
13 May 2020

Monadic
Monadic Second Order Logic

Mikołaj Bojańczyk, Bartek Klin, Julian Salamanca

University of Warsaw

OWLS, 13/05/20 /33

Languages of finite words

2

accepted by finite automata
a

bb

a a

OWLS, 13/05/20 /33

Languages of finite words

2

accepted by finite automata
a

bb

a a

OWLS, 13/05/20 /33

Languages of finite words

2

accepted by finite automata
a

bb

a a

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Languages of finite words

2

accepted by finite automata
a

bb

a a

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Languages of finite words

2

accepted by finite automata
a

bb

a a

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:

OWLS, 13/05/20 /33

Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:



OWLS, 13/05/20 /33

Qa

Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:



OWLS, 13/05/20 /33

Qa
Qb

Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:



OWLS, 13/05/20 /33

QcQa
Qb

Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:



OWLS, 13/05/20 /33

QcQa
Qb

Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:



• examples:

8x.Qa(x)) 9y.x < y ^Qc(y)

OWLS, 13/05/20 /33

QcQa
Qb

Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:



• examples:

8x.Qa(x)) 9y.x < y ^Qc(y)

9X.(8x 9y y  x ^ y 2 X) ^
(8x 9y y � x ^ y 2 X) ^
(8x 8y (x < y ^ ¬(9z x < z < y))) (x 2 X , y 62 X)).

OWLS, 13/05/20 /33

Languages of finite words

4

accepted by finite automata
a

bb

a a

OWLS, 13/05/20 /33

Languages of finite words

4

accepted by finite automata
a

bb

a a

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Languages of finite words

4

accepted by finite automata
a

bb

a a

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Languages of finite words

4

accepted by finite automata
a

bb

a a

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Languages of finite words

4

accepted by finite automata
a

bb

a a

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Languages of finite words

4

accepted by finite automata
a

bb

a a

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

Languages of finite words

4

accepted by finite automata
a

bb

a a

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

defined by regular expressions

E ::= ✏ | a | E + E | EE | E⇤

OWLS, 13/05/20 /33

 in this talk

5

Things

• finite words
• -words!
• countable total orders
• scattered total orders
• total orders of size  c

• finite trees
• infinite trees
• graphs of bounded treewidth
• graphs of bounded cliquewidth
• ...
• ...

OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

OWLS, 13/05/20 /33

- relatively easy for all cases
- the arguments look generic

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _ ¬� 9X.�

-
least class closed under:

- boolean combinations
- inv. images along
- dir. images along

0⇤1⇤ ✓ {0, 1}⇤

h : ⌃ ! �⇤

h : ⌃ ⇣ �

OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

-
least class closed under:

- boolean combinations
- inv. images along
- dir. images along

0⇤1⇤ ✓ {0, 1}⇤

h : ⌃ ! �⇤

h : ⌃ ⇣ �

OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• recognized

Definable implies recognizable, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• recognized

• rec. by (for) Li hi : ⌃
⇤ ! Mi i = 1, 2

implies rec. by L1 \ L2 hh1, h2i : ⌃⇤ ! M1 ⇥M2

Definable implies recognizable, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• recognized

• rec. by (for) Li hi : ⌃
⇤ ! Mi i = 1, 2

implies rec. by L1 \ L2 hh1, h2i : ⌃⇤ ! M1 ⇥M2

rec. by ⌃⇤ \ Li hi

Definable implies recognizable, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• recognized

• rec. by (for) Li hi : ⌃
⇤ ! Mi i = 1, 2

implies rec. by L1 \ L2 hh1, h2i : ⌃⇤ ! M1 ⇥M2

rec. by ⌃⇤ \ Li hi

• rec. by , L h : �⇤ ! M g : ⌃ ! �⇤

implies rec. by �g (L) h � ĝ ĝ : ⌃⇤ ! �⇤

Definable implies recognizable, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /338

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

Closure under direct images, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /338

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• let be recognized by L ✓ ⌃⇤ h : ⌃⇤ ! M

Closure under direct images, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /338

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• let be recognized by L ✓ ⌃⇤ h : ⌃⇤ ! M

• take g : ⌃ ! �

Closure under direct images, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /338

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• let be recognized by L ✓ ⌃⇤ h : ⌃⇤ ! M

• take g : ⌃ ! �

• define a monoid on : PM
S · T = {s · t | s 2 S, t 2 T}

Closure under direct images, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /338

