OWLS 2020

On Termination of Probabilistic Programs

Joost-Pieter Katoen

UnRAVeL

UNIVERSITY OF TWENTE.

European
Research

c Council

Online Worldwide Seminar Logic and Semantics, April 15, 2020

Joost-Pieter Katoen On Termination of Probabilistic Programs

What we all know about termination

The halting problem
— does a program P terminate on a given input state s? —
is semi-decidable.

The universal halting problem
— does a program P terminate on all input states? —
is undecidable.

Alan Mathison Turing
On computable numbers,
with an application to the Entscheidungsproblem

1937

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

What if programs roll dice?

2
£
<]
=
o0
)
15
o
2
=4
1]
=}
]
2
o
13
o
[
°
£
=
=4
<]
£
£
3
-
<
o

Joost-Pieter Katoen

OWLS 2020

A radical change

» A program either terminates or not (on a given input)
P Terminating programs have a finite run-time

P Having a finite run-time is compositional

All these facts do not hold for probabilistic programs!

Joost-Pieter Katoen On Termination of Probabilistic Programs

Certain termination

while (x > 0) {
x :=x-1 [1/2] x := x-2
}

This program never diverges.
For all integer inputs x.

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Almost-sure termination

For 0 < p <1 an arbitrary probability:

bool ¢ := true;

int i := O;
while (c) {
i++;

(c := false [p] c := true)

This program does not always terminate.
It diverges with probability zero.
It almost surely terminates.

Joost-Pieter Katoen

On Termination of Probabilistic Programs

Non almost-sure termination

P :: skip [1/2] { call P; call P; call P }

3

\)
- = . 4 = X
XP‘ 2 2 '°F

Joost-Pieter Katoen On Termination of Probabilistic Programs

Non almost-sure termination

P :: skip [1/2] { call P; call P; call P }

This program terminates with probability @ < L

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Positive almost-sure termination

For 0 < p <1 an arbitrary probability:

bool ¢ := true;

int i := 0; ?r{C=N].:

while (c) { N-
i++; C’i—'p) v P

(c := false [p] c := true) —

} !

—c{vﬁtﬁ
C%p&c%as\fbr\

This program almost surely terminates.
In finite expected time.

Despite its possible divergence.

Joost-Pieter Katoen

On Termination of Probabilistic Programs

Null almost-sure termination

Consider the symmetric one-dimensional random walk:

int x := 10; while (x > 0) { x—- [1/2] x++ }

This program almost surely terminates.
But:

It requires an infinite expected time to do so.

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Olivier Bournez Florent Garnier

Nuances of termination

...... certain termination

...... termination with probability one

= almost-sure termination

...... in an expected finite number of steps

= “positive” almost-sure termination

...... a.s.-termination in an expected infinite number of steps

= "“null” almost-sure termination

Joost-Pieter Katoen On Termination of Probabilistic Programs

Three contributions

The hardness of the various notions of termination.

[MFCS 2015, Acta Informatica 2019]

A powerful proof rule for almost-sure termination.

[POPL 2018]

Proving positive almost-sure termination using weakest pre-conditions.

[ESOP 2016, J. ACM 2018]

Joost-Pieter Katoen On Termination of Probabilistic Programs

Part 1: Hardness of termination

It is a known fact that deciding termination
of ordinary programs is undecidable.

Our aim is to classify “how undecidable”

(positive) almost-sure termination is.

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Kleene and Mostovski

Andrzej Mostovski (1913-1975)
Stephen Kleene (1909-1994)

Joost-Pieter Katoen On Termination of Probabilistic Programs

Hardness of almost-sure termination

X3
COF

-3 5

gv UH

Az

A,

A

: V3V

M3

COF

M|

» Hardness landscape

L V3

—~

2

— /s 3k.

