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Vr.Qu(z) = Jy.o < y A Q.(y)
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Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a ¢c b a ¢ a c
<

Qa Qe
Qb

* examples:
Vr.Qu(x) = Jy.z < y A Qe(y)

AX. (Ve yy<zAhye X)A
Ve dyy>axAye X) A
VxVy (zr<yA—-(zax<z<y)=>(reXsygX)).
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Languages of finite words
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Things in this talk

* finite words
e w-words

* countable total orders

e scattered total orders
* total orders of size < ¢

* finite trees

* infinite trees

* graphs of bounded treewidth

* graphs of bounded cliquewidth
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- difficult (or open) for other structures
- structure-specific arguments

OWLS, 13/05/20 6 /33



Our focus

MSO-definable recognized by finite monoids
a —
T <y Qa(x) r e X h(A)= L A
NV N Ia
PVY o IX.¢ 5t ——> M

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

- relatively easy for all cases

- the arguments look generic
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Our focus

MSO-definable recognized by finite monoids
a —
T <y Qa(x) r e X h(A)= L A
N Ia
PVY o IX.¢ 5t ——> M

least class closed under:

-0*1* C {O, 1}*

- boolean combinations

- inv.images along h : X — I'*
- dir.images along h : > — I’

OWLS, 13/05/20 6 /33



Our focus

least class closed under: recognized by finite monoids
_OF1* C % » —
0*1* C {0,1} T = L )

- boolean combinations
- inv.images along h : > — I'"

- dir.images along h : 2 — I’
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Definable implies recognizable, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ b I M
- dir.images along h : X —» I’ 2 — M

* 0"1" € {0,1}" recognized
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Definable implies recognizable, for finite words

least class closed under: recognized by a finite monoid

- 0*1* C {0,1}*

%
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ I M
- dir.images along h : X —» I’ 2 — M

* 0"1" € {0,1}" recognized
o [; rec.by h; : > — M, (fOI‘ 1, = 1,2)
implies L1 N Lo rec.by (h1,ho) : X% — My X M,
> \Lz rec. b)’ hz

* L rec.by h: 1™ — M, g: X —TI"
implies ‘7 (L) rec. by hog g:x" —=1I"
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Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ b I M
- dir.images along h : X —» I’ 2 — M
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Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
-inv.images along h : X — I I M
- dir.images along h : X —» I’ 2 — M

* let L C >* be recognized by h: X" — M
etake g : 2 — I
* define a monoid on ‘PM:
S-T={s-t|se S teTl}
eput k: I = PM st. k(c) ={h(a) | gla) = c}
BCPM st. B={S|SnNAG#(}}
» then k& and B recognize g™ (L)
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Definable implies recognizable, for finite words

We have just shown:

The class of languages
recognized by finite monoids
is closed under:
- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.
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Definable implies recognizable, for finite words

We have just shown:

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

We want to generalize this to other things.
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Monads

Monads are ways to collect stuff
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Monads are ways to collect stuff

A monad T Examples: X*, X*, X, PX, NX

* given a set X, returns a set 7' X

* given a function [ : X — Y,
returns a function T'f : T X — TY

so that;
¢ T(idX) — idTX ) and
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functor
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Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):
* Nx X —>TX
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Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):

* Nx : X —TX unit
cux ITX —-TX multiplication
such that (forevery f: X — Y ):
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Y Y Y Y
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cux ITX —-TX multiplication
such that (forevery f: X — Y ):
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f ry and  pry T§

Y Y Y Y
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Monads ctd. Examples: X7 X%, X7, PX, N+

Further axioms on nx : X = 1'X
ux 1T X —1TX

nNTx

X X rrx 27X TX

N

1T'X
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Examples

|. The list monad

TX = X"°

Tf(xy---xn) = f(x1) - fl20)
nx(r) =

bx (Wiws - - ) = wws - - W,
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Examples

|. The list monad

TX = X"

Tf(ry--mn) = f(x1) - f(Tn)
nx(x) =

b (Wiws - - - W) = W W -+ wy,

2. The powerset monad
I'X =PX

Tf =7
($ = {7}

:U(I)
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Examples ctd.

3. The reader monad

TX =X*  Tf(aiws---) = ) f(az)--
)
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Examples ctd.

3. The reader monad

X =X~ Tf(xize---) = fla1
) =

( )...

WwWi11Wo2W33 * * -

45..... term monads

For an equational presentation (3, F) , put:

T'X = 3 -terms over X modulo the equations

T'f - variable substitution
1 - variables as terms
L - term flattening
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What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.
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Algebras

A T'-algebra is:
*aset X and afunction f:TX — X
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A T'-algebra is:
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such that:

X > ' X 1T X > T'X
\ h Th h
Y Y Y
X TX - > X
Examples:

(—)*=algebras are monoids
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Algebras

A T'-algebra is:
*aset X and afunction f:TX — X
such that:

X > T'X 17T X > T'X
Y Y Y
X TX —> X
Examples:

(—)*=algebras are monoids
Prn-algebras are semilattices

Term-monad algebras are what you expect
OWVLS, 13/05/20 16/33



Homomorphisms

A homomorphism from [ : TX — X
tog: 1Y —Y:

a function h : X — Y such that:

TXx . Ty

/ g

X > Y
h
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Recognizing languages with algebras

Fact: ux : TT'X — T X is always a T-algebra.
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Fact: ux : TT'X — T X is always a T-algebra.