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• let be recognized by L ✓ ⌃⇤ h : ⌃⇤ ! M

• take g : ⌃ ! �

• define a monoid on : PM
S · T = {s · t | s 2 S, t 2 T}

• put s.t. k : �⇤ ! PM k(c) = {h(a) | g(a) = c}

Closure under direct images, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /338

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• let be recognized by L ✓ ⌃⇤ h : ⌃⇤ ! M

• take g : ⌃ ! �

• define a monoid on : PM
S · T = {s · t | s 2 S, t 2 T}

• put s.t. k : �⇤ ! PM k(c) = {h(a) | g(a) = c}
B ✓ PM s.t. B = {S | S \A 6= ;}

Closure under direct images, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /338

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

• let be recognized by L ✓ ⌃⇤ h : ⌃⇤ ! M

• take g : ⌃ ! �

• define a monoid on : PM
S · T = {s · t | s 2 S, t 2 T}

• put s.t. k : �⇤ ! PM k(c) = {h(a) | g(a) = c}
B ✓ PM s.t. B = {S | S \A 6= ;}

• then and recognize g⇤(L)k B

Closure under direct images, for finite words

-
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

OWLS, 13/05/20 /339

Definable implies recognizable, for finite words

We have just shown:

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /339

Definable implies recognizable, for finite words

We have just shown:

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

We want to generalize this to other things.

OWLS, 13/05/20 /33

Monads

10

Monads are ways to collect stuff

OWLS, 13/05/20 /33

Monads

10

Monads are ways to collect stuff

• given a set , returns a set

A monad :T

TXX

OWLS, 13/05/20 /33

Monads

10

Monads are ways to collect stuff

• given a set , returns a set

A monad :T

TXX

Examples: , , , , X⇤ X! X1 PX NX

OWLS, 13/05/20 /33

Monads

10

Monads are ways to collect stuff

• given a set , returns a set

A monad :T

TXX

Examples: , , , , X⇤ X! X1 PX NX

• given a function , f : X ! Y

returns a function Tf : TX ! TY

OWLS, 13/05/20 /33

Monads

10

Monads are ways to collect stuff

• given a set , returns a set

A monad :T

TXX

Examples: , , , , X⇤ X! X1 PX NX

• given a function , f : X ! Y

returns a function Tf : TX ! TY

so that:
• , and T (idX) = idTX

• T (g � f) = Tg � Tf

OWLS, 13/05/20 /33

Monads

10

Monads are ways to collect stuff

• given a set , returns a set

A monad :T

TXX

Examples: , , , , X⇤ X! X1 PX NX

• given a function , f : X ! Y

returns a function Tf : TX ! TY

so that:
• , and T (idX) = idTX

• T (g � f) = Tg � Tf
functor

OWLS, 13/05/20 /33

Monads

10

Monads are ways to collect stuff

• given a set , returns a set

A monad :T

TXX

Examples: , , , , X⇤ X! X1 PX NX

• given a function , f : X ! Y

returns a function Tf : TX ! TY

so that:
• , and T (idX) = idTX

• T (g � f) = Tg � Tf
functor

to be ctd...

OWLS, 13/05/20 /33

Monads ctd.

11

•

A monad comes with (for every set):T

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

X

OWLS, 13/05/20 /33

Monads ctd.

11

•

A monad comes with (for every set):T

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

X

unit

OWLS, 13/05/20 /33

Monads ctd.

11

•

A monad comes with (for every set):T

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

X

unit

• µX : TTX ! TX

OWLS, 13/05/20 /33

Monads ctd.

11

•

A monad comes with (for every set):T

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

X

unit

multiplication• µX : TTX ! TX

OWLS, 13/05/20 /33

Monads ctd.

11

•

A monad comes with (for every set):T

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

X

unit

multiplication• µX : TTX ! TX

such that (for every):

X
⌘X //

f

✏✏

TX

Tf

✏✏
Y ⌘Y

// TY

f : X ! Y

and

TTX
µX //

TTf

✏✏

TX

Tf

✏✏
TTY µY

// TY

OWLS, 13/05/20 /33

Monads ctd.

11

•

A monad comes with (for every set):T

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

X

unit

multiplication• µX : TTX ! TX

naturality

such that (for every):

X
⌘X //

f

✏✏

TX

Tf

✏✏
Y ⌘Y

// TY

f : X ! Y

and

TTX
µX //

TTf

✏✏

TX

Tf

✏✏
TTY µY

// TY

OWLS, 13/05/20 /33

Monads ctd.