Joost-Pieter Katoen

On Termination of Probabilistic Programs

Hardness of almost-sure termination

X3
COF

Az

A,

Ay

AST

M3

COF

M

UH

» Hardness landscape

P AST for one input is as hard
as ordinary termination for all
inputs

Joost-Pieter Katoen

On Termination of Probabilistic Programs

Hardness of almost-sure termination

A,

Ay

L

COF

M

UH

» Hardness landscape

P AST for one input is as hard
as ordinary termination for all
inputs

» Finite termination is even
“more undecidable”

Joost-Pieter Katoen

On Termination of Probabilistic Programs

OWLS 2020

Proof idea: hardness of positive as-termination

Reduction from the complement of the universal halting problem

For an ordinary program Q, provide a probabilistic program P (depending on Q)
and an input s, such that

P terminates in a finite expected number of steps on s
if and only if
Q does not terminate on some input

UH \—> ?AasT
Q PN\:. P&SNM IPQ

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Let’s start simple

bool c := true;
int nrflips := 0;
while (c) {
nrflips++;
(c := false [1/2] ¢ := true);

Expected runtime (integral over the bars):

The nrflips-th iteration takes place with probability 1/2% s,

Joost-Pieter Katoen

On Termination of Probabilistic Programs

OWLS 2020

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

bool c := true;
int nrflips := O;
int i := 0;

while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates) {

cheer; // take 2"7'7° effectless steps
it++;
// reset simulation of program Q

}

nrflips++;

(c := false [1/2] c := true);

Joost-Pieter Katoen

On Termination of Probabilistic Programs

OWLS 2020

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

bool ¢ := true;
int nrflips := O;
int i := 0;
while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates) {

cheer; // take 2"TV? effectless steps
i++;

// reset simulation of program Q

}
nrflips++;
(c := false [1/2] c := true);

P looses interest in further simulating @ by a coin flip to decide for termination.

Joost-Pieter Katoen

On Termination of Probabilistic Programs

OWLS 2020

Q@ does not always halt

Let i be the first input for which @ does not terminate.

Expected runtime of P (integral over the bars):

il |

cheering on termination on input i—1

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Q@ does not always halt

Let i be the first input for which @ does not terminate.

Expected runtime of P (integral over the bars):

il |

cheering on termination on input i—1

Finite cheering — finite expected runtime

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

R terminates on all inputs

Expected runtime of P (integral over the bars):

RN

Infinite cheering — infinite expected runtime

Joost-Pieter Katoen On Termination of Probabilistic Programs

Hardness of almost sure termination

5 X UPAST T3 3 level
3
COF COF
. o
PAST 0
I A
UH ? UH 2 lewel
z‘; 0 e
Ay _
H H

No change for non-deterministic probabilistic programs.
No change when approximating termination probabilities.

Joost-Pieter Katoen On Termination of Probabilistic Programs

Part 2: Proving almost-sure termination

» What? Termination with probability one. For all inputs.

> Why?
» Reachability can be encoded as termination
P Often a prerequisite for proving correctness
» Often implicitly assumed

» Why is it hard in practice?
» Requires a lower bound 1 for termination probability

Joost-Pieter Katoen On Termination of Probabilistic Programs

Almost-sure termination

“[Ordinary] termination is a purely topological property [...],
but almost-sure termination is not. [...] Proving almost—
sure termination requires arithmetic reasoning not offered by

termination provers."

Javier Esparza
CAV 2012

Joost-Pieter Katoen On Termination of Probabilistic Programs

How to prove termination?

Use a variant function on the program'’s state space
whose value — on each loop iteration — is monotonically decreasing
with respect to a (strict) well-founded relation.

Alan Mathison Turing
Checking a large routine

1949

Joost-Pieter Katoen On Termination of Probabilistic Programs

Variant (aka: ranking) functions

V : ¥ - Ryq is variant function for loop while(G) P if for every state s:

1. If sE G, then P’s execution on s terminates in a state t with:
V(t) < V(s)—¢e for some fixed € > 0, and

2. 1f V(s) <0, then s i G.

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Termination proofs

1
' 5
s s s s s s s s s s
— loop iterations

Joost-Pieter Katoen On Termination of Probabilistic Programs

Termination proofs

L 2

— loop iterations

Joost-Pieter Katoen On Termination of Probabilistic Programs

Termination proofs

L 2

4 5
s s s s s s s s s s
— loop iterations

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Examples
while (x > 0) { x—- 1%}
Ranking function V = x.
X = ... ;9 :=...// xand y are positive

wh::.1e x '=y) {
if (x> y) {x :=xy }else {y:=y=x7}
}

Ranking function V = x + y.

