
OWLS 2020

On Termination of Probabilistic Programs

Joost-Pieter Katoen

Online Worldwide Seminar Logic and Semantics, April 15, 2020

Joost-Pieter Katoen On Termination of Probabilistic Programs 1/55

OWLS 2020

What we all know about termination

The halting problem
— does a program P terminate on a given input state s? —

is semi-decidable.

The universal halting problem
— does a program P terminate on all input states? —

is undecidable.

Alan Mathison Turing
On computable numbers,

with an application to the Entscheidungsproblem
1937

Joost-Pieter Katoen On Termination of Probabilistic Programs 2/55

OWLS 2020

What if programs roll dice?

Joost-Pieter Katoen On Termination of Probabilistic Programs 3/55

OWLS 2020

Common knowledge

A radical change

Z A program either terminates or not (on a given input)

Z Terminating programs have a finite run-time

Z Having a finite run-time is compositional

All these facts do not hold for probabilistic programs!

Joost-Pieter Katoen On Termination of Probabilistic Programs 4/55

OWLS 2020

Certain termination

while (x > 0) {
x := x-1 [1/2] x := x-2

}

This program never diverges.
For all integer inputs x.

Joost-Pieter Katoen On Termination of Probabilistic Programs 5/55

OWLS 2020

Almost-sure termination

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program does not always terminate.
It diverges with probability zero.

It almost surely terminates.

Joost-Pieter Katoen On Termination of Probabilistic Programs 6/55

OWLS 2020

Non almost-sure termination

P :: skip [1/2] { call P; call P; call P }

This program terminates with probability
”
5�1

2
< 1.

Joost-Pieter Katoen On Termination of Probabilistic Programs 7/55

-

ae-IEMFaotf.FI

OWLS 2020

Non almost-sure termination

P :: skip [1/2] { call P; call P; call P }

This program terminates with probability
”
5�1

2
< 1.

Joost-Pieter Katoen On Termination of Probabilistic Programs 7/55

OWLS 2020

Positive almost-sure termination

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program almost surely terminates.
In finite expected time.

Despite its possible divergence.

Joost-Pieter Katoen On Termination of Probabilistic Programs 8/55

- -

Pr { it

N1
=

N - I

@- p) . p
-

I
u

finite

expectation

OWLS 2020

Null almost-sure termination

Consider the symmetric one-dimensional random walk:

int x := 10; while (x > 0) { x-- [1/2] x++ }

This program almost surely terminates.
But:

It requires an infinite expected time to do so.

Joost-Pieter Katoen On Termination of Probabilistic Programs 9/55

OWLS 2020

Nuances of termination Olivier Bournez Florent Garnier

. certain termination

. termination with probability one
º almost-sure termination

. in an expected finite number of steps
º “positive” almost-sure termination

. a.s.-termination in an expected infinite number of steps
º “null” almost-sure termination

Joost-Pieter Katoen On Termination of Probabilistic Programs 10/55

OWLS 2020

Three contributions

The hardness of the various notions of termination.
[MFCS 2015, Acta Informatica 2019]

A powerful proof rule for almost-sure termination.
[POPL 2018]

Proving positive almost-sure termination using weakest pre-conditions.
[ESOP 2016, J. ACM 2018]

Joost-Pieter Katoen On Termination of Probabilistic Programs 11/55

OWLS 2020

Part 1: Hardness of termination

It is a known fact that deciding termination
of ordinary programs is undecidable.

Our aim is to classify “how undecidable”
(positive) almost-sure termination is.

Joost-Pieter Katoen On Termination of Probabilistic Programs 12/55

-

OWLS 2020

Kleene and Mostovski

Stephen Kleene (1909–1994)
Andrzej Mostovski (1913–1975)

Joost-Pieter Katoen On Termination of Probabilistic Programs 13/55

OWLS 2020

Hardness of almost-sure termination

�1 �1

�1

�2 �2

�2

�3 �3

�3

⌃

H H

UH UH

COF COF

AST
UAST

UPAST

PAST

Z Hardness landscape

Z AST for one input is as hard
as ordinary termination for all
inputs

Z Finite termination is even
“more undecidable”

Joost-Pieter Katoen On Termination of Probabilistic Programs 14/55

/
FFV

-
- Ye

FV O - Hs 7h
.

