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State complexity

Program size complexity of problem:
the minimum size of program that solves the problem

State complexity of language L:
the minimum size of NFA that accepts £

Why study these measures?

» We want to understand what makes problems difficult

» Programs and their models become data (e.g., in verification),
hence minimization questions

» Limitations of models of computation = analysis algorithms
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Parikh image

[Parikh (1961); in JACM (1966)]

Commutative/Parikh mapping:

W(L) ={ (ma,...,m):

Jw € L with exactly m; occurrences of a; } CN"
where ¥ = {a;,...,a,} and L C ¥
Examples

Y({ aabbbba }) ={(3,4)}
Y({ a™™:m>01}) =¢((ab)*) = {(m,m): m > 0}
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Parikh's theorem

Rohit J. Parikh

Theorem
For every context-free language there exists a regular language
with the same Parikh image.
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Applications of Parikh's theorem

Simple applications in formal language theory:

» Unary context-free languages are regular
[cf. Ginsburg, Rice (1962)]

> {a™:m >0} and {a2": m > 0} are not regular

Many applications in verification of infinite-state systems!
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Through the ages: Proof ideas

» Safe unpumping
[Parikh (1966)]

» Small-index derivations
[Esparza, Ganty, Kiefer, Luttenberger (2011)]

» Presburger description via balance and connectivity
[Verma, Seidl, Schwentick, CADE’'05]
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Outline

1. Why Parikh's theorem from the complexity viewpoint?

2. One-counter languages: upper bound

3. One-counter languages: lower bound
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Parikh's theorem, revisited

(from the complexity viewpoint)

Theorem

For every context-free grammar G there exists

a nondeterministic finite-state automaton A

with at most 4/¢1+1 states such that ¢(L£(G)) = ¥ (L(A)).
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Parikh's theorem: lower bound

An - An—lAn—l

Ay — AzAj
Ag — As Ay
Ay — A1y
Al —a

Nonterminal A, generates just one word of length 2.
Every NFA that accepts this languages must have > 2™ states.
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An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR'10]
Defined with regular expressions + following feature:
(regexp with ‘/)constraint :

“only keep w where each prefix ending with v satisfies
a Presburger constraint on the number of occurrences of letters”

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS'15]
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An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR'10]

( (a*b*c*\/)#az#b v )#bz#c :

defines {a"b™n*: n > m > k}
Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS'15]

Relies on NFA for Parikh image of one-counter languages.
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One-counter automata (OCA)

= Pushdown automata with exactly 1 non-bottom stack symbol

Example:

a, +1 L={a™b™: m >0}

Key feature:
Non-negative integer counter that supports +1, —1, test for 0

Input tape: a finite word w € ¥*, which can be accepted
Language: all accepted words
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One-counter automata (OCA)

= Pushdown automata with exactly 1 non-bottom stack symbol

Example:

a, +1 L={a™b™: m >0}

Regular < One-counter < Context-free languages

Separating examples: {a™b™: m > 0}, {ww"™¥: w € £*}
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Reasoning about OCA

Language universality is undecidable
[Valiant, 1973]

Deterministic case: language equivalence is in PSPACE
[Valiant and Paterson, 1973]

Deterministic case: language equivalence is NL-complete
[Bohm, Goller, Jan&ar, STOC'13]
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Reasoning about OCA

Language universality is undecidable
[Valiant, 1973]

Deterministic case: language equivalence is in PSPACE
[Valiant and Paterson, 1973]

Deterministic case: language equivalence is NL-complete
[Bohm, Goller, Jan&ar, STOC'13]

Shortest accepted words are polynomial
[Latteux (1983)]
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Parikh's theorem, revisited

(from the complexity viewpoint)

Theorem
For every context-free grammar G there exists

a nondeterministic finite-state automaton A
with at most 4/¢1+1 states such that ¢(L£(G)) = ¥ (L(A)).

Theorem
There exists G such that A has to be exponentially big.
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Parikh's theorem, revisited

(from the complexity viewpoint)

Theorem
For every context-free grammar G there exists

a nondeterministic finite-state automaton A
with at most 4/¢1+1 states such that ¢(L£(G)) = ¥ (L(A)).