Joost-Pieter Katoen On Termination of Probabilistic Programs

A large body of existing works

Hart/Sharir/Pnueli: Termination of Probabilistic Concurrent Programs. POPL 1982
Bournez/Garnier: Proving Positive Almost-Sure Termination. RTA 2005
Meclver/Morgan: Abstraction, Refinement and Proof for Probabilistic Systems. 2005
Esparza et al.: Proving Termination of Probabilistic Programs Using Patterns. CAV 2012
Chakarov/Sankaranarayanan: Probabilistic Program Analysis w. Martingales. CAV 2013

Fioriti/Hermanns: Probabilistic Termination: Soundness, Completeness, and
Compositionality. POPL 2015

Chatterjee et al.: Algorithmic Termination of Affine Probabilistic Programs. POPL 2016
Agrawal/Chatterjee/Novotny: Lexicographic Ranking Supermartingales. POPL 2018

Key ingredient: super- (or some form of) martingales

Joost-Pieter Katoen On Termination of Probabilistic Programs

On super-martingales

A stochastic process Xi, X5, ... is a martingale whenever:
E(Xn+1 | le e ,Xn) = Xn
It is a super-martingale whenever:

]E(Xn+1|X11---vXn) < Xn

Joost-Pieter Katoen On Termination of Probabilistic Programs

A historical perspective

A countable Markov process is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.
—

e,,c‘:ce\:eé \'U\’urr\
e < ©

Joost-Pieter Katoen On Termination of Probabilistic Programs

A historical perspective

A countable Markov process is “non-dissipative”
if almost every infinite path eventually enters
— and remains in — positive recurrent states.

A sufficient condition for being non-dissipative is:

Zj -pj < i for all states i
j20

\SBN e

Frederic Gordon Foster
Markoff chains with an enumerable number of states
and a class of cascade processes

1951

Joost-Pieter Katoen On Termination of Probabilistic Programs

Kendall’s variation

A Markov process is non-dissipative if for some function V : ¥ - R:

2 V(j)-p; < V(i) forall states i
j=0

and for each r > 0 there are finitely many states i with V(i) < r

Ke..,\d e.u_
V\zH\:\"Dr\

David George Kendall ™M /G/ n
On non-dissipative Markoff chains
with an enumerable infinity of states

1951

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

On positive recurrence

Every irreducible positive recurrent Markov chain is non-dissipative.

A Markov process is positive recurrent iff there is a Lyapunov function
V :¥ - R, with for finite FC ¥ and ¢ > 0:

2;VU)-p; < oo forieF, and

S VG) by < for i ¢ F.

Markov Chains pp 167-193 | Cite as
Lyapunov Functions and Martingales Frederic Gordon Foster
On the stochastic matrices associated

with certain queuing processes
1953

Authors Authors and affiliations

Pierre Brémaud

Pierre Brémaud 1999

Joost-Pieter Katoen On Termination of Probabilistic Programs

Our aim

A powerful, simple proof rule for almost-sure termination.
At the source code level.

No “descend” into the underlying probabilistic model.

Joost-Pieter Katoen On Termination of Probabilistic Programs

Proving almost-sure termination V= x
E;()<k4n) = ><k
< Xy -¢

The symmetric random walk:
c;oed r\o’" QO’“

while (x > 0) { x := x-1 [1/2] x := x+1 }
—

Joost-Pieter Katoen On Termination of Probabilistic Programs

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [1/2] x := x+1 }
\Iz ¥
Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2
—_—N — ~—

)
C“:’\ ?:-z

Joost-Pieter Katoen On Termination of Probabilistic Programs

Proving almost-sure termination

The symmetric random walk:
while (x > 0) { x := x-1 [1/2] x := x+1 }
Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Are these programs almost surely terminating?

P Escaping spline:
while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

Linish \/7— 'L/:l /‘-\ L'/Y
|—‘—:\ /> /‘\\/—\ P i, 3

k] \IZ 1 \ \
R A " /
e 6

“ul-

Joost-Pieter Katoen On Termination of Probabilistic Programs

Are these programs almost surely terminating?