ohhhh

OWLS 2020

Hardness of almost-sure termination

�1 �1

�1

�2 �2

�2

�3 �3

�3

⌃

H H

UH UH

COF COF

AST
UAST

UPAST

PAST

Z Hardness landscape

Z AST for one input is as hard
as ordinary termination for all
inputs

Z Finite termination is even
“more undecidable”

Joost-Pieter Katoen On Termination of Probabilistic Programs 14/55

OWLS 2020

Hardness of almost-sure termination

�1 �1

�1

�2 �2

�2

�3 �3

�3

⌃

H H

UH UH

COF COF

AST
UAST

UPAST

PAST

Z Hardness landscape

Z AST for one input is as hard
as ordinary termination for all
inputs

Z Finite termination is even
“more undecidable”

Joost-Pieter Katoen On Termination of Probabilistic Programs 14/55

÷

OWLS 2020

Proof idea: hardness of positive as-termination

Reduction from the complement of the universal halting problem
For an ordinary program Q, provide a probabilistic program P (depending on Q)
and an input s, such that
P terminates in a finite expected number of steps on s
if and only if
Q does not terminate on some input

Joost-Pieter Katoen On Termination of Probabilistic Programs 15/55

Utt I → PAST

Oz prob . program Po
,

OWLS 2020

Let’s start simple
bool c := true;
int nrflips := 0;
while (c) {

nrflips++;
(c := false [1/2] c := true);

}

Expected runtime (integral over the bars):

1

The nrflips-th iteration takes place with probability 1/2
nrflips.

Joost-Pieter Katoen On Termination of Probabilistic Programs 16/55

OWLS 2020

Reducing an ordinary program to a probabilistic one
Assume an enumeration of all inputs for Q is given

bool c := true;
int nrflips := 0;
int i := 0;
while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates) {

cheer; // take 2nrflips effectless steps
i++;
// reset simulation of program Q

}
nrflips++;
(c := false [1/2] c := true);

}

P looses interest in further simulating Q by a coin flip to decide for termination.

Joost-Pieter Katoen On Termination of Probabilistic Programs 17/55

OWLS 2020

Reducing an ordinary program to a probabilistic one
Assume an enumeration of all inputs for Q is given

bool c := true;
int nrflips := 0;
int i := 0;
while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates) {

cheer; // take 2nrflips effectless steps
i++;
// reset simulation of program Q

}
nrflips++;
(c := false [1/2] c := true);

}

P looses interest in further simulating Q by a coin flip to decide for termination.

Joost-Pieter Katoen On Termination of Probabilistic Programs 17/55

OWLS 2020

Q does not always halt
Let i be the first input for which Q does not terminate.

Expected runtime of P (integral over the bars):

1

cheering on termination on input i�1

Finite cheering — finite expected runtime

Joost-Pieter Katoen On Termination of Probabilistic Programs 18/55

OWLS 2020

Q does not always halt
Let i be the first input for which Q does not terminate.

Expected runtime of P (integral over the bars):

1

cheering on termination on input i�1

Finite cheering — finite expected runtime

Joost-Pieter Katoen On Termination of Probabilistic Programs 18/55

OWLS 2020

Q terminates on all inputs

Expected runtime of P (integral over the bars):

⇧

1

Infinite cheering — infinite expected runtime

Joost-Pieter Katoen On Termination of Probabilistic Programs 19/55

OWLS 2020

Hardness of almost sure termination

�0

1 �0

1

�0

1

�0

2 �0

2

�0

2

�0

3 �0

3

�0

3

⌃

H H

UH UH

COF COF

PAST
AST

UAST

UPAST

No change for non-deterministic probabilistic programs.
No change when approximating termination probabilities.

Joost-Pieter Katoen On Termination of Probabilistic Programs 20/55

) 3 level

↳) 2 level

OWLS 2020

Part 2: Proving almost-sure termination

Z What? Termination with probability one. For all inputs.

Z Why?
Z Reachability can be encoded as termination
Z Often a prerequisite for proving correctness
Z Often implicitly assumed

Z Why is it hard in practice?
Z Requires a lower bound 1 for termination probability

Joost-Pieter Katoen On Termination of Probabilistic Programs 21/55

OWLS 2020

Almost-sure termination

Javier Esparza
CAV 2012

“[Ordinary] termination is a purely topological property [. . .],
but almost-sure termination is not. [. . .] Proving almost–
sure termination requires arithmetic reasoning not o�ered by
termination provers."