Theorem
There exists G such that A has to be exponentially big.

What if £ is the language of a one-counter automaton?

Upper bound remains valid. Lower bound fails.
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Outline

1. Why Parikh's theorem from the complexity viewpoint?

2. One-counter languages: upper bound

3. One-counter languages: lower bound
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Parikh's theorem for OCL: upper bound

Atig, Chistikov, Hofman, Kumar, Saivasan, Zetzsche, LICS'16

Theorem

For every one-counter automaton A with n states

there exists a nondeterministic finite-state automaton B
with at most n©(°8™) states such that ¢(L(A)) = 1 (L(B)).

16/37



Proof strategy

A. Bound the number of reversals by poly(n)

B. Transform reversal-bounded OCA into NFA
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Bounding the number of reversals: ingredients

1. Process counter updates in batches:

keep todo € [—n,n] in control state,
then flush it into the counter

2. Shift around simple cycles:

Do all increasing cycles as soon as possible.
Do all decreasing cycles as late as possible.

18/37



Bounding the number of reversals: ingredients

1. Process counter updates in batches:

keep todo € [—n,n] in control state,
then flush it into the counter

2. Shift around simple cycles:

Do all increasing cycles as soon as possible.
Do all decreasing cycles as late as possible.

Claim:
Can find another OCA A’ of size poly(n) such that

Y(L(A)) = 1 (runs of A" with poly(n) reversals)
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Proof strategy

A. Bound the number of reversals by poly(n)

B. Transform reversal-bounded OCA into NFA
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From mountains to trees
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Complexity measure for trees

Intuition:

» Trees with small number of nodes are simple
» Unbalanced trees (e.g., single long branches) are simple

» Complete binary trees are complex
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Evaluating arithmetic expressions

T e How many registers are needed?
////////// \\\\\ R; := R; op R,
+ o ° /
4 17 \ / \
[ ] [ ] [ ] o
92 65 35 89
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Evaluating arithmetic expressions

T e How many registers are needed?
R; := R; op R,
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./\
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Evaluating arithmetic expressions
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Evaluating arithmetic expressions
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Evaluating arithmetic expressions

1

How many registers are needed?

RZ‘ = Ri op Rj
+-x*x /7 4 registers
° -*x / + 1 3 registers
° ° °* — e Xk
14 17 \ / \
[ ) [ ) [ ] [ )
92 65 35 89
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Evaluating arithmetic expressions

How many registers are needed?

RZ‘ = Ri op Rj
+-x*x /7 4 registers

-*x / + 7 3 registers

VA
AN

9
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Smallest number of registers

= black pebbling number
= 1 + Strahler number
= 1 4+ max height of an embedded complete binary tree
[Horton (1945), Strahler (1952), Ershov (1958)]
[survey: Esparza et al., LATA'14]

Strahler number s(tree):

o — ()

s s
! 2 {maX(Sl,SQ), 81 # 89
H

max(sy,s2) + 1, s1 =52
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Putting things together: obligations

New NFA B guesses a tree with poly(n) leaves:

» The tree is traversed from root to leaves

» Whenever B does not enter a subtree, it records obligation
on the stack

» Obligations are discharged later
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Putting things together: obligations

New NFA B guesses a tree with poly(n) leaves:

» The tree is traversed from root to leaves

» Whenever B does not enter a subtree, it records obligation
on the stack

» Obligations are discharged later

For a good strategy, O(logn) obligations suffice (Strahler!).
There are poly(n) possible obligations.