MDY > T'M
M X m
Y Y
D3 > M
U U

L A
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Fact: ux : TT'X — T X is always a T-algebra.

T Vi
M X m
Y Y :
Ty - M finite
h
U U
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Recognizing languages with algebras

Fact: ux : TT'X — T X is always a T-algebra.

D> > T'M
M X m
Y Y :
Ty - M finite
h
. Ul Ul
h(A) =L A

language recognized by h

OWLS, 13/05/20 18/33



What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.
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The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
¥ - direct images along (surjective)
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Counterexample

Let 1" be the list monad quotiented by:
T T -T=XTT
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Counterexample

Let 1" be the list monad quotiented by:
r-r-r=x-r B

A language L C 1> corresponds to
a language L C ¥ closed under B

(in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies B

Fact: L C T is recognizable iff
(the corresponding) L C X" is

regular and closed under & .
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Counterexample ctd.
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Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"
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Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"

Fact: L is closed under ® .

So: L is T'-recognizable.

Puul'=AU{0}and h: X =T s.t. A(1)=0.

Then ﬁ(L) is the B -closure of A*0A*0 C I'*

Fact: ﬁ(L) is not regular, so not 7'-recognizable.

OWLS, 13/05/20 21/33
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Sufficient condition |

Fact:if T preserves finiteness
then every language on a finite alphabet X

is recognizable (by 12.).
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Sufficient condition |

Fact:if T preserves finiteness
then every language on a finite alphabet X
is recognizable (by 12.).
Examples:
- P, P™, Pan
- idempotent monoids/semigroups
- distributive lattices

- Boolean algebras
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Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that

t(z,z,y) =y =t(y,z, )
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Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =y, )
Fact: Malcevian monads are cudish.
Examples:
1

- groups  t(z,y,z) =xy” 2

- Boolean algebras
t(x,y,z) =(xANz)V(@xA-yA-z)V(-zA-yAz)
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Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =t(y,z, )
Fact: Malcevian monads are cudish.

Examples:

- groups  t(z,y,z) =y 'z

- Boolean algebras

t(x,y,z) =(xAz) V(e A-yA-z)V (-2 A-yAz)
- Heyting algebras

t(z,y,2) = ((z = y) = 2)A((z 2 y) 2 2) AN (@V 2)

OWLS, 13/05/20 25/33
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Sufficient condition Il

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for 1 and p
are weak pullbacks.
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Sufficient condition Il

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for 1 and p
are weak pullbacks.

weak pullback: p_Ir_x
forall z € X,y €Y st f(z)=9(y) f

thereis p € P s.t. h(p ):ZL‘,'ZC( ) Y y—>%
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Sufficient condition Il

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for 1 and p
are weak pullbacks.

weak pullback: p_Ir_x
forall z € X,yeY st. f(x)=9(y) i )
thereis p € Pst. h(p) =z, k(p) =y M
g
E.g.for n: ¥ "Xy
“a non-unit element never becomes fl le
a unit element after a substitution”
Y —=1TY

ny

OWLS, 13/05/20 27/33
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Fact: weakly Cartesian monads are cudish.
(the powerset construction works)
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Sufficient condition Il

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)

Examples:
- any monad presented by linear regular equations:

x-(y-z)=(r-y) 2

[L‘oy:y-a’/’
T T =2 K
ror i =e X
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Sufficient condition Il

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)

Examples:
- any monad presented by linear regular equations:
r-(y-z)=(x-y) 2
r-Yy=y-x
T = x
r-xrli=e ). 4

- 1" presented by a binary operation with:
:1:‘ . (:I; . y) _ :I/' . y

OWLS, 13/05/20 28/33
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Other examples

| . The reader monad X%

2. The free lattice monad Lat

3. A binary operation with:
g (- (w-y)) =2 (z-y)

4. Unary operations J, g with:

fafgg(x) =2  faffgg(x) = fgffgg(y)
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TX = {(B,w) | B:X =N, we X*, 8<w)
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a binary operation with
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Counterexamples

| . Monoids with z° = z°

2. The “marked words’ monad:

TX = {(B,w) | B:X =N, we X*, 8<w)

3.The “balanced associativity” monad:
a binary operation with

r-(y-x)=(z-y)

4 The “almost Mal’cevian” monad:
a ternary operation with

o(z,x,y) = oy, x, )
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The landscape of monads

N < X+ cudish 0 = 1
D
faffag =1
Prin 2(z(xy)) = 2(zy)
DL
BA X+1
X+
HA o xe
Lat Grp *
X NX
AbGrp X«
r(zy) = 2y

(xy)xr = z(yx) o(x,x,y) = o(y,x,x)
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