Joost-Pieter Katoen On Termination of Probabilistic Programs 22/55

OWLS 2020

How to prove termination?

Use a variant function on the program’s state space
whose value — on each loop iteration — is monotonically decreasing

with respect to a (strict) well-founded relation.

Alan Mathison Turing
Checking a large routine

1949

Joost-Pieter Katoen On Termination of Probabilistic Programs 23/55

OWLS 2020

Variant (aka: ranking) functions

V ⇥ � � IR'0 is variant function for loop while(G)P if for every state s:

1. If s Ï G , then P’s execution on s terminates in a state t with:

V (t) & V (s) � Á for some fixed Á > 0, and

2. If V (s) & 0, then s /Ï G .

Joost-Pieter Katoen On Termination of Probabilistic Programs 24/55

OWLS 2020

Termination proofs

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (s i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
• •

•
• •

•

V (s4)
V (s5)

V (s5) T V (s4)
•

arrival at 0 guaranteed
by well–foundedness of U

Joost-Pieter Katoen On Termination of Probabilistic Programs 25/55

• - - - -

. . .

! > E"

:

Bg
:

, z

OWLS 2020

Termination proofs

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (s i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
• •

•
• •

•

V (s4)
V (s5)

V (s5) T V (s4)

•

arrival at 0 guaranteed
by well–foundedness of U

Joost-Pieter Katoen On Termination of Probabilistic Programs 25/55

@

aid&AO

'

'

Kaga

OWLS 2020

Termination proofs

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (s i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
• •

•
• •

•

V (s4)
V (s5)

V (s5) T V (s4)
•

arrival at 0 guaranteed
by well–foundedness of U

Joost-Pieter Katoen On Termination of Probabilistic Programs 25/55

84 BEAHis

OWLS 2020

Examples

while (x > 0) { x-- }

Ranking function V = x .

x := ... ; y := ... // x and y are positive
while (x != y) {

if (x > y) { x := x-y } else { y := y-x }
}

Ranking function V = x + y .

Joost-Pieter Katoen On Termination of Probabilistic Programs 26/55

OWLS 2020

A large body of existing works

Hart/Sharir/Pnueli: Termination of Probabilistic Concurrent Programs. POPL 1982

Bournez/Garnier: Proving Positive Almost-Sure Termination. RTA 2005

McIver/Morgan: Abstraction, Refinement and Proof for Probabilistic Systems. 2005

Esparza et al.: Proving Termination of Probabilistic Programs Using Patterns. CAV 2012

Chakarov/Sankaranarayanan: Probabilistic Program Analysis w. Martingales. CAV 2013

Fioriti/Hermanns: Probabilistic Termination: Soundness, Completeness, and
Compositionality. POPL 2015

Chatterjee et al.: Algorithmic Termination of A�ne Probabilistic Programs. POPL 2016

Agrawal/Chatterjee/Novotn˝: Lexicographic Ranking Supermartingales. POPL 2018

.

Key ingredient: super- (or some form of) martingales

Joost-Pieter Katoen On Termination of Probabilistic Programs 27/55

OWLS 2020

On super-martingales

A stochastic process X1, X2, . . . is a martingale whenever:

E(Xn+1 ∂ X1, . . . , Xn) = Xn

It is a super-martingale whenever:

E(Xn+1 ∂ X1, . . . , Xn) & Xn

Joost-Pieter Katoen On Termination of Probabilistic Programs 28/55

OWLS 2020

A historical perspective

A countable Markov process is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.

A su�cient condition for being non-dissipative is:

9
j'0

j � pij & i for all states i

Frederic Gordon Foster
Marko� chains with an enumerable number of states

and a class of cascade processes
1951

Joost-Pieter Katoen On Termination of Probabilistic Programs 29/55

-

expected return

time C is

OWLS 2020

A historical perspective

A countable Markov process is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.

A su�cient condition for being non-dissipative is:

9
j'0

j � pij & i for all states i

Frederic Gordon Foster
Marko� chains with an enumerable number of states

and a class of cascade processes
1951

Joost-Pieter Katoen On Termination of Probabilistic Programs 29/55

~
ISBN nr .