Transforming stack of height O(logn) to NFA: n®(°8™) states.
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Parikh's theorem for OCL: upper bound

Atig, Chistikov, Hofman, Kumar, Saivasan, Zetzsche, LICS'16

Theorem

For every one-counter automaton A with n states

there exists a nondeterministic finite-state automaton B
with at most n©(°8™) states such that ¢(L(A)) = 1 (L(B)).
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Outline

1. Why Parikh's theorem from the complexity viewpoint?

2. One-counter languages: upper bound

3. One-counter languages: lower bound
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Parikh's theorem for OCL: lower bound
Chistikov, Vyalyi, LICS'20

Theorem
There exists a one-counter automaton A with n states
such that every nondeterministic finite-state automaton B

with ¥(L(A)) = (L(B)) has size
n2(/logn/loglogn)

Recall the upper bound:
nO(logn)
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Proof attempt: many trees to remember?

ar,+1 az, —1 az, +1

an7 TL+1
N N S

up* down™ up* down*™ up* down*
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Proof attempt: many trees to remember?

ar,+1 az, —1 az, +1

an7 TL+1
N N S

up* down™ up* down*™ up* down*

For n = 6, accepts words a; a?a?aﬁ‘*a?aéﬁ such that:

| 4 61—6220
> {1 —ly+Al3—404>0
> U —ly+l3—Lly+ U5 —Llg =0

NFA can ignore trees: (ajag2)*(ajaq)*(ara6)*(agaq)*(asas)* (asap)*
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Another attempt: many subsets of states to remember?

a17+]~ a27_1 a37+1 an’(i]‘)n—‘rl

C1,2 A 2.3
2 PEEEEY
q q3 Cim
—~_ m/

A variant of this OCA is provably the hardest example.
[Atig et al., LICS'16]
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Another attempt: many subsets of states to remember?

a17+]~ a27_1 CL3,+1 an’(i]‘)n—‘rl

C1,2 % 2.3
2 PEEEEY
q q3 Cim
—~_ m/

A variant of this OCA is provably the hardest example.
[Atig et al., LICS'16]

What’s happening for each subset?
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Re-pairing problem

Defined for Dyck words

(O O)
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Re-pairing problem

Defined for Dyck words over {+, —}

Width of this re-pairing = 2
Move: erase any pair of + and — such that + is to the left of —
General goal: erase everything
Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space
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Re-pairing problem
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Minimizing width of re-pairings

The width of a Dyck word is the minimum width of its re-pairings.
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Minimizing width of re-pairings

The width of a Dyck word is the minimum width of its re-pairings.

Do all Dyck words have re-pairings of width < 20207

Can we prove lower bounds on the width?
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Width of words and NFA size: strategy

1. There are sequences of words with unbounded width:

width(Y,,) — oo

2. Lower bounds on width imply lower bounds on NFA size:

nQ(Width(wn))
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Simple re-pairings

1. Every Dyck word w has a re-pairing of width O(log |w]).
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Simple re-pairings

1. Every Dyck word w has a re-pairing of width O(log |w]).
This re-pairing is simple: always pairs up matching signs.

2. For simple re-pairings, we know the optimal width
up to a multiplicative constant.

For Dyck words associated with binary trees:
height of the largest complete binary tree that is a minor
(Strahler number, tree dimension).

Technique: black-and-white pebble games.
[Lengauer and Tarjan (1980)]
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How powerful are simple re-pairings?

FAo W= ——.
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How powerful are simple re-pairings?

Not very powerful: The width of

FAo W= ——.
i N

is at most 2 if k > |w|/2.
But w can have big complete binary subtrees.

= Growing gap between simple and non-simple re-pairings
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Width of words and NFA size: results

1. There are sequences of words with unbounded width
width(Y,,) = Q(+/logn/loglogn)
2. This implies lower bounds on NFA size:

nQ(\ /logn/loglogn)
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Parikh's theorem for OCL: lower bound
Chistikov, Vyalyi, LICS'20

Theorem
There exists a one-counter automaton A with n states
such that every nondeterministic finite-state automaton B

with ¥(L(A)) = (L(B)) has size
n2(/logn/loglogn)

Recall the upper bound:
nO(logn)
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State complexity
Program size complexity of problem:
the minimum size of program that solves the problem

State complexity of language L:
the minimum size of NFA that accepts £

Why study these measures?

» We want to understand what makes problems difficult

» Programs and their models become data (e.g., in verification),
hence minimization questions

» Limitations of models of computation = analysis algorithms

Thank you!

http://warwick.ac.uk/chdir
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