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Over linear orders, FO = FO?®.
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Bounded variable logics

Why do we care about the number of variables?
» (Descriptive) complexity

» Temporal logics

[Gabbay 1981] In any class of time flows, TFAE:

» There exists an expressively complete finite set of
FO-definable (multi-dimensional) temporal connectives

» There exists k such that every first-order sentence is
equivalent to one with at most k variables
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Example

Over linear orders, FO = FO3.

Two classical techniques to prove FO = FO* (over a class C)

1. Corollary of expressive completeness of a temporal logic
Example: Over complete linear orders,
FO* C FO = LTL C FO? [Kamp 1968]

Over (arbitrary) linear orders,
FO? C FO = LTL with Stavi connectives C FO?
[Gabbay, Hodkinson, Reynolds 1993]
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Example

Over linear orders, FO = FO3.

Two classical techniques to prove FO = FO* (over a class C)
1. Corollary of expressive completeness of a temporal logic
0 or 1 free variables

2. Ehrenfeucht-Fraissé games with k£ pebbles
up to k free variables
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Known results (non-exhaustive)

Over linear orders,
FO = FO? v

[Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs, Over (R, <, +1),
Vk,FO # FOF | x FO=FO? |v/
[Rossman’08] [AHRW'15]
Over Mazurkiewicz traces, Over MSCs,
FO = FO? v FO=FO® |v/
[Gastin-Mukund’02] [Bollig-F.-Gastin'18]

What do these 4 positive results have in common?
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Applications

5. Message sequence charts (MSCs)

b— a—C— 06— a—Q

Executions of message-passing systems

» Fixed, finite set of processes
» Process order </oc Extended to a linear order
» Message relations <4 FIFO — monotone

— Interval-preserving structure



Applications

FO = FO? over structures with
» one linear order <,
» ‘“interval-preserving” binary relations Ry, R, .. .,
» arbitrary unary predicates p, q, . ..

1. Linear orders with partial non-decreasing or non-increasing
functions (new)

Linear orders: finite or infinite words, R, Q, ordinals...
(Rv S? +1)1 (R7 Sa (+Q)q€@) R

(R, <) + polynomial functions (new)

MSCs

Mazurkiewicz traces

A T
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How does the interval-preserving assumption help?

o(z1, 2, x3) = Fy. Ri(21,y) A Rao(x2,y) A Rs(xs,y)
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The proof

FO = FO? over structures with

» one linear order <,

» ‘“interval-preserving” binary relations Ry, R,,. ..

» arbitrary unary predicates p, q, . ..

Key idea: Go through an intermediate language:

Star-free Propositional Dynamic Logic.

7N\

Star-free PDL =—————) ()3
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Examples

Over (R, <,{+q | ¢ € Q4}),

pUgn ¥ = ((+g- <)N(+r-< )N (< {=ph?- <)

14 /18



Star-free Propositional Dynamic Logic
Syntax

State formulas:
p=PloVe|-p| (t)e PDLy

Path formulas:
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|
0
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Star-free Propositional Dynamic Logic
Syntax

State formulas:
pu=PloVe|-p]| (1) PDLy

Path formulas:
mu=<|R|{p}? |7 "]

Combines features from
» Propositional Dynamic Logic [Fisher-Ladner 1979]
» Star-free regular expressions

» The calculus of relations

Theorem: [Tarski-Givant 1987 (calculus of relations)]
PDLy and FO? are expressively equivalent

15/18
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A fragment of Star-free PDL

State formulas:
pu=PloVe|-p| (m)e

Path formulas:
nu=<|R|{p}? |7t |m-7|7Un|7C

ro=<|R|[{p}? |7t |7-m|7rn7|
<] (w2

.7.§)C‘(Z.ﬂ.z)c

vV IA

PDLgs

PDLY"
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A fragment of Star-free PDL

State formulas:
pu=PloVe|-p]| (T)e PDL¢

Path formulas:
To=<|R|{e}?|n 7.7 |nUT |7

ro=<|R|[{p}? |7t |7-m|7rn7| _
(< 7 <) (<-m->) PDLY
(

(2w

AVARVAN

Lemma: Vr € PDLY, [x] is interval-preserving
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Equivalences over interval-preserving structures
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def.T ldef.

FO? |«——— PDL
trivial
induction

» State formula ¢ € PDLy ~  ¢fO(z) € FO
(myp ~ FyrO(z,y) Ap(y)

» Path formula 7 € PDLy¢ ~ #9(z,y) € FO

FO

T omy ~s 32Oz, 2) ATEO(2,y)
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Equivalences over interval-preserving structures
? .
o ——{rouz

Any FO formula ®(z1,...,x,) is equivalent to a finite positive
boolean combination of formulas of the form 70 (x;, z;),
where 7 € PDLY".

Proof: by induction on .
» Existential quantification: Similar to the example before.

Jo \iwfOlwi x) = Ny {e}? 7 ) (@i, ;)

i

J/
v~ -~

pairwise intersections

12
: x j

do

intersection of n intervals
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