OWLS 2020

Kendall’s variation

A Markov process is non-dissipative if for some function V ⇥ � � R:

9
j'0

V (j) � pij & V (i) for all states i

and for each r ' 0 there are finitely many states i with V (i) & r

David George Kendall
On non-dissipative Marko� chains

with an enumerable infinity of states
1951

Joost-Pieter Katoen On Termination of Probabilistic Programs 30/55

#
Kendall

notation

M lol n

OWLS 2020

On positive recurrence

Every irreducible positive recurrent Markov chain is non-dissipative.

A Markov process is positive recurrent i� there is a Lyapunov function
V ⇥ � � R'0 with for finite F N � and Á > 0:

8j V (j) � pij < ô for i " F , and
8j V (j) � pij < V (i) � Á for i /" F .

Pierre Brémaud 1999

Frederic Gordon Foster
On the stochastic matrices associated

with certain queuing processes
1953

Joost-Pieter Katoen On Termination of Probabilistic Programs 31/55

0

OWLS 2020

Our aim

A powerful, simple proof rule for almost-sure termination.
At the source code level.

No “descend” into the underlying probabilistic model.

Joost-Pieter Katoen On Termination of Probabilistic Programs 32/55

OWLS 2020

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [1/2] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen On Termination of Probabilistic Programs 33/55

V = X

E C Xun) = Xk

< Xk - e

does not work

-

I
←

OWLS 2020

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [1/2] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen On Termination of Probabilistic Programs 33/55

Vex

-

p - I

OWLS 2020

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [1/2] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen On Termination of Probabilistic Programs 33/55

OWLS 2020

Are these programs almost surely terminating?
Z Escaping spline:

while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

Z A slightly unbiased random walk:
1/2-eps ; while (x > 0) { x--1 [p] x++ }

Z A symmetric-in-the-limit random walk:
while (x > 0) { p := x/(2*x+1) ; (x-- [p] x++) }

Joost-Pieter Katoen On Termination of Probabilistic Programs 34/55

%
I
5

OWLS 2020

Are these programs almost surely terminating?
Z Escaping spline:

while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

Z A slightly unbiased random walk:
1/2-eps ; while (x > 0) { x--1 [p] x++ }

Z A symmetric-in-the-limit random walk:
while (x > 0) { p := x/(2*x+1) ; (x-- [p] x++) }

Joost-Pieter Katoen On Termination of Probabilistic Programs 34/55

•

OWLS 2020

Are these programs almost surely terminating?
Z Escaping spline:

while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

Z A slightly unbiased random walk:
1/2-eps ; while (x > 0) { x--1 [p] x++ }

Z A symmetric-in-the-limit random walk:
while (x > 0) { p := x/(2*x+1) ; (x-- [p] x++) }

Joost-Pieter Katoen On Termination of Probabilistic Programs 34/55

✓

• X

.

r

OWLS 2020

Proving almost-sure termination

Goal: prove a.s.–termination of while(G) P, for all inputs

Ingredients:
Z A supermartingale V ⇥ � � R'0 with

Z E {V (sn+1) ∂ V (s0), . . . , V (sn)} & V (sn)
Z Running body P on state s Ï G does not increase E(V (s))
Z Loop iteration ceases if V (s) = 0

Z and a progress condition: on each loop iteration in s i

Z V (s i) = v decreases by ' d(v) > 0 with probability ' p(v) > 0
Z with antitone p (“probability”) and d (“decrease”)

Then: while(G) P is universally almost-surely terminating

Joost-Pieter Katoen On Termination of Probabilistic Programs 35/55

:

-

X S y → f Cx) E fly) monotone

X Ey → fly) E fix) anti tone

OWLS 2020

Proving almost-sure termination

Goal: prove a.s.–termination of while(G) P, for all inputs

Ingredients:
Z A supermartingale V ⇥ � � R'0 with

Z E {V (sn+1) ∂ V (s0), . . . , V (sn)} & V (sn)
Z Running body P on state s Ï G does not increase E(V (s))
Z Loop iteration ceases if V (s) = 0

Z and a progress condition: on each loop iteration in s i

Z V (s i) = v decreases by ' d(v) > 0 with probability ' p(v) > 0
Z with antitone p (“probability”) and d (“decrease”)

Then: while(G) P is universally almost-surely terminating

Joost-Pieter Katoen On Termination of Probabilistic Programs 35/55

OWLS 2020

Proving almost-sure termination

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
•

•

•

•

V (1)
V (2)

d⇤V (1)

with prob. ' p⇤V (1)

