N\ \ | A
< i
O
. y e ‘ ,\\‘.
S ()\f \ A\

Monadic
Monadic Second Order Logic

Mikotaj Bojanczyk, Bartek Klin, Julian Salamanca

University of Warsaw

13 May 2020

Languages of finite words

accepted by finite automata

ﬁ—/o
a

a

OWLS, 13/05/20 2 /33

Languages of finite words

accepted by finite automata

a
ey,
a
a

OWLS, 13/05/20 2 /33

Languages of finite words

accepted by finite automata

a
ey,
a
a

defined by regular expressions

EF:=¢|la|F+FE|FFE|E"

OWLS, 13/05/20 2 /33

Languages of finite words

accepted by finite automata :
defined by regular expressions

/‘?Z\U FEu=c¢|a|E+E|EE|E*

a

OWLS, 13/05/20 2 /33

Languages of finite words

accepted by finite automata :
Prea by defined by regular expressions

/‘?Z\U FEu=c¢|a|E+E|EE|E*

MSO-definable
r<y Qu.z) xzeX

oNVY oo X

OWLS, 13/05/20 2 /33

Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a ¢c b a ¢ a c

OWLS, 13/05/20 3 /33

Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a ¢ b a

OWLS, 13/05/20

C

a

C

AN

3 /33

Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a ¢ b a

OWLS, 13/05/20

C

a

C

AN

Qa

3 /33

Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a

OWLS, 13/05/20

c b a

C

a

C

AN

Qa
Qs

3 /33

Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a

OWLS, 13/05/20

c b a

C

a

C

AN

Qa Qe
Qb

3 /33

Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a ¢ b a

* examples:

Vr.Qu(z) = Jy.o < y A Q.(y)

OWLS, 13/05/20

C

a

C

AN

Qa Qe
Qb

3 /33

Monadic Second-Order Logic

 words as relational structures:

a ¢ b ¢ a ¢c b a ¢ a c
<

Qa Qe
Qb

* examples:
Vr.Qu(x) = Jy.z < y A Qe(y)

AX. (Ve yy<zAhye X)A
Ve dyy>axAye X) A
VxVy (zr<yA—-(zax<z<y)=>(reXsygX)).

OWLS, 13/05/20 3 /33

Languages of finite words

accepted by finite automata

ﬁ—/o
a

a

OWLS, 13/05/20 4 /33

Languages of finite words

accepted by finite automata :
Prea by defined by regular expressions

/‘?Z\U FEu=c¢|a|E+E|EE|E*

MSO-definable
r<y Qu.z) xzeX

oNVY oo X

OWLS, 13/05/20 4 /33

Languages of finite words

accepted by finite automata :
defined by regular expressions

/‘?Z\U FEu=c¢|a|E+E|EE|E*

a

MSO-definable
r<y Qux) zeX

oV o 3X.¢

OWLS, 13/05/20 4 /33

Languages of finite words

accepted by finite automata :
defined by regular expressions

/bau Eu=c¢|a|E+E|EE|E*

recognized by finite monoids
%

MSO-definable

<y Quz) zeX h (A) — L A
SV ¢ IX.g a A
S* —> M

OWLS, 13/05/20 4 /33

Languages of finite words

accepted by finite automata :
defined by regular expressions

/‘?Z\U FEu=c¢|a|E+E|EE|E*

a

recognized by finite monoids
%

MSO-definable

r<y Qulz) zelX h(A): L A
N N
oVY o IX.¢ 2 ——=M

OWLS, 13/05/20 4 /33

Languages of finite words

accepted by finite automata :
defined by regular expressions

E:=¢|a|EF+F|FE|E”

MSO-definable
r<y Qux) zeX

oV o 3X.¢

OWLS, 13/05/20 4 /33

Languages of finite words

| accepted by finite automat;\ | / .
P defined by regular expressions

E:=¢|a|EF+F|FE|E”

i I
| -
| |
li .

o e X

< \

\ N \ 7

— f - o \/ o e

~ EE———— = —
~

' recognized by finite monoids |

ﬁ MSO-definable \\

r<y Qux) zeX
CeVY —d 3X ¢ s

N

OWLS, 13/05/20 4 /33

Things in this talk

* finite words
e w-words

* countable total orders

e scattered total orders
* total orders of size < ¢

* finite trees

* infinite trees

* graphs of bounded treewidth

* graphs of bounded cliquewidth

OWLS, 13/05/20 5 /33

Our focus

MSO-definable recognized by finite monoids
n —
T <y Qa(x) r e X h(A)= L A
I N Ia
PVY o IX.¢ 5t ——> M