P Escaping spline:
while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

P A slightly unbiased random walk:
1/2-eps ; while (x > 0) { x—— [p] x++ }

\
[Ficisw) 1t s 142
VS S S e
0 A v 3 4
k__— " R__—
i-s o gl 1

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Are these programs almost surely terminating?

P Escaping spline: \/
while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

P A slightly unbiased random walk:

1/2-eps ; while (x > 0) { x—— [p] x++ } ><
P> A symmetric-in-the®imit random walk: \/
while (x > 0) { p := x/(2xx+1) ; (x—- [p] x++) }
s 4a %
" W XV \/%\ S
o 1 K —23 K~y —5

Joost-Pieter Katoen On Termination of Probabilistic Programs

Proving almost-sure termination

Goal: prove a.s.—termination of while(G) P, for all inputs

Ingredients:
P A supermartingale V' : ¥ - R,q with
> E{V(sp1) | V(so), ..., V(sa)} = V(s,)
» Running body P on state s F G does not increase E(V/(s))
» Loop iteration ceases if V/(s) =0

> ... and a progress condition: on each loop iteration in s
» V(s') = v decreases by > d(v) > 0 with probability = p(v) > 0
P with antitone p (“probability”) and d (“decrease”)

= < 9 _ 5 F6O Sg‘b) WAono e

“ Sd — f) = N anhane

Joost-Pieter Katoen On Termination of Probabilistic Programs

Proving almost-sure termination

Goal: prove a.s.—termination of while(G) P, for all inputs

Ingredients:
P A supermartingale V' : ¥ - R,q with
> E{V(sp1) | V(so), ..., V(sa)} = V(s,)
» Running body P on state s F G does not increase E(V/(s))
» Loop iteration ceases if V/(s) =0

> ... and a progress condition: on each loop iteration in s
» V(s') = v decreases by > d(v) > 0 with probability = p(v) > 0
P with antitone p (“probability”) and d (“decrease”)

Then: while(G) P is universally almost-surely terminating

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Proving almost-sure termination
,+ with prob. > p(V(l))

V(i)

e

L 3

— loop iterations

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Proving almost-sure termination
,+ with prob. > p(V(l))

V(i)

e

. with prob. > p(V(4))

— loop iterations

Joost-Pieter Katoen On Termination of Probabilistic Programs

Proving almost-sure termination
,+ with prob. > p(V(l))
V(i) '

e

. d(V(1)) = d(V(4))

by antitone d

L 3

— loop iterations

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Proving almost-sure termination E(V(l)_) < p(V(4))

V(i)

e

d(V(1)) =d(V(4))
by antitone d

L 3

— loop iterations

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Proving almost-sure termination ';(V(l)_) < p(V(4))

V(i)

e

d(V(1)) = d(V(4))
by antitone d

L 3

— loop iterations

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen On Termination of Probabilistic Programs

The symmetric random walk

» Recall:

while (x > 0) { x := x-1 [1/2] x := x+1 }

Joost-Pieter Katoen On Termination of Probabilistic Programs

The symmetric random walk

» Recall:

while (x > 0) { x := x-1 [1/2] x := x+1 }

P> Witnesses of almost-sure termination:
> V=x
» p(v)=12and d(v)=1

That's all you need to prove almost-sure termination!

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

The escaping spline

fintsh V?- 17/1 3/‘-1 "/Y
g >

» Consider the program:

while (x > 0) { p := 1/(x+1); x := 0 [p] x++}

P> Witnesses of almost-sure termination:
> V=x

» p(v) = ﬁ and d(v) =1

Joost-Pieter Katoen On Termination of Probabilistic Programs

A symmetric-in-the-limit random walk

(o}

[Fiaish) 3)s “lz 5/
A e i Ul \/-k\ .
a LR—3I K~ y~—§

» Consider the program:

while (x > 0) { p := x/(2*x+1) ; x—— [p] x++ }

Joost-Pieter Katoen

On Termination of Probabilistic Programs

OWLS 2020

A symmetric-in-the-limit random walk

P Consider the program:

while (x > 0) { p := x/(2*x+1) ; x—— [p] x++ }

P Witnesses of almost-sure termination:
» V = H,, where H, is x-th Harmonic number 1 + /2 + ...+ 1/x

s ifv>0and Hy_; <v<H,

» p(v) =13 and d(V)={ 1 ifv=o0

Joost-Pieter Katoen On Termination of Probabilistic Programs

Part 3: Proving positive almost-sure termination

P» What? Termination in finite expected time

» How?