11

•

A monad comes with (for every set):T

Examples: , , , , X⇤ X! X1 PX NX

to be ctd...

⌘X : X ! TX

X

unit

multiplication• µX : TTX ! TX

naturality

such that (for every):

X
⌘X //

f

✏✏

TX

Tf

✏✏
Y ⌘Y

// TY

f : X ! Y

and

TTX
µX //

TTf

✏✏

TX

Tf

✏✏
TTY µY

// TY

OWLS, 13/05/20 /33

Monads ctd.

12

Further axioms on

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

µX : TTX ! TX :

TX
⌘TX
// TTX

µX

✏✏

TX
T⌘X
oo

TX

OWLS, 13/05/20 /33

Monads ctd.

12

Further axioms on

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

µX : TTX ! TX :

TX
⌘TX
// TTX

µX

✏✏

TX
T⌘X
oo

TX

TTTX
TµX //

µTX

✏✏

TTX

µX

✏✏
TTX µX

// TX

OWLS, 13/05/20 /33

Monads ctd.

12

Further axioms on

Examples: , , , , X⇤ X! X1 PX NX

⌘X : X ! TX

µX : TTX ! TX :

TX
⌘TX
// TTX

µX

✏✏

TX
T⌘X
oo

TX

TTTX
TµX //

µTX

✏✏

TTX

µX

✏✏
TTX µX

// TX That’s it!

OWLS, 13/05/20 /33

Examples

13

1. The list monad

TX = X⇤

Tf(x1 · · ·xn) = f(x1) · · · f(xn)

⌘X(x) = x

µX(w1w2 · · ·wn) = w_
1 w_

2 · · ·_ wn

OWLS, 13/05/20 /33

Examples

13

1. The list monad

TX = X⇤

Tf(x1 · · ·xn) = f(x1) · · · f(xn)

⌘X(x) = x

µX(w1w2 · · ·wn) = w_
1 w_

2 · · ·_ wn

2. The powerset monad

TX = PX

Tf =
�!
f

⌘X(x) = {x}
µX(�) =

[
�

OWLS, 13/05/20 /33

Examples ctd.

14

3. The reader monad

TX = X!
Tf(x1x2 · · ·) = f(x1)f(x2) · · ·

⌘X(x) = xxx · · · µX(w1w2 · · ·) = w11w22w33 · · ·

OWLS, 13/05/20 /33

Examples ctd.

14

3. The reader monad

TX = X!
Tf(x1x2 · · ·) = f(x1)f(x2) · · ·

⌘X(x) = xxx · · · µX(w1w2 · · ·) = w11w22w33 · · ·

4,5,...: term monads
For an equational presentation , put:(⌃, E)

TX = -terms over modulo the equations⌃ X

Tf - variable substitution
⌘ - variables as terms

µ - term flattening

OWLS, 13/05/20 /3315

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3315

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

L ✓ T⌃

OWLS, 13/05/20 /3315

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3315

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3315

What we want to talk about

The class of languages
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

?

OWLS, 13/05/20 /33

Algebras

16

• a set and a function
A -algebra is:T

X f : TX ! X

OWLS, 13/05/20 /33

Algebras

16

• a set and a function
A -algebra is:T

X f : TX ! X

such that:

X
⌘X // TX

h
✏✏
X

TTX
µX //

Th
✏✏

TX

h
✏✏

TX
h
// X

OWLS, 13/05/20 /33

Algebras

16

• a set and a function
A -algebra is:T

X f : TX ! X

such that:

X
⌘X // TX

h
✏✏
X

TTX
µX //

Th
✏✏

TX

h
✏✏

TX
h
// X

Examples:
 -algebras are monoids(�)⇤

OWLS, 13/05/20 /33

Algebras

16

• a set and a function
A -algebra is:T

X f : TX ! X

such that:

X
⌘X // TX

h
✏✏
X

TTX
µX //

Th
✏✏

TX

h
✏✏

TX
h
// X

Examples:
 -algebras are monoids(�)⇤

 -algebras are semilatticesPfin

OWLS, 13/05/20 /33

Algebras

16

• a set and a function
A -algebra is:T

X f : TX ! X

such that:

