
Parikh’s theorem from the complexity viewpoint

Dmitry Chistikov

University of Warwick, United Kingdom

YR-OWLS, 03 June 2020

State complexity

Program size complexity of problem:
the minimum size of program that solves the problem

State complexity of language L:
the minimum size of NFA that accepts L

Why study these measures?

I We want to understand what makes problems difficult

I Programs and their models become data (e.g., in verification),
hence minimization questions

I Limitations of models of computation =⇒ analysis algorithms

2/37

Parikh image

[Parikh (1961); in JACM (1966)]

Commutative/Parikh mapping:

ψ(L) =
{

(m1, . . . ,mr) :
∃w ∈ L with exactly mi occurrences of ai

}
⊆ Nr

where Σ = {a1, . . . , ar} and L ⊆ Σ∗

Examples

ψ
(
{ a a b b b b a }

)
= {(3, 4)}

ψ
(
{ ambm : m ≥ 0 }

)
= ψ

(
(ab)∗

)
= {(m,m) : m ≥ 0}

3/37

Parikh’s theorem

Rohit J. Parikh

Theorem
For every context-free language there exists a regular language
with the same Parikh image.

4/37

Applications of Parikh’s theorem

Simple applications in formal language theory:

I Unary context-free languages are regular
[cf. Ginsburg, Rice (1962)]

I {am2
: m ≥ 0} and {a2m

: m ≥ 0} are not regular

Many applications in verification of infinite-state systems!

5/37

Through the ages: Proof ideas

I Safe unpumping
[Parikh (1966)]

I Small-index derivations
[Esparza, Ganty, Kiefer, Luttenberger (2011)]

I Presburger description via balance and connectivity
[Verma, Seidl, Schwentick, CADE’05]

6/37

Outline

1. Why Parikh’s theorem from the complexity viewpoint?

2. One-counter languages: upper bound

3. One-counter languages: lower bound

7/37

Outline

1. Why Parikh’s theorem from the complexity viewpoint?

2. One-counter languages: upper bound

3. One-counter languages: lower bound

8/37

Parikh’s theorem, revisited
(from the complexity viewpoint)

Theorem
For every context-free grammar G there exists
a nondeterministic finite-state automaton A
with at most 4|G|+1 states such that ψ(L(G)) = ψ(L(A)).

Theorem
There exists G such that A has to be exponentially big.

What if L is the language of a one-counter automaton?

Upper bound remains valid. Lower bound fails.

9/37

Parikh’s theorem: lower bound

An → An−1An−1

. . .

A4 → A3A3

A3 → A2A2

A2 → A1A1

A1 → a

Nonterminal An generates just one word of length 2n.
Every NFA that accepts this languages must have > 2n states.

10/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]
Defined with regular expressions + following feature:

(regexp with X)constraint :

“only keep w where each prefix ending with X satisfies
a Presburger constraint on the number of occurrences of letters”

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]

((
a∗b∗c∗X

)
#a≥#b

X
)

#b≥#c
:

defines {anbmnk : n ≥ m ≥ k}

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]

((
a∗b∗c∗X

)
#a≥#b

X
)

#b≥#c
:

defines {anbmnk : n ≥ m ≥ k}

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]

((
a∗b∗c∗X

)
#a≥#b

X
)

#b≥#c
:

defines {anbmnk : n ≥ m ≥ k}

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]

((
a∗b∗c∗X

)
#a≥#b

X
)

#b≥#c
:

defines {anbmnk : n ≥ m ≥ k}

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]

((
a∗b∗c∗X

)
#a≥#b

X
)

#b≥#c
:

defines {anbmnk : n ≥ m ≥ k}

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]

((
a∗b∗c∗X

)
#a≥#b

X
)

#b≥#c
:

defines {anbmnk : n ≥ m ≥ k}

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

An application: Availability languages

[Hoenicke, Meyer, Olderog, CONCUR’10]

((
a∗b∗c∗X

)
#a≥#b

X
)

#b≥#c
:

defines {anbmnk : n ≥ m ≥ k}

Language emptiness: decidable in TOWER
[Abdulla et al., FSTTCS’15]

Relies on NFA for Parikh image of one-counter languages.