OWLS, 13/05/20 6 /33

Our focus

MSO-definable recognized by finite monoids
a —
T <y Qa(x) r e X h(A)= L A
NV N Ia
PVY o IX.¢ 5t ——> M

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

OWLS, 13/05/20 6 /33

Our focus

MSO-definable recognized by finite monoids
a —
T <y Qa(x) r e X h(A)= L A
NV N Ia
PVY o IX.¢ 5t ——> M

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

- relatively easy for all cases

- the arguments look generic

OWLS, 13/05/20 6 /33

Our focus

MSO-definable recognized by finite monoids
n —
T <y Qa(x) r e X h(A)= L A
I N Ia
PVY o IX.¢ 5t ——> M

OWLS, 13/05/20 6 /33

Our focus

MSO-definable recognized by finite monoids
a —
T <y Qa(x) r e X h(A)= L A
N Ia
PVY o IX.¢ 5t ——> M

least class closed under:

-0*1* C {O, 1}*

- boolean combinations

- inv.images along h : X — I'*
- dir.images along h : > — I’

OWLS, 13/05/20 6 /33

Our focus

least class closed under: recognized by finite monoids
_OF1* C % » —
0*1* C {0,1} T = L)

- boolean combinations
- inv.images along h : > — I'"

- dir.images along h : 2 — I’

M M
2" — M

OWLS, 13/05/20 6 /33

Definable implies recognizable, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ b I M
- dir.images along h : X —» I’ 2 — M

* 0"1" € {0,1}" recognized

OWLS, 13/05/20 7 133

Definable implies recognizable, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A

I I

- inv.images along h : X — I'"
2 M

- dir.images along h : > — I’

* 0"1" € {0,1}" recognized
o [; rec.by h; : > — M, (fOI‘ 1, = 1,2)
implies L1 N Lo rec.by (h1,ho) : X% — My X M,

OWLS, 13/05/20 7 133

Definable implies recognizable, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
-inv.images along h : X — I I M
- dir.images along h : X —» I’ 2 — M

* 0"1" € {0,1}" recognized
o [; rec.by h; : > — M, (fOI‘ 1, = 1,2)
implies L1 N Lo rec.by (h1,ho) : X% — My X M,
> \Lz rec. b)’ hz

OWLS, 13/05/20 7 133

Definable implies recognizable, for finite words

least class closed under: recognized by a finite monoid

- 0*1* C {0,1}*

%
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ I M
- dir.images along h : X —» I’ 2 — M

* 0"1" € {0,1}" recognized
o [; rec.by h; : > — M, (fOI‘ 1, = 1,2)
implies L1 N Lo rec.by (h1,ho) : X% — My X M,
> \Lz rec. b)’ hz

* L rec.by h: 1™ — M, g: X —TI"
implies ‘7 (L) rec. by hog g:x" —=1I"

OWLS, 13/05/20 7 133

Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ b I M
- dir.images along h : X —» I’ 2 — M

OWLS, 13/05/20 8 /33

Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ b I M
- dir.images along h : X —» I’ 2 — M

* let L C >* be recognized by h: X" — M

OWLS, 13/05/20 8 /33

Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
- inv.images along h : X — I'™ b I M
- dir.images along h : X —» I’ 2 — M

* let L C >* be recognized by h: X" — M
etake g : 2 — I

OWLS, 13/05/20 8 /33

Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
-inv.images along h : X — I I M
- dir.images along h : X —» I’ 2 — M

* let L C >* be recognized by h: X" — M
etake g : 2 — I

* define a monoid on PM :
S-T={s-t|se S teTl}

OWLS, 13/05/20 8 /33

Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
-inv.images along h : X — I I M
- dir.images along h : X —» I’ 2 — M

* let L C >* be recognized by h: X" — M
etake g : 2 — I

* define a monoid on PM :
S-T={s-t|se S teTl}
eput k: I = PM st. k(c) ={h(a) | gla) = c}

OWLS, 13/05/20 8 /33

Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
-inv.images along h : X — I I M
- dir.images along h : X —» I’ 2 — M