V (4)
V (5)

d⇤V (4)
with prob. ' p⇤V (4)

d (V (1)) & d (V (4))
by antitone d

p(V (1)) & p(V (4))
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen On Termination of Probabilistic Programs 36/55

14
He

OWLS 2020

Proving almost-sure termination

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
•

•

•

•

V (1)
V (2)

d⇤V (1)

with prob. ' p⇤V (1)

V (4)
V (5)

d⇤V (4)
with prob. ' p⇤V (4)

d (V (1)) & d (V (4))
by antitone d

p(V (1)) & p(V (4))
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen On Termination of Probabilistic Programs 36/55

-

•
•

I =

OWLS 2020

Proving almost-sure termination

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
•

•

•

•

V (1)
V (2)

d⇤V (1)

with prob. ' p⇤V (1)

V (4)
V (5)

d⇤V (4)
with prob. ' p⇤V (4)

d (V (1)) & d (V (4))
by antitone d

p(V (1)) & p(V (4))
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen On Termination of Probabilistic Programs 36/55

0=

€0

OWLS 2020

Proving almost-sure termination

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
•

•

•

•

V (1)
V (2)

d⇤V (1)

with prob. ' p⇤V (1)

V (4)
V (5)

d⇤V (4)
with prob. ' p⇤V (4)

d (V (1)) & d (V (4))
by antitone d

p(V (1)) & p(V (4))
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen On Termination of Probabilistic Programs 36/55

or

OWLS 2020

Proving almost-sure termination

� loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
•

•

•

•

V (1)
V (2)

d⇤V (1)

with prob. ' p⇤V (1)

V (4)
V (5)

d⇤V (4)
with prob. ' p⇤V (4)

d (V (1)) & d (V (4))
by antitone d

p(V (1)) & p(V (4))
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen On Termination of Probabilistic Programs 36/55

OWLS 2020

The symmetric random walk

Z Recall:

while (x > 0) { x := x-1 [1/2] x := x+1 }

Z Witnesses of almost-sure termination:
Z V = x
Z p(v) = 1/2 and d(v) = 1

That’s all you need to prove almost-sure termination!

Joost-Pieter Katoen On Termination of Probabilistic Programs 37/55

OWLS 2020

The symmetric random walk

Z Recall:

while (x > 0) { x := x-1 [1/2] x := x+1 }

Z Witnesses of almost-sure termination:
Z V = x
Z p(v) = 1/2 and d(v) = 1

That’s all you need to prove almost-sure termination!

Joost-Pieter Katoen On Termination of Probabilistic Programs 37/55

OWLS 2020

The escaping spline

Z Consider the program:

while (x > 0) { p := 1/(x+1); x := 0 [p] x++}

Z Witnesses of almost-sure termination:
Z V = x

Z p(v) = 1

v+1
and d(v) = 1

Joost-Pieter Katoen On Termination of Probabilistic Programs 38/55

1

OWLS 2020

A symmetric-in-the-limit random walk

Z Consider the program:

while (x > 0) { p := x/(2*x+1) ; x-- [p] x++ }

Z Witnesses of almost-sure termination:
Z V = Hx , where Hx is x -th Harmonic number 1 + 1/2 + . . . + 1/x

Z p(v) = 1/3 and d(v) = w 1/x if v > 0 and Hx�1 < v & Hx

1 if v = 0

Joost-Pieter Katoen On Termination of Probabilistic Programs 39/55

g I 8

OWLS 2020

A symmetric-in-the-limit random walk

Z Consider the program:

while (x > 0) { p := x/(2*x+1) ; x-- [p] x++ }

Z Witnesses of almost-sure termination:
Z V = Hx , where Hx is x -th Harmonic number 1 + 1/2 + . . . + 1/x

Z p(v) = 1/3 and d(v) = w 1/x if v > 0 and Hx�1 < v & Hx

1 if v = 0

Joost-Pieter Katoen On Termination of Probabilistic Programs 39/55

OWLS 2020

Part 3: Proving positive almost-sure termination

Z What? Termination in finite expected time

Z How?
Z Weakest-precondition calculus for expected run-times

Z Why?
Z Reason about the e�ciency of randomised algorithms
Z Reason about simulation (in)e�ciency of Bayesian networks
Z Is compositional and reasons at the program’s code

Joost-Pieter Katoen On Termination of Probabilistic Programs 40/55

OWLS 2020

AST by weakest preconditions

Determine wp(P, 1) for program P and postcondition 1.