11/37

One-counter automata (OCA)

= Pushdown automata with exactly 1 non-bottom stack symbol

Example:

p q r
ε ε, = 0

a, +1 b, −1 L = {ambm : m ≥ 0}

Key feature:
Non-negative integer counter that supports +1, −1, test for 0

Input tape: a finite word w ∈ Σ∗, which can be accepted
Language: all accepted words

12/37

One-counter automata (OCA)

= Pushdown automata with exactly 1 non-bottom stack symbol

Example:

p q r
ε ε, = 0

a, +1 b, −1 L = {ambm : m ≥ 0}

Regular < One-counter < Context-free languages

Separating examples: {ambm : m ≥ 0}, {wwrev : w ∈ Σ∗}

12/37

Reasoning about OCA

Language universality is undecidable
[Valiant, 1973]

Deterministic case: language equivalence is in PSPACE
[Valiant and Paterson, 1973]

Deterministic case: language equivalence is NL-complete
[Böhm, Göller, Jančar, STOC’13]

Shortest accepted words are polynomial
[Latteux (1983)]

13/37

Reasoning about OCA

Language universality is undecidable
[Valiant, 1973]

Deterministic case: language equivalence is in PSPACE
[Valiant and Paterson, 1973]

Deterministic case: language equivalence is NL-complete
[Böhm, Göller, Jančar, STOC’13]

Shortest accepted words are polynomial
[Latteux (1983)]

13/37

Parikh’s theorem, revisited
(from the complexity viewpoint)

Theorem
For every context-free grammar G there exists
a nondeterministic finite-state automaton A
with at most 4|G|+1 states such that ψ(L(G)) = ψ(L(A)).

Theorem
There exists G such that A has to be exponentially big.

What if L is the language of a one-counter automaton?

Upper bound remains valid. Lower bound fails.

14/37

Parikh’s theorem, revisited
(from the complexity viewpoint)

Theorem
For every context-free grammar G there exists
a nondeterministic finite-state automaton A
with at most 4|G|+1 states such that ψ(L(G)) = ψ(L(A)).

Theorem
There exists G such that A has to be exponentially big.

What if L is the language of a one-counter automaton?

Upper bound remains valid. Lower bound fails.

14/37

Outline

1. Why Parikh’s theorem from the complexity viewpoint?

2. One-counter languages: upper bound

3. One-counter languages: lower bound

15/37

Parikh’s theorem for OCL: upper bound
Atig, Chistikov, Hofman, Kumar, Saivasan, Zetzsche, LICS’16

Theorem
For every one-counter automaton A with n states
there exists a nondeterministic finite-state automaton B
with at most nO(log n) states such that ψ(L(A)) = ψ(L(B)).

16/37

Proof strategy

A. Bound the number of reversals by poly(n)

B. Transform reversal-bounded OCA into NFA

17/37

Bounding the number of reversals: ingredients

1. Process counter updates in batches:

keep todo ∈ [−n, n] in control state,
then flush it into the counter

2. Shift around simple cycles:

Do all increasing cycles as soon as possible.
Do all decreasing cycles as late as possible.

Claim:
Can find another OCA A′ of size poly(n) such that

ψ(L(A)) = ψ(runs of A′ with poly(n) reversals)

18/37

Bounding the number of reversals: ingredients

1. Process counter updates in batches:

keep todo ∈ [−n, n] in control state,
then flush it into the counter

2. Shift around simple cycles:

Do all increasing cycles as soon as possible.
Do all decreasing cycles as late as possible.

Claim:
Can find another OCA A′ of size poly(n) such that

ψ(L(A)) = ψ(runs of A′ with poly(n) reversals)

18/37

Proof strategy

A. Bound the number of reversals by poly(n)

B. Transform reversal-bounded OCA into NFA

19/37

From mountains to trees

20/37

Complexity measure for trees

Intuition:

I Trees with small number of nodes are simple

I Unbalanced trees (e.g., single long branches) are simple

I Complete binary trees are complex

21/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Evaluating arithmetic expressions

+

↑

- *

/

14 15

92 65 35 89

How many registers are needed?
Ri := Ri op Rj

+ - * / ↑ 4 registers

- * / + ↑ 3 registers

In general?