* let L C >* be recognized by h: X" — M
etake g : 2 — I

* define a monoid on P M :
S-T={s-t|seSteT}
eput k: I = PM st. k(c) ={h(a) | gla) = c}
BCPM st. B={S|SnNAG#(}}

OWLS, 13/05/20 8 /33

Closure under direct images, for finite words

least class closed under: recognized by a finite monoid
- boolean combinations h(A)= L A
-inv.images along h : X — I I M
- dir.images along h : X —» I’ 2 — M

* let L C >* be recognized by h: X" — M
etake g : 2 — I
* define a monoid on ‘PM:
S-T={s-t|se S teTl}
eput k: I = PM st. k(c) ={h(a) | gla) = c}
BCPM st. B={S|SnNAG#(}}
» then k& and B recognize g™ (L)

OWLS, 13/05/20 8 /33

Definable implies recognizable, for finite words

We have just shown:

The class of languages
recognized by finite monoids
is closed under:
- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 9 /33

Definable implies recognizable, for finite words

We have just shown:

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

We want to generalize this to other things.

OWLS, 13/05/20 9 /33

Monads

Monads are ways to collect stuff

OWLS, 13/05/20 10/33

Monads

Monads are ways to collect stuff

A monad 7';

* given a set X, returns a set 7' X

OWLS, 13/05/20 10/33

Monads

Monads are ways to collect stuff

Amonad T: Examples: X% X¥, X* PX, N*

* given a set X, returns a set 7' X

OWLS, 13/05/20 10/33

Monads

Monads are ways to collect stuff

Amonad T: Examples: X% X¥, X* PX, N*

* given a set X, returns a set 7' X

* given a function [: X — Y,
returns a function T'f : T X — TY

OWLS, 13/05/20 10/33

Monads

Monads are ways to collect stuff

Amonad T: Examples: X% X¥, X* PX, N*

* given a set X, returns a set 7' X

* given a function [: X — Y,
returns a function T'f : T X — TY

so that;
¢ T(idX) — idTX) and
+T(go f)=TgoTf

OWLS, 13/05/20 10/33

Monads

Monads are ways to collect stuff

Amonad T: Examples: X% X¥, X* PX, N*

* given a set X, returns a set 7' X

* given a function [: X — Y,
returns a function T'f : T X — TY

so that;
* T(idX) — idTX) and
+T(go f)=TgoTf

functor

OWLS, 13/05/20 10/33

Monads

Monads are ways to collect stuff

A monad T Examples: X*, X*, X, PX, NX

* given a set X, returns a set 7' X

* given a function [: X — Y,
returns a function T'f : T X — TY

so that;
¢ T(idX) — idTX) and
+T(go f)=TgoTf

functor

to be ctd...

OWLS, 13/05/20 10/33

Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):
* Nx X —>TX

OWLS, 13/05/20 11/33

Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):
* Nx : X = TX unit

OWLS, 13/05/20 11/33

Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):
* Nx : X = TX unit

e ux :TTX —TX

OWLS, 13/05/20 11/33

Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):
* Nx : X = TX unit

cux ITX —-TX multiplication

OWLS, 13/05/20 11/33

Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):

* Nx : X —TX unit
cux ITX —-TX multiplication
such that (forevery f: X — Y):
X —>TX TTX —>TX
f rf and 77y Tf
Y Y Y Y
Y >TY 1Ty >TY

ny 7%

OWLS, 13/05/20 11/33

Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):

* Nx : X —TX unit
cux ITX —-TX multiplication
such that (forevery f: X — Y):

X 5 TX TTX 225 TX
f ry and pry T§

Y Y Y Y

Y >TY 1Ty >TY

Ny 122

naturality

OWLS, 13/05/20 11/33

Monads ctd. Examples: X7 X%, X7, PX, N+

A monad 1" comes with (for every set X):

* Nx : X —TX unit
cux ITX —-TX multiplication
such that (forevery f: X — Y):
X —>TX TTX —>TX
f rr and 77§ Tf
Y Y Y Y
Y >TY 1Ty >TY
ny HY
naturality

to be ctd...