X
⌘X // TX

h
✏✏
X

TTX
µX //

Th
✏✏

TX

h
✏✏

TX
h
// X

Term-monad algebras are what you expect

Examples:
 -algebras are monoids(�)⇤

 -algebras are semilatticesPfin

OWLS, 13/05/20 /33

Homomorphisms

17

A homomorphism from
to :

f : TX ! X
g : TY ! Y

a function such that: h : X ! Y

TX
Th //

f

✏✏

TY

g

✏✏
X

h
// Y

OWLS, 13/05/20 /33

Recognizing languages with algebras

18

Fact: is always a -algebra.µX : TTX ! TX T

OWLS, 13/05/20 /33

Recognizing languages with algebras

18

Fact: is always a -algebra.µX : TTX ! TX T

TT⌃
Th //

µX

✏✏

TM

m

✏✏
T⌃

h
// M

L A

✓ ✓

OWLS, 13/05/20 /33

Recognizing languages with algebras

18

Fact: is always a -algebra.µX : TTX ! TX T

TT⌃
Th //

µX

✏✏

TM

m

✏✏
T⌃

h
// M

L A

✓ ✓

finite

OWLS, 13/05/20 /33

Recognizing languages with algebras

18

Fact: is always a -algebra.µX : TTX ! TX T

TT⌃
Th //

µX

✏✏

TM

m

✏✏
T⌃

h
// M

L A

✓ ✓ �
h (A) =

finite

OWLS, 13/05/20 /33

Recognizing languages with algebras

18

Fact: is always a -algebra.µX : TTX ! TX T

TT⌃
Th //

µX

✏✏

TM

m

✏✏
T⌃

h
// M

L A

✓ ✓ �
h (A) =

language recognized by h

finite

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms. ?

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms. ?

those of the form Tf : T⌃ ! T�

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

those of the form Tf : T⌃ ! T�

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3319

What we want to talk about

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

OWLS, 13/05/20 /3320

Counterexample

Let be the list monad quotiented by:
x · x · x = x · x

T

OWLS, 13/05/20 /3320

Counterexample

Let be the list monad quotiented by:
x · x · x = x · x

T

B

OWLS, 13/05/20 /3320

Counterexample

Let be the list monad quotiented by:
x · x · x = x · x

T

B

A language corresponds to L ✓ T⌃

a language closed under L ✓ ⌃⇤ B
(in the sense of (sub)word rewriting)

OWLS, 13/05/20 /3320

Counterexample

Let be the list monad quotiented by:
x · x · x = x · x

T

B

A language corresponds to L ✓ T⌃

a language closed under L ✓ ⌃⇤ B
(in the sense of (sub)word rewriting)

A -algebra is a monoid that satisfies B T

OWLS, 13/05/20 /3320

Counterexample

Let be the list monad quotiented by:
x · x · x = x · x

T

B

A language corresponds to L ✓ T⌃

a language closed under L ✓ ⌃⇤ B
(in the sense of (sub)word rewriting)

A -algebra is a monoid that satisfies B T

Fact: is recognizable iffL ✓ T⌃
(the corresponding) isL ✓ ⌃⇤

regular and closed under . B

OWLS, 13/05/20 /3321

Counterexample ctd.

OWLS, 13/05/20 /3321

Counterexample ctd.

For and , let� = {a, b, c} ⌃ = � [{0, 1}
L = �⇤0�⇤1 ✓ ⌃⇤

OWLS, 13/05/20 /3321

Counterexample ctd.

For and , let� = {a, b, c} ⌃ = � [{0, 1}
L = �⇤0�⇤1 ✓ ⌃⇤

Fact: is closed under . L B

OWLS, 13/05/20 /3321

Counterexample ctd.

For and , let� = {a, b, c} ⌃ = � [{0, 1}
L = �⇤0�⇤1 ✓ ⌃⇤

So: is -recognizable. L T

Fact: is closed under . L B

OWLS, 13/05/20 /3321

Counterexample ctd.

For and , let� = {a, b, c} ⌃ = � [{0, 1}
L = �⇤0�⇤1 ✓ ⌃⇤

So: is -recognizable. L T

Put and s.t. . � = � [{0} h : ⌃ ! � h(1) = 0

Fact: is closed under . L B

OWLS, 13/05/20 /3321

Counterexample ctd.