22/37

Smallest number of registers
= black pebbling number
= 1 + Strahler number
= 1 + max height of an embedded complete binary tree

[Horton (1945), Strahler (1952), Ershov (1958)]
[survey: Esparza et al., LATA’14]

Strahler number s(tree):

s1 s2

7→

{
max(s1, s2), s1 6= s2

max(s1, s2) + 1, s1 = s2

7→ 0

23/37

Putting things together: obligations

New NFA B guesses a tree with poly(n) leaves:

I The tree is traversed from root to leaves

I Whenever B does not enter a subtree, it records obligation
on the stack

I Obligations are discharged later

For a good strategy, O(log n) obligations suffice (Strahler!).

There are poly(n) possible obligations.

Transforming stack of height O(log n) to NFA: nO(log n) states.

24/37

Putting things together: obligations

New NFA B guesses a tree with poly(n) leaves:

I The tree is traversed from root to leaves

I Whenever B does not enter a subtree, it records obligation
on the stack

I Obligations are discharged later

For a good strategy, O(log n) obligations suffice (Strahler!).

There are poly(n) possible obligations.

Transforming stack of height O(log n) to NFA: nO(log n) states.

24/37

Parikh’s theorem for OCL: upper bound
Atig, Chistikov, Hofman, Kumar, Saivasan, Zetzsche, LICS’16

Theorem
For every one-counter automaton A with n states
there exists a nondeterministic finite-state automaton B
with at most nO(log n) states such that ψ(L(A)) = ψ(L(B)).

25/37

Outline

1. Why Parikh’s theorem from the complexity viewpoint?

2. One-counter languages: upper bound

3. One-counter languages: lower bound

26/37

Parikh’s theorem for OCL: lower bound
Chistikov, Vyalyi, LICS’20

Theorem
There exists a one-counter automaton A with n states
such that every nondeterministic finite-state automaton B
with ψ(L(A)) = ψ(L(B)) has size

nΩ(
√

log n/ log log n).

Recall the upper bound:
nO(log n)

27/37

Proof attempt: many trees to remember?

q1 q2 q3 · · · qn

a1,+1 a2,−1 a3,+1 an, (−1)n+1

up∗ down∗ up∗ down∗ up∗ down∗

28/37

Proof attempt: many trees to remember?

q1 q2 q3 · · · qn

a1,+1 a2,−1 a3,+1 an, (−1)n+1

up∗ down∗ up∗ down∗ up∗ down∗

For n = 6, accepts words a`1
1 a

`2
2 a

`3
3 a

`4
4 a

`5
5 a

`6
6 such that:

I `1 − `2 ≥ 0
I `1 − `2 + `3 − `4 ≥ 0
I `1 − `2 + `3 − `4 + `5 − `6 = 0

NFA can ignore trees: (a1a2)∗(a1a4)∗(a1a6)∗(a3a4)∗(a3a6)∗(a5a6)∗

28/37

Another attempt: many subsets of states to remember?

q1 q2 q3 · · · qn
c1,2 c2,3

c1,3

c1,n

c2,n

c3,n

a1,+1 a2,−1 a3,+1 an, (−1)n+1

A variant of this OCA is provably the hardest example.
[Atig et al., LICS’16]

What’s happening for each subset?

29/37

Another attempt: many subsets of states to remember?

q1 q2 q3 · · · qn
c1,2 c2,3

c1,3

c1,n

c2,n

c3,n

a1,+1 a2,−1 a3,+1 an, (−1)n+1

A variant of this OCA is provably the hardest example.
[Atig et al., LICS’16]

What’s happening for each subset?

29/37

Re-pairing problem

Defined for Dyck words

over {+,−}

(() ())

width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -

width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -

width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+

+ -

+ - -

width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+

+ -

+ - -

width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+

+ - +

-

-
width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -
width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -
width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -
width: 1 →

2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+

+ -

+ - -
width: 1 → 2 →

2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+

+ - +

-

-

width: 1 → 2 → 2 →

0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -

width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -

width: 1 → 2 → 2 → 0

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -

Width of this re-pairing = 2

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Re-pairing problem

Defined for Dyck words over {+,−}

+ + - + - -
Width of this re-pairing = 2

Move: erase any pair of + and − such that + is to the left of −

General goal: erase everything

Objective: minimize the maximum width seen during the play

Width = number of ‘islands’ of signs separated by blank space

30/37

Minimizing width of re-pairings

The width of a Dyck word is the minimum width of its re-pairings.