OWLS, 13/05/20 11/33

Monads ctd. Examples: X7 X%, X7, PX, N+

Further axioms on nx : X = 1'X
ux 1T X —1TX

nNTx

X X rrx 27X TX

N

1T'X

OWLS, 13/05/20 12/33

Monads ctd. Examples: X7 X%, X7, PX, N+

Further axioms on nx : X = 1'X
ux 1T X —1TX

nNTx

X X rrx 27X TX

N

1T'X

TTTX "o TTX

LT X X
Y Y
1T X > T'X

1Y%°¢
OWLS, 13/05/20 12/33

Monads ctd. Examples: X7 X%, X7, PX, N+

Further axioms on nx : X = 1'X
ux 1T X —1TX

nNTx

X X rrx 27X TX

N

1T'X

TTTX "o TTX

LT X X
Y Y
1T X > T'X

1Y%°¢
OWLS, 13/05/20 12/33

Examples

|. The list monad

TX = X"°

Tf(xy---xn) = f(x1) - fl20)
nx(r) =

bx (Wiws - -) = wws - - W,

OWLS, 13/05/20 13/33

Examples

|. The list monad

TX = X"

Tf(ry--mn) = f(x1) - f(Tn)
nx(x) =

b (Wiws - - - W) = W W -+ wy,

2. The powerset monad
I'X =PX

Tf =7
($ = {7}

:U(I)

OWLS, 13/05/20 13/33

Examples ctd.

3. The reader monad

TX =X* Tf(aiws---) =) f(az)--
)

OWLS, 13/05/20 14/33

— W11W22W33 * *

Examples ctd.

3. The reader monad

X =X~ Tf(xize---) = fla1
) =

()...

WwWi11Wo2W33 * * -

45..... term monads

For an equational presentation (3, F) , put:

T'X = 3 -terms over X modulo the equations

T'f - variable substitution
1 - variables as terms
L - term flattening

OWLS, 13/05/20 14/33

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 15/33

What we want to talk about

L CTY

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 15/33

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 15/33

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 15/33

What we want to talk about

The class of languages
recognized by finite, monoids 7
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 15/33

Algebras

A T'-algebra is:
*aset X and afunction f:TX — X

OWLS, 13/05/20 16/33

Algebras

A T'-algebra is:
*aset X and afunction f:TX — X
such that:

X > T'X TTX > T'X
Y Y Y
X T X > X

OWLS, 13/05/20

16/33

Algebras

A T'-algebra is:
*aset X and afunction f:TX — X
such that:

X > ' X 1T X > T'X
\ h Th h
Y Y Y
X TX - > X
Examples:

(—)*=algebras are monoids

OWLS, 13/05/20

16/33

Algebras

A T'-algebra is:
*aset X and afunction f:TX — X
such that:

X > T'X 17T X > T'X
Y Y Y
X TX —> X
Examples:

(—)*=algebras are monoids

Prn-algebras are semilattices

OWLS, 13/05/20

16/33

Algebras

A T'-algebra is:
*aset X and afunction f:TX — X
such that:

X > T'X 17T X > T'X
Y Y Y
X TX —> X
Examples:

(—)*=algebras are monoids
Prn-algebras are semilattices

Term-monad algebras are what you expect
OWVLS, 13/05/20 16/33

Homomorphisms

A homomorphism from [: TX — X
tog: 1Y —Y:

a function h : X — Y such that:

TXx . Ty

/ g

X > Y
h

OWLS, 13/05/20 17/33

Recognizing languages with algebras

Fact: ux : TT'X — T X is always a T-algebra.

OWLS, 13/05/20 18/33

Recognizing languages with algebras

Fact: ux : TT'X — T X is always a T-algebra.

MDY > T'M
M X m
Y Y
D3 > M
U U

L A

OWLS, 13/05/20 18/33

Recognizing languages with algebras

Fact: ux : TT'X — T X is always a T-algebra.

T Vi
M X m
Y Y :
Ty - M finite
h
U U

L A

OWLS, 13/05/20 18/33

Recognizing languages with algebras

Fact: ux : TT'X — T X is always a T-algebra.

T Vi
M X m
Y Y :
Ty - M finite
h
U U

OWLS, 13/05/20 18/33

Recognizing languages with algebras

Fact: ux : TT'X — T X is always a T-algebra.

D> > T'M
M X m
Y Y :
Ty - M finite
h
. Ul Ul
h(A) =L A

language recognized by h

OWLS, 13/05/20 18/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.|

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.|

those of the form 1'f : T — TT

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

those of the form 1'f : T — TT

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 19/33

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
¥ - direct images along (surjective)
letter-to-letter homomorphisms.