For and , let� = {a, b, c} ⌃ = � [{0, 1}
L = �⇤0�⇤1 ✓ ⌃⇤

So: is -recognizable. L T

Put and s.t. . � = � [{0} h : ⌃ ! � h(1) = 0

Fact: is closed under . L B

Then is the -closure of
�!
Th(L) �⇤0�⇤0 ✓ �⇤B

OWLS, 13/05/20 /3321

Counterexample ctd.

For and , let� = {a, b, c} ⌃ = � [{0, 1}
L = �⇤0�⇤1 ✓ ⌃⇤

So: is -recognizable. L T

Put and s.t. . � = � [{0} h : ⌃ ! � h(1) = 0

Fact: is not regular, so not -recognizable.
�!
Th(L) T

Fact: is closed under . L B

Then is the -closure of
�!
Th(L) �⇤0�⇤0 ✓ �⇤B

OWLS, 13/05/20 /3322

The landscape of monads

cudish

OWLS, 13/05/20 /3322

The landscape of monads

cudish
x

3 = x

2

OWLS, 13/05/20 /3322

The landscape of monads

cudish
x

3 = x

2

X⇤

OWLS, 13/05/20 /3322

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

OWLS, 13/05/20 /33

Sufficient condition 1

23

Fact: if preserves finiteness T

then every language on a finite alphabet
is recognizable (by).

⌃

T⌃

OWLS, 13/05/20 /33

Sufficient condition 1

23

Fact: if preserves finiteness T

then every language on a finite alphabet
is recognizable (by).

⌃

T⌃

Examples:
- , , P P+ Pfin

- distributive lattices

- idempotent monoids/semigroups

- Boolean algebras

OWLS, 13/05/20 /3324

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

pres.fin.

OWLS, 13/05/20 /3324

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA

x

2 = x

DL

pres.fin.

OWLS, 13/05/20 /33

Sufficient condition 1I

25

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term such thatt(x, y, z)

t(x, x, y) = y = t(y, x, x)

OWLS, 13/05/20 /33

Sufficient condition 1I

25

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term such thatt(x, y, z)

t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish.

OWLS, 13/05/20 /33

Sufficient condition 1I

25

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term such thatt(x, y, z)

t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish.
Examples:

- groups t(x, y, z) = xy

�1
z

OWLS, 13/05/20 /33

Sufficient condition 1I

25

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term such thatt(x, y, z)

t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish.
Examples:

- groups t(x, y, z) = xy

�1
z

- Boolean algebras
t(x, y, z) = (x ^ z) _ (x ^ ¬y ^ ¬z) _ (¬x ^ ¬y ^ z)

OWLS, 13/05/20 /33

Sufficient condition 1I

25

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term such thatt(x, y, z)

t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish.
Examples:

- groups t(x, y, z) = xy

�1
z

- Boolean algebras
t(x, y, z) = (x ^ z) _ (x ^ ¬y ^ ¬z) _ (¬x ^ ¬y ^ z)

- Heyting algebras
t(x, y, z) = ((x ! y) ! z) ^ ((z ! y) ! z) ^ (x _ z)

OWLS, 13/05/20 /3326

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA

x

2 = x

DL

pres.fin.

Malcevian

OWLS, 13/05/20 /3326

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA

Grp

AbGrp

HA

x

2 = x

DL

pres.fin.

Malcevian

OWLS, 13/05/20 /33

Sufficient condition III

27

Def.: a monad is weakly Cartesian
if: - preserves weak pullbacks

- all naturality squares for and
T

T

⌘ µ
are weak pullbacks.

OWLS, 13/05/20 /33

Sufficient condition III

27

Def.: a monad is weakly Cartesian
if: - preserves weak pullbacks

- all naturality squares for and
T

T

⌘ µ
are weak pullbacks.

OWLS, 13/05/20 /33

Sufficient condition III

27

Def.: a monad is weakly Cartesian
if: - preserves weak pullbacks

- all naturality squares for and
T

T

⌘ µ
are weak pullbacks.

weak pullback:
for all , s.t.x 2 X

y 2 Y f(x) = g(y)

there is s.t. , p 2 P

P
h //

k
✏✏

X

f

✏✏
Y g

// Zh(p) = x

k(p) = y

OWLS, 13/05/20 /33

Sufficient condition III

27

Def.: a monad is weakly Cartesian
if: - preserves weak pullbacks

- all naturality squares for and
T

T

⌘ µ
are weak pullbacks.

weak pullback:
for all , s.t.x 2 X

y 2 Y f(x) = g(y)

there is s.t. , p 2 P

P
h //

k
✏✏

X

f

✏✏
Y g

// Zh(p) = x

k(p) = y

E.g. for :⌘ X
⌘X //

f

✏✏

TX

Tf

✏✏
Y ⌘Y

// TY

“a non-unit element never becomes
 a unit element after a substitution”

OWLS, 13/05/20 /33

Sufficient condition III

28

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)

OWLS, 13/05/20 /33

Sufficient condition III

28

Fact: weakly Cartesian monads are cudish.