Do all Dyck words have re-pairings of width ≤ 2020 ?

Can we prove lower bounds on the width?

31/37

Minimizing width of re-pairings

The width of a Dyck word is the minimum width of its re-pairings.

Do all Dyck words have re-pairings of width ≤ 2020 ?

Can we prove lower bounds on the width?

31/37

Minimizing width of re-pairings

The width of a Dyck word is the minimum width of its re-pairings.

Do all Dyck words have re-pairings of width ≤ 2020 ?

Can we prove lower bounds on the width?

31/37

Width of words and NFA size: strategy

1. There are sequences of words with unbounded width:

width(Yn)→∞

2. Lower bounds on width imply lower bounds on NFA size:

nΩ(width(wn))

32/37

Simple re-pairings

1. Every Dyck word w has a re-pairing of width O(log |w|).

This re-pairing is simple: always pairs up matching signs.

2. For simple re-pairings, we know the optimal width
up to a multiplicative constant.

For Dyck words associated with binary trees:
height of the largest complete binary tree that is a minor
(Strahler number, tree dimension).

Technique: black-and-white pebble games.
[Lengauer and Tarjan (1980)]

33/37

Simple re-pairings

1. Every Dyck word w has a re-pairing of width O(log |w|).
This re-pairing is simple: always pairs up matching signs.

2. For simple re-pairings, we know the optimal width
up to a multiplicative constant.

For Dyck words associated with binary trees:
height of the largest complete binary tree that is a minor
(Strahler number, tree dimension).

Technique: black-and-white pebble games.
[Lengauer and Tarjan (1980)]

33/37

Simple re-pairings

1. Every Dyck word w has a re-pairing of width O(log |w|).
This re-pairing is simple: always pairs up matching signs.

2. For simple re-pairings, we know the optimal width
up to a multiplicative constant.

For Dyck words associated with binary trees:
height of the largest complete binary tree that is a minor
(Strahler number, tree dimension).

Technique: black-and-white pebble games.
[Lengauer and Tarjan (1980)]

33/37

How powerful are simple re-pairings?

Not very powerful: The width of

+ + . . .+ +︸ ︷︷ ︸
k

w−− . . .−−︸ ︷︷ ︸
k

.

is at most 2 if k ≥ |w|/2.

But w can have big complete binary subtrees.

=⇒ Growing gap between simple and non-simple re-pairings

34/37

How powerful are simple re-pairings?

Not very powerful: The width of

+ + . . .+ +︸ ︷︷ ︸
k

w−− . . .−−︸ ︷︷ ︸
k

.

is at most 2 if k ≥ |w|/2.

But w can have big complete binary subtrees.

=⇒ Growing gap between simple and non-simple re-pairings

34/37

Width of words and NFA size: results

1. There are sequences of words with unbounded width

width(Yn) = Ω(
√

log n/ log log n)

2. This implies lower bounds on NFA size:

nΩ(
√

log n/ log log n)

35/37

Parikh’s theorem for OCL: lower bound
Chistikov, Vyalyi, LICS’20

Theorem
There exists a one-counter automaton A with n states
such that every nondeterministic finite-state automaton B
with ψ(L(A)) = ψ(L(B)) has size

nΩ(
√

log n/ log log n).

Recall the upper bound:
nO(log n)

36/37

State complexity
Program size complexity of problem:
the minimum size of program that solves the problem

State complexity of language L:
the minimum size of NFA that accepts L

Why study these measures?

I We want to understand what makes problems difficult

I Programs and their models become data (e.g., in verification),
hence minimization questions

I Limitations of models of computation =⇒ analysis algorithms

Thank you!

http://warwick.ac.uk/chdir

37/37

http://warwick.ac.uk/chdir

	Why Parikh's theorem from the complexity viewpoint?
	One-counter languages: upper bound
	One-counter languages: lower bound