OWLS, 13/05/20 19/33

Counterexample

Let 1" be the list monad quotiented by:
T T -T=XTT

OWLS, 13/05/20 20/33

Counterexample

Let 1" be the list monad quotiented by:
r-r-r=x-r B

OWLS, 13/05/20 20/33

Counterexample

Let 1" be the list monad quotiented by:
r-r-r=x-r B

A language L C 1> corresponds to
a language L C ¥ closed under B

(in the sense of (sub)word rewriting)

OWLS, 13/05/20 20/33

Counterexample

Let 1" be the list monad quotiented by:
r-r-r=x-r B

A language L C 1> corresponds to
a language L C ¥ closed under B

(in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies B

OWLS, 13/05/20 20/33

Counterexample

Let 1" be the list monad quotiented by:
r-r-r=x-r B

A language L C 1> corresponds to
a language L C ¥ closed under B

(in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies B

Fact: L C T is recognizable iff
(the corresponding) L C X" is

regular and closed under & .

OWLS, 13/05/20 20/33

Counterexample ctd.

OWLS, 13/05/20 21/33

Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"

OWLS, 13/05/20 21/33

Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"

Fact: L is closed under ® .

OWLS, 13/05/20 21/33

Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"

Fact: L is closed under ® .

So: L is T'-recognizable.

OWLS, 13/05/20 21/33

Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"

Fact: L is closed under ® .

So: L is T'-recognizable.

Puul'=AU{0}and h: X =T s.t. A(1)=0.

OWLS, 13/05/20 21/33

Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"

Fact: L is closed under ® .

So: L is T'-recognizable.

Puul'=AU{0}and h: X =T s.t. A(1)=0.

Then ﬁ(L) is the B -closure of A*0A*0 C I'*

OWLS, 13/05/20 21/33

Counterexample ctd.

For A = {a,b,ctand X = A U{0,1},let
L =A"0A"1C X"

Fact: L is closed under ® .

So: L is T'-recognizable.

Puul'=AU{0}and h: X =T s.t. A(1)=0.

Then ﬁ(L) is the B -closure of A*0A*0 C I'*

Fact: ﬁ(L) is not regular, so not 7'-recognizable.

OWLS, 13/05/20 21/33

The landscape of monads

cudish

OWLS, 13/05/20 22/33

The landscape of monads

cudish 3 =1

OWLS, 13/05/20 22/33

The landscape of monads

cudish 3 =1

X>I<

OWLS, 13/05/20 22/33

The landscape of monads

cudish Ry

X° X
x> X

OWLS, 13/05/20 22/33

Sufficient condition |

Fact:if T preserves finiteness
then every language on a finite alphabet X

is recognizable (by 12.).

OWLS, 13/05/20 23/33

Sufficient condition |

Fact:if T preserves finiteness
then every language on a finite alphabet X
is recognizable (by 12.).
Examples:
- P, P™, Pan
- idempotent monoids/semigroups
- distributive lattices

- Boolean algebras

OWLS, 13/05/20 23/33

The landscape of monads

cudish Ry

X° X
x> X

OWLS, 13/05/20 24/33

The landscape of monads

OWLS, 13/05/20

cudish
D
ZCQ —
7Dﬁn
DL
BA

X<>
XOO

XC

X>I<

24/33

Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that

t(z,z,y) =y =t(y,z,)

OWLS, 13/05/20 25/33

Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =t(y,z,)
Fact: Malcevian monads are cudish.

OWLS, 13/05/20 25/33

Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =y,)
Fact: Malcevian monads are cudish.
Examples:

- groups t(z,y,z) =y 'z

OWLS, 13/05/20 25/33

Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =y,)
Fact: Malcevian monads are cudish.
Examples:
1

- groups t(z,y,z) =xy” 2

- Boolean algebras
t(x,y,z) =(xANz)V(@xA-yA-z)V(-zA-yAz)

OWLS, 13/05/20 25/33

Sufficient condition ||

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =t(y,z,)
Fact: Malcevian monads are cudish.

Examples:

- groups t(z,y,z) =y 'z

- Boolean algebras

t(x,y,z) =(xAz) V(e A-yA-z)V (-2 A-yAz)
- Heyting algebras

t(z,y,2) = ((z = y) = 2)A((z 2 y) 2 2) AN (@V 2)

OWLS, 13/05/20 25/33

The landscape of monads

cudish 23— 42

Malcevian

OWVLS, 13/05/20 26/33

The landscape of monads

cudish T’ =z

Malcevian

OWVLS, 13/05/20 26/33

Sufficient condition Il

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for 1 and p
are weak pullbacks.