Dexter Kozen
A probabilistic PDL

1983

Joost-Pieter Katoen On Termination of Probabilistic Programs 41/55

OWLS 2020

The run time of a probabilistic program is random

int i := 0;
repeat {i++; (c := false [1/2] c := true)}
until (c)

The expected runtime is 1 + 3�1/2 + 5�1/4 + . . . + (2n+1)�1/2
n =

Joost-Pieter Katoen On Termination of Probabilistic Programs 42/55

OWLS 2020

Expected run-times

Z Expected run-time of program P on input s:
ô

9
k=1

k � Pr ⌅ “P terminates after
k steps on input s” ⌦

Z Let ert() be a function t ⇥ � � R'0 < {ô }
Z This is called a run-time. Complete partial order on T:

t1 V t2 i� ºs " �. t1(s) & t2(s)

Joost-Pieter Katoen On Termination of Probabilistic Programs 43/55

$

Hag

OWLS 2020

PAST is not compositional

Consider the two probabilistic programs:

int x := 1;
bool c := true;
while (c) {

c := false [1/2] c := true;
x := 2*x

}

Finite expected termination time

while (x > 0) {
x--

}

Finite termination time

Running the right after the left program
yields an infinite expected termination time

Joost-Pieter Katoen On Termination of Probabilistic Programs 44/55

Tart

IET

OWLS 2020

PAST is not compositional

Consider the two probabilistic programs:

int x := 1;
bool c := true;
while (c) {

c := false [1/2] c := true;
x := 2*x

}

Finite expected termination time

while (x > 0) {
x--

}

Finite termination time

Running the right after the left program
yields an infinite expected termination time

Joost-Pieter Katoen On Termination of Probabilistic Programs 44/55

/

OWLS 2020

PAST is not compositional

Consider the two probabilistic programs:

int x := 1;
bool c := true;
while (c) {

c := false [1/2] c := true;
x := 2*x

}

Finite expected termination time

while (x > 0) {
x--

}

Finite termination time

Running the right after the left program
yields an infinite expected termination time

Joost-Pieter Katoen On Termination of Probabilistic Programs 44/55

{ o

" "

E ÷ . a
. .

. .

!

t.ge#

OWLS 2020

Run-times by program verification

ert(P, t)(s) is the expected run-time of P on input state s
if t captures the run-time of the computation following P.

[Nielson, 1987] Hoare triples for run-times of deterministic programs

Joost-Pieter Katoen On Termination of Probabilistic Programs 45/55

OWLS 2020

Expected run-time transformer

Syntax

Z skip
Z diverge
Z x := E
Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while(G)P

Run-time ert(P, t)
Z 1+t
Z ô
Z 1 + t[x ⇥= E]
Z ert(P1, ert(P2, t))
Z 1 + [G] � ert(P1, t) + [¬G] � ert(P2, t)
Z 1 + p � ert(P1, t) + (1�p) � ert(P2, t)
Z lfp X . 1 + ([G] � ert(P, X) + [¬G] � t)

lfp is the least fixed point operator wrt. the ordering V on run-times

Plus a set of proof rules to get bounds on run-times of loops

Joost-Pieter Katoen On Termination of Probabilistic Programs 46/55

OWLS 2020

Elementary properties

Isabelle/HOL certified [Hölzl]

Z Continuity: ert(P, t) is continuous, that is

for every chainT = t0 V t1 V t2 V . . . ⇥ ert(P, sup T) = sup ert(P, T)
Z Monotonicity: t V t ¨ implies ert(P, t) V ert(P, t ¨)
Z Constant propagation: ert(P, k + t) = k + ert(P, t)
Z Preservation of ô: ert(P,ô) = ô

Z Relation to wp: ert(P, t) = ert(P, 0) + wp(P, t)
Z A�nity: ert(P, r �t + t ¨) = ert(P, 0) + r �wp(P, t) + wp(P, t ¨)

Joost-Pieter Katoen On Termination of Probabilistic Programs 47/55

OWLS 2020

Elementary properties Isabelle/HOL certified [Hölzl]

Z Continuity: ert(P, t) is continuous, that is

for every chainT = t0 V t1 V t2 V . . . ⇥ ert(P, sup T) = sup ert(P, T)
Z Monotonicity: t V t ¨ implies ert(P, t) V ert(P, t ¨)
Z Constant propagation: ert(P, k + t) = k + ert(P, t)
Z Preservation of ô: ert(P,ô) = ô