» Weakest-precondition calculus for expected run-times

» Why?
P Reason about the efficiency of randomised algorithms
» Reason about simulation (in)efficiency of Bayesian networks
» Is compositional and reasons at the program'’s code

Joost-Pieter Katoen On Termination of Probabilistic Programs

AST by weakest preconditions

Determine wp(P, 1) for program P and postcondition 1.

Dexter Kozen
A probabilistic PDL

1983

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

The run time of a probabilistic program is random

int i := 0;
repeat {i++; (c := false [1/2] c := true)}
until (c)

Program Runtime

Program Output
7 Distribution

1/4

1/s

Probability
Probability

1 2 3 4 5 Output 3 5 7 9 11 Run-Time

The expected runtime is 1+ 3-1/2+ 5-1/a + ... + (2n+1)-1/2" = ...

On Termination of Probabilistic Programs

Joost-Pieter Katoen

Expected run-times

P Expected run-time of program P on input s:

00 o .

P terminates after
> ke Pr . ,
Pt k steps on input s

» Let ert be afunction t: % - Rygu{oo}

P This is called a run-time. Complete partial order ;

th =t iff VseZ. ti(s) < tr(s)

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

PAST is not compositional

int x =1

bool c :=

while (c)
c := false [1/2] c := true;
X 1= 2%x

5
true;
{

Finite expected termination time
—_—

= PasT

On Termination of Probabilistic Programs

Joost-Pieter Katoen

OWLS 2020

PAST is not compositional

Consider the two probabilistic programs:

int x =1

bool ¢ := true;
while (c) { while (x > 0) {
c := false [1/2] c := true; xX--
X 1= 2%x T
} /

Finite termination time
Finite expected termination time

On Termination of Probabilistic Programs

Joost-Pieter Katoen

OWLS 2020

PAST is not compositional

Consider the two probabilistic programs:

Sl e

PAST 2
int x := 1;
bool ¢ := true; GEE)
while (c) { P while (x > 0) {
c := false [1/2] c := true; [xX--
}
}
—/ —— _——
not ?GS'_‘

Joost-Pieter Katoen On Termination of Probabilistic Programs

Run-times by program verification

ert(P, t)(s) is the expected run-time of P on input state s
if t captures the run-time of the computation following P.

et[P](ert[Po](0) Pri ert[P](0) P, 0
ert[Py; P,](0) time neet.:ied time neesied
after executing Py after executing P»

Joost-Pieter Katoen On Termination of Probabilistic Programs

Expected run-time transformer

P skip > 1+t

P diverge > oo

> x :=E > 1+ t[x:=E]

> P1 ; P2 P ert(Py, ert(P,, t))

> if (G)P1l else P2 > 1+[G]-ert(Py,t)+[~G]- ert(P>, 1)
» P1 [p] P2 > 1+ p-ert(Py,t)+(1-p)- ert(Ps, t)
P while(G)P > Ifp X. 1+ ([G]-ert(P, X) +[=G]-t)

Ifp is the least fixed point operator wrt. the ordering < on run-times

Plus a set of proof rules to get bounds on run-times of loops

Joost-Pieter Katoen On Termination of Probabilistic Programs

Elementary properties

» Continuity: ert(P, t) is continuous, that is

for every chainT =tg<t; <ty =...:ert{P,sup T) =supert(P, T)

» Monotonicity: t < t' implies ert{ P, t) < ert{(P, t')
» Constant propagation: ert(P,k +t) =k + ert(P, t)
P Preservation of oo: ert(P, 00) = 00
P Relation to wp: ert(P, t) = ert(P, 0) + wp(P, t)
> Affinity: ert(P,r-t+t) = ert(P,0)+ r-wp(P, t) + wp(P, t')

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Elementary properties|lIsabelle/HOL certified [H'd@

» Continuity: ert(P, t) is continuous, that is

for every chainT =tg<t; <ty =...:ert{P,sup T) =supert(P, T)