OWLS, 13/05/20 27/33

Sufficient condition Il

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for 1 and p
are weak pullbacks.

OWLS, 13/05/20 27/33

Sufficient condition Il

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for 1 and p
are weak pullbacks.

weak pullback: p_Ir_x
forall z € X,y €Y st f(z)=9(y) f

thereis p € P s.t. h(p):ZL‘,'ZC() Y y—>%

OWLS, 13/05/20 27/33

Sufficient condition Il

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for 1 and p
are weak pullbacks.

weak pullback: p_Ir_x
forall z € X,yeY st. f(x)=9(y) i)
thereis p € Pst. h(p) =z, k(p) =y M
g
E.g.for n: ¥ "Xy
“a non-unit element never becomes fl le
a unit element after a substitution”
Y —=1TY

ny

OWLS, 13/05/20 27/33

Sufficient condition Il

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)

OWLS, 13/05/20 28/33

Sufficient condition Il

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)

Examples:
- any monad presented by linear regular equations:

x-(y-z)=(r-y) 2

[L‘oy:y-a’/’
T T =2 K
ror i =e X

OWLS, 13/05/20 28/33

Sufficient condition Il

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)

Examples:
- any monad presented by linear regular equations:
r-(y-z)=(x-y) 2
r-Yy=y-x
T = x
r-xrli=e). 4

- 1" presented by a binary operation with:
:1:‘ . (:I; . y) _ :I/' . y

OWLS, 13/05/20 28/33

The landscape of monads

cudish 3 =z

Malcevian weakly Cartesian

OWVLS, 13/05/20 29/33

The landscape of monads

cudish T’ =z

Malcevian weakly Cartesian

OWVLS, 13/05/20 29/33

The landscape of monads

cudish 23— 42

Malcevian weakly Cartesian

OWVLS, 13/05/20 29/33

The landscape of monads

cudish 23— 42

Malcevian weakly Cartesian

OWVLS, 13/05/20 29/33

Other examples

| . The reader monad X%

OWLS, 13/05/20 30/33

Other examples

| . The reader monad X%

2. The free lattice monad Lat

OWLS, 13/05/20 30/33

Other examples

| . The reader monad X%

2. The free lattice monad Lat

3. A binary operation with:
g (- (w-y)) =2 (z-y)

OWLS, 13/05/20 30/33

Other examples

| . The reader monad X%

2. The free lattice monad Lat

3. A binary operation with:
g (- (w-y)) =2 (z-y)

4. Unary operations J, g with:

fafgg(x) =2 faffgg(x) = fgffgg(y)

OWLS, 13/05/20 30/33

The landscape of monads

cudish T’ =z

95199

Mal’cevian weakly Cartesian

OWVLS, 13/05/20 31/33

Counterexamples

| . Monoids with z° = z°

OWLS, 13/05/20 32/33

Counterexamples

| . Monoids with z° = z°

2. The “marked words’ monad:

TX = {(B,w) | B:X =N, we X*, 8<w)

OWLS, 13/05/20 32/33

Counterexamples

| . Monoids with z° = z°

2. The “marked words’ monad:

TX = {(B,w) | B:X =N, we X*, 8<w)

3.The “balanced associativity” monad:
a binary operation with

r-(y-x)=(z-y)

OWLS, 13/05/20 32/33

Counterexamples

| . Monoids with z° = z°

2. The “marked words’ monad:

TX = {(B,w) | B:X =N, we X*, 8<w)

3.The “balanced associativity” monad:
a binary operation with

r-(y-x)=(z-y)

4 The “almost Mal’cevian” monad:
a ternary operation with

o(z,x,y) = oy, x,)

OWLS, 13/05/20 32/33

The landscape of monads

N < X+ cudish 0 = 1
D
faffag =1
Prin 2(z(xy)) = 2(zy)
DL
BA X+1
X+
HA o xe
Lat Grp *
X NX
AbGrp X«
r(zy) = 2y

(xy)xr = z(yx) o(x,x,y) = o(y,x,x)

OWLS, 13/05/20 33/33

