
Codata types and Copattern matching

Yann Régis-Gianas, Paul Laforgue

Paris Diderot University, France

August 08, 2016

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Motivations

Finite
Structures : List,Tree...
Inductive types and pattern matching.

Infinite
Structures : Stream, Infinite tree...
???

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Motivations

Finite
Structures : List,Tree...
Inductive types and pattern matching.

Infinite
Structures : Stream, Infinite tree...
Coinductive types and copattern matching !

Copatterns : Programming Infinite Structures by Observations.
Abel, Pientka, Thibodeau and Setzer (POPL – 2013)

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Data types and Pattern matching

A data type is defined by its Constructors :

type ‘a list = Nil | Cons of ‘a× ‘a list

let ns : int list = Cons (1,Cons (2,Nil))

Deconstruct with pattern matching :

let rec map f xs = match xs with
| Nil → Nil
| Cons (x , xs)→ Cons (f x ,map f xs)

map succ ns; ;
− : int list = Cons (2,Cons (3,Nil))

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Motivations

Problems when handling infinite structures in a call-by-value
evaluation strategy :

Call-by-value is an evaluation strategy in which the arguments
are evaluated before being passed to the functions.

let rec zeros = Cons (0, zeros)

⇒ the evaluation of map succ zeros diverges.
Solution : ?

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Motivations

Problems when handling infinite structures in a call-by-value
evaluation strategy :

Call-by-value ⇒ divergence.
Solution : simulate call-by-name (à la Haskell). Call-by-name is a
strategy in which the arguments are not evaluated before the
function is called. Use thunks to differ the evaluation of the tail.

type ‘a list = Nil | Cons of ‘a× (unit→ ‘a list)
let rec zeros = Cons (0, fun ()→ zeros)
let rec map f xs = match xs with
| Nil→ Nil
| Cons (a, th)→ Cons (f a, fun ()→ map f (th ()))

map succ zeros; ;
− : int list = Cons (1, <fun>)

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Motivations

Problems when handling infinite structures in a call-by-value
evaluation strategy :

Call-by-value is an evaluation strategy in which the arguments
are evaluated before being passed to the functions.
Solution : simulate call-by-name, using thunks.
Question : alternative solution ?

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Codata types and Copattern matching

Codata types are defined by their destructors .

cotype (‘a, ‘b) product = {fst : ‘a; snd : ‘b}

Introduction with copattern matching.

let pair : (int, char) product = cofix pair with
| pair.fst → 1
| pair.snd→ ’n’

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Codata types and Copattern matching

cotype ‘a stream = {head : ‘a; tail : ‘a stream}

let zeros : int stream = cofix zeros with
| zeros.head→ 0
| zeros.tail → zeros

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Codata types and Copattern matching

cotype ‘a stream = {head : ‘a; tail : ‘a stream}

let from : int→ int stream = cofix from with
| (from n).head→ n
| (from n).tail → from (succ n)

(from 3).head = 3
(from 3).tail = <cofun >
(from 3).tail.head = 4
... and so on

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Cergy : a p.o.c programming language

We implemented a core programming language, Cergy.
purely functional and statically typed
has data types and pattern matching
has codata types and copattern matching
has an abstract machine

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

An untyped semantics

Abel et al. provided a typed semantics : “Whether an
expression is considered a value or not depends also on its
type”
We give an untyped semantics for the same language, in which
values do not carry types.

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Repeated code is annoying

let rec map f xs = match xs with
| Nil → Nil
| Cons (x , xs)→ Cons (f x , map f xs)

let rec qmap : (‘a→ ‘b)→ ‘a stream→ ‘b stream =
cofix qmap with
| (qmap f s).head→ f s.head
| (qmap f s).tail→ qmap f s.tail

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

Our technical contributions :
A proof-of-concept programming language.
We provide an untyped small-step semantics and an abstract
machine.
We compile copatterns to efficient tries (not shown here).

Future work
Memoization and cofunctions.
Extending copatterns to OCaml.
Bring codata types and copattern matching out of the context
of proof assistants.
Prove our semantics.
Extend the scope of application for copatterns.
How many use cases await to be discovered ?

Yann Régis-Gianas, Paul Laforgue Paris Diderot University

Codata types and Copattern matching