» Monotonicity: t < t' implies ert{ P, t) < ert{(P, t')
» Constant propagation: ert(P,k +t) =k + ert(P, t)
» Preservation of oo: ert(P, 00) = 00
P Relation to wp: ert(P, t) = ert(P, 0) + wp(P, t)
> Affinity: ert(P,r-t+t) = ert(P,0)+ r-wp(P, t) + wp(P, t')

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Coupon collector’s problem
ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by

P. ERDOS and A. RENYI
»ﬁ%
20

W

150

A0

Joost-Pieter Katoen

OWLS 2020

Coupon collector’s problem

cp := [0,...,0]; 1
while (x < N) {

while (cpli]l != 0) {

1; x := 0; // no coupons yet

i := uniform(1..N) // next coupon
}
cplil :=1; // coupon % obtained
x++; // one coupon less to go
}

Using the ert-calculus one can prove that:
ert(cpcl,0) = 4+ [N >0]-2N-(2+ Hy_1) € O(N-log N)

By systematic program verification a la Floyd-Hoare. Machine checkable.

Joost-Pieter Katoen

On Termination of Probabilistic Programs

OWLS 2020

How long to sample a Bayes’ network?

“the main challenge in this setting [sampling-based approaches] is that many
samples that are generated during execution are ultimately rejected for not
satisfying the observations." [FOSE 2014]

‘-e .
\

Andy Gordon Tom Aditya Nori
Henzinger

Sriram
Rajamani

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

How long to simulate a Bayes network? o | 4. s

Benchmark BNs from www.bnlearp<Com

/ ert

BN VI T IEl [aMB][[d| | EST | time (s) |
hailfinder | 56 | 66 | 354 | 5 | 510° 0.63
hepar?2 70 | 123 [451 | 1 [1510°] 184
win95pts 76 | 112 | 502 | 3 [4310° | 036
pathfinder | 135 | 200 | 3.04 7 00 5.44
andes 223 | 338 | 561 | 3 [5210° | 1.66
pigs 441 | 592 [392 || 1 [2910°| o074
munin 1041 | 1397 | 3.54 5 %) 1.43

aMB = average Markov Blanket, a measure of independence in BNs

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

Epilogue

Hardness of probabilistic termination.
@ AST for one input =,,4 universal halting problem.

Positive almost-sure termination is [13-complete.

@ { Proof rule for almost-sure termination.
Widely applicable.

: Weakest pre-conditions for expected run-time analysis.

To (dis)prove positive almost-sure termination. And more.

Joost-Pieter Katoen On Termination of Probabilistic Programs

OWLS 2020

A big thanks to my co-authors!

Benjamin Chl’iStOph
Kevin Batz Kaminski Matheja

Annabelle Carroll Federico
Mclver Morgan Olmedo

Joost-Pieter Katoen On Termination of Probabilistic Programs

Further reading

» B. Kaminskl, JPK, C. MATHEJA.
On the hardness of analysing probabilistic programs. Acta Inf. 2019.

P> B. Kaminski, JPK, C. MATHEJA, AND F. OLMEDO.
Expected run-time analysis of probabilistic programs. J. ACM 2018.

» A. McIVER, C. MORGAN, B. KAMINSKI, JPK.

A new proof rule for almost-sure termination. POPL 2018.

> K. Batz, B. Kaminski, JPK, AND C. MATHEJA.
How long, O Bayesian network, will | sample thee? ESOP 2018.

» K. CHATTERJEE, H. FU AND P. NOVOTNY.
Termination analysis of probabilistic programs with martingales.

In: Found. of Prob. Programming, 2020 (to appear).

Joost-Pieter Katoen On Termination of Probabilistic Programs

Using wp for expected run-times?

while(true) { x++ }

P Consider the post-expectation x

P Characteristic function ®,(X) = X(x » x + 1)

» Candidate upper boundis | = 0

» Induction: &, (/) = O(x:=x+1) =0 =1 < |/

We — wrongly — conclude that 0 is the runtime.

Using weakest pre-expectations is unsound for expected run-time analysis.

Joost-Pieter Katoen On Termination of Probabilistic Programs