Z Relation to wp: ert(P, t) = ert(P, 0) + wp(P, t)
Z A�nity: ert(P, r �t + t ¨) = ert(P, 0) + r �wp(P, t) + wp(P, t ¨)

Joost-Pieter Katoen On Termination of Probabilistic Programs 47/55

J

OWLS 2020

Coupon collector’s problem

Joost-Pieter Katoen On Termination of Probabilistic Programs 48/55

OWLS 2020

Coupon collector’s problem

cp := [0,...,0]; i := 1; x := 0; // no coupons yet
while (x < N) {

while (cp[i] != 0) {
i := uniform(1..N) // next coupon

}
cp[i] := 1; // coupon i obtained
x++; // one coupon less to go

}

Using the ert-calculus one can prove that:

ert(cpcl, 0) = 4 + [N > 0]�2N � (2 + HN�1) " �(N � log N)
By systematic program verification à la Floyd-Hoare. Machine checkable.

Joost-Pieter Katoen On Termination of Probabilistic Programs 49/55

OWLS 2020

How long to sample a Bayes’ network?

“the main challenge in this setting [sampling-based approaches] is that many
samples that are generated during execution are ultimately rejected for not
satisfying the observations." [FOSE 2014]

Andy Gordon Tom
Henzinger

Aditya Nori Sriram
Rajamani

Joost-Pieter Katoen On Termination of Probabilistic Programs 50/55

OWLS 2020

How long to simulate a Bayes network?

Benchmark BNs from www.bnlearn.com

BN ∂V ∂ ∂E ∂ aMB ∂O∂ EST time (s)
hailfinder 56 66 3.54 5 5 105 0.63

hepar2 70 123 4.51 1 1.5 102 1.84

win95pts 76 112 5.92 3 4.3 105 0.36
pathfinder 135 200 3.04 7 ô 5.44

andes 223 338 5.61 3 5.2 103 1.66

pigs 441 592 3.92 1 2.9 103 0.74
munin 1041 1397 3.54 5 ô 1.43

aMB = average Markov Blanket, a measure of independence in BNs

Joost-Pieter Katoen On Termination of Probabilistic Programs 51/55

jetty
evidences

OWLS 2020

Epilogue

Hardness of probabilistic termination.

AST for one input �hard universal halting problem.

Positive almost-sure termination is �3-complete.

Proof rule for almost-sure termination.

Widely applicable.

Weakest pre-conditions for expected run-time analysis.

To (dis)prove positive almost-sure termination. And more.

Joost-Pieter Katoen On Termination of Probabilistic Programs 52/55

① I

② {

③ I -

OWLS 2020

A big thanks to my co-authors!

Kevin Batz
Benjamin
Kaminski

Christoph
Matheja

Annabelle
McIver

Carroll
Morgan

Federico
Olmedo

Joost-Pieter Katoen On Termination of Probabilistic Programs 53/55

OWLS 2020

Further reading
Z B. Kaminski, JPK, C. Matheja.

On the hardness of analysing probabilistic programs. Acta Inf. 2019.

Z B. Kaminski, JPK, C. Matheja, and F. Olmedo.
Expected run-time analysis of probabilistic programs. J. ACM 2018.

Z A. McIver, C. Morgan, B. Kaminski, JPK.
A new proof rule for almost-sure termination. POPL 2018.

Z K. Batz, B. Kaminski, JPK, and C. Matheja.
How long, O Bayesian network, will I sample thee? ESOP 2018.

Z K. Chatterjee, H. Fu and P. Novotny.
Termination analysis of probabilistic programs with martingales.
In: Found. of Prob. Programming, 2020 (to appear).

Joost-Pieter Katoen On Termination of Probabilistic Programs 54/55

OWLS 2020

Using wp for expected run-times?

while(true) { x++ }

Z Consider the post-expectation x

Z Characteristic function �x (X) = X (x (x + 1)
Z Candidate upper bound is I = 0

Z Induction: �x (I) = 0(x ⇥= x + 1) = 0 = I & I

We — wrongly — conclude that 0 is the runtime.
Using weakest pre-expectations is unsound for expected run-time analysis.

Joost-Pieter Katoen On Termination of Probabilistic Programs 55/55