Examples:
- any monad presented by linear regular equations:

x · (y · z) = (x · y) · z
x · y = y · x
x · x = x

x · x�1 = e

(the powerset construction works)

OWLS, 13/05/20 /33

Sufficient condition III

28

Fact: weakly Cartesian monads are cudish.

Examples:
- any monad presented by linear regular equations:

x · (y · z) = (x · y) · z
x · y = y · x
x · x = x

x · x�1 = e

- presented by a binary operation with:T

x · (x · y) = x · y

(the powerset construction works)

OWLS, 13/05/20 /3329

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA

Grp

AbGrp

HA

x

2 = x

DL

pres.fin.

Malcevian weakly Cartesian

OWLS, 13/05/20 /3329

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA

Grp

AbGrp

HA

X+

NX

x

2 = x

DL

pres.fin.

Malcevian weakly Cartesian

OWLS, 13/05/20 /3329

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA

Grp

AbGrp

HA

X+

NX

x

2 = x

DL

x(xy) = xy

pres.fin.

Malcevian weakly Cartesian

OWLS, 13/05/20 /3329

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA X+1

Grp

AbGrp

HA

X+

NX

x

2 = x

DL

x(xy) = xy

pres.fin.

Malcevian weakly Cartesian

OWLS, 13/05/20 /33

Other examples

30

1. The reader monad X!

(a compactness argument)

OWLS, 13/05/20 /33

Other examples

30

1. The reader monad X!

(a compactness argument)

2. The free lattice monad Lat
(a convexity argument)

OWLS, 13/05/20 /33

Other examples

30

1. The reader monad X!

(a compactness argument)

2. The free lattice monad Lat
(a convexity argument)

3. A binary operation with:
z · (x · (x · y)) = z · (x · y)

(a “powerset squared” construction works)

OWLS, 13/05/20 /33

Other examples

30

1. The reader monad X!

(a compactness argument)

2. The free lattice monad Lat
(a convexity argument)

3. A binary operation with:
z · (x · (x · y)) = z · (x · y)

(a “powerset squared” construction works)

4. Unary operations , with:f g

fgfgg(x) = x

fgffgg(x) = fgffgg(y)

(has no nontrivial finite algebras)

OWLS, 13/05/20 /3331

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

X+

BA X+1

Grp

AbGrp

HA

NX

x

2 = x

DL

X!

Lat

x(xy) = xy

z(x(xy)) = z(xy)
fgffgg

pres.fin.

Mal’cevian weakly Cartesian

OWLS, 13/05/20 /33

Counterexamples

32

1. Monoids with x

3 = x

2

OWLS, 13/05/20 /33

Counterexamples

32

1. Monoids with x

3 = x

2

2. The “marked words” monad:

TX = {(�, w) | � : X ! N, w 2 X⇤, �  w}

OWLS, 13/05/20 /33

Counterexamples

32

1. Monoids with x

3 = x

2

2. The “marked words” monad:

TX = {(�, w) | � : X ! N, w 2 X⇤, �  w}

3. The “balanced associativity” monad:
a binary operation with

x · (y · x) = (x · y) · x

OWLS, 13/05/20 /33

Counterexamples

32

1. Monoids with x

3 = x

2

2. The “marked words” monad:

TX = {(�, w) | � : X ! N, w 2 X⇤, �  w}

3. The “balanced associativity” monad:
a binary operation with

x · (y · x) = (x · y) · x

4. The “almost Mal’cevian” monad:
a ternary operation with

o(x, x, y) = o(y, x, x)

OWLS, 13/05/20 /3333

The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

X+

BA X+1

Grp

AbGrp

HA

NX

x

2 = x

(xy)x = x(yx)

NX X⇤

DL

o(x, x, y) = o(y, x, x)

X!

Lat

x(xy) = xy

z(x(xy)) = z(xy)
fgffgg

pres.fin.

Mal’cevian weakly Cartesian

