must include >1y and
>0x in this order. In addition, a read option >1z should be placed
in T6’s list before >1x ·>0y. The justi�cation for it requires >1x ·>0y
to be a subsequence of T3’s list. This implies that T3’s list
should contain some interleaving of >1y ·>0x and >1x ·>0y. But, no
such interleaving is a possible future for T3 (and thus cannot
be generated by loSRA): reading >1y does not allow to read
2A weaker observation, which only considers single reads, was essential for
the soundness of OGRA—an Owicki Gries logic for RA introduced in [29].

>0y later; and reading >1x does not allow to read >0x later. By
allowing more than one read-option list per thread, we can
have >1y ·>0x and >1x ·>0y in two separate lists in the potential of
T3—both are possible continuations for it after z := 1. Then,
after executing z := 1, T3 may “lose” the justifying list >1x · >0y,
and choose to continue with >1y · >0x for its own reads.

Another complication arises due to the fact that read op-
tions do not uniquely identify write events in the execution
graph (this is unavoidable: for the decision procedure, we
need the alphabet of read options to be �nite):

Example 5.4. Consider the following program:

x := 0
x := 1
z := 1

y := 0
y := 1
z := 1

a := z //1
w := 1
b := x //0

c := w //1
d := y //0 7 SRA (2MP)

Its annotated outcome is disallowed under SRA. Indeed, since
T3 reads x = 0 after z = 1, the read of z must read from the
write of T2. But then, T4, after reading w = 1 (from T3) cannot
read y = 0. However, the semantics described so far allows
this outcome as in the following snippet:

{n} {n} {n} {n} T1����!
W (x,0)

T1����!
W (x,1)

T2����!
W (y,0)

T2����!
W (y,1)

T1����!
W (z,1)

{>0y} {>0x} {>0x,>1z>0y} {>0y}
T2����!

W (z,1)
{>0y} {>0x} {>1z>0x,>1z>0y} {>0y}

T3����!
R (z,1)

{>0y} {>0x} {>0x,>0y} {>0y}
T3����!

W (w,1)
{>0y} {>0x} {>0x,>0y} {>1w>0y} ...

What went wrong? The problem arises when T3 reads 1 from
z. At this point it has two possible futures, >1z>0x and >1z>

0
y.

Since read options, consisting of location and value, do not
uniquely identify writes, it may read 1 from z, and remain
with both >0x and >0y. Now, it uses one of these options to
justify the position of >1w in the list of T4, and the other for its
own read. However, in a single run of opSRA, when reading
1 from z, T3 must pick which write event to read from, and
then, either it cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more
informative. Together with location and value, read options
also include the thread identi�er that performed the write.
When a thread writes, it adds options with its own thread
identi�er in the di�erent lists. For a thread g to read E from
G , a read option > with val(>) = E and loc(>) = G and some
unique writing thread identi�er must be the �rst in every of
g ’s read-option lists. In this example, the two >1z options will

8

 𝖱z1
𝖱y0

 𝖱z1
𝖱x0

 1 : 𝖱z1
𝖱y0

 2 : 𝖱z1
𝖱x0

W x W x
hb

mo
37

Release/Acquire 
(RA)

Strong Release/Acquire 
 (SRA)

Weak Release/Acquire
(WRA)

Three Variants

 total order on writes to the same
location (modification-order) s.t.:
∃

R xW x hbW x

rf

hb R xW x hbW x

rf

mo

hb

mo

mo

mo

mo

hb

hb

hb

Potential-Based System for WRA

38

Write steps 
Precondition: no in ’s potential 
All threads may get new options

𝖱x_ τ
𝖱xv

τ : 𝖶xv

X = 2X = 1 X = 3

𝖱𝚇1
𝖱𝚇2
𝖱𝚇1

X = 2X = 1
a = X // 1  
X = 3  
a = X // 1  

𝖱𝚇1
𝖱𝚇2
𝖱𝚇1

39

Use "write options" to mark when writes are allowed 
 
+ Simple constraints on where read options are added wrt write options

X = 2X = 1 X = 3

𝖶𝚇
𝖱𝚇1
𝖱𝚇2
𝖱𝚇1

X = 2X = 1
a = X // 1  
 
X = 3

𝖱𝚇1
𝖱𝚇2
𝖱𝚇1

Potential-Based System for WRA

Shared-Memory Causality Principle

40

𝖶𝚉
𝖱𝚈1
𝖶𝚈
𝖱𝚇0
𝖱𝚈1

𝖱𝚇2
𝖶𝚇
𝖱𝚇0
𝖱𝚈1

1 : 𝖶𝚉1

𝖱𝚈1
𝖶𝚈
𝖱𝚇0
𝖱𝚈1

𝖱𝚇2
𝖶𝚇
𝖱𝚉1
𝖱𝚇0
𝖱𝚈1{}

∥
∥
∥

Thread 1 Thread 2 Thread 1 Thread 2

Every sequence of reads and writes that thread can perform
after reading from a certain write executed by thread

could be performed by thread immediately after it executed the write.

π
τ

τ

∥
∥
∥⊑

41

X = 1  
Y = 2

a = Y // 2  
X = 3  
b = X // 1  

X = Y = 0

 𝖶𝚇
𝖱𝚇1𝖱𝚇1 ∥ 1 : 𝖶𝚈2 𝖱𝚇1 ∥

𝖱𝚈2
𝖶𝚇
𝖱𝚇1

This transition is disallowed
Thread 1

cannot write
to X and then

read X=1

Results

42

The potential-based memory systems are equivalent to the SRA/WRA systems.

When synchronized with a (finite-state) concurrent program, the potential-based
memory systems form WSTS.

43

Results

The verification problems under SRA and WRA are decidable.

Theorem

The verification problem under RA is decidable for write-write-race-free programs.

Corollary

Research Questions

44

• Useful implementation

• RA without RMWs?

• Other models and extensions of causal consistency (get closer to RA?)

• Parametrized programs

• Use the potential-based semantics for other verification approaches

45

Interested in concurrency & verification?
I’m looking for students / postdocs!

