
From the Tagless-Final Cookbook
Embedding and Optimizing (Hardware) Domain-Specific

Languages
in the Typed Final Style

http://okmij.org/ftp/tagless-final/course/index.html

Metaprogramming Summer School 2019
Dagstuhl, August 13-15, 2019

2

Tagless-Final

Tagless-Final

3

What’s new

A variant, but not repetition
of an earlier course (CUFP 2015, Metaprogramming Summer
School 2016)

The same DSL of combinational circuits
but developed at a faster pace and to a larger extent

Semantic rather than syntactic
Focus on denotations rather than term rewriting

4

Goals

I Introduce the Tagless-final style on a familiar example:
combinational circuits

I Show off the features of the approach and design choice
I Introduce various optimizations

Optimizing EDSL in the typed final style is not only possible:
it is modular and systematic

You can do it!

5

Which language?

OCaml, Haskell, Scala, ..., Coq, ...

6

Overview

Interactivity

I Please do ask questions
I I will ask questions
I Interactive writing of code (me vs. OCaml)
I Several exercises to do in class (and homework)
I Work alone or in group
I Installed OCaml?

http://try.ocamlpro.com/

http://try.ocamlpro.com/

7

Problems
I A DSL for basic logical circuits (AND/OR/NOT)
I Various interpreters
I Compiler to NAND circuit
I Simplification and other transformers
I Conversion to CNF in one easy step
I From gates to circuits
I Circuit optimization, composionally
I Adding Gates (higher-order), reusing previous

transformation rules

Real-life application: efficient language-integrated query

The web page of the approach (Tutorials, applications, etc.)
http://okmij.org/ftp/tagless-final/course/index.html

Similar, in spirit tutorial http://okmij.org/ftp/
tagless-final/course/optimizations.html

http://okmij.org/ftp/tagless-final/course/index.html
http://okmij.org/ftp/tagless-final/course/optimizations.html
http://okmij.org/ftp/tagless-final/course/optimizations.html

8

Main ideas

I Multiple interpretations:
write once, interpret many times

I Extensibility
I Types

I typed implementation language
I typed object language
I typed optimization rules
I connections with logic

I ‘Final’
I everything is in lower-case
I prefer elimination over introduction
I connections to denotational semantics

I Denotational
I seek meaning
I algebras
I evaluation rather than rewriting

8

Main ideas

I Multiple interpretations:
write once, interpret many times

I Extensibility
I Types

I typed implementation language
I typed object language
I typed optimization rules
I connections with logic

I ‘Final’
I everything is in lower-case
I prefer elimination over introduction
I connections to denotational semantics

I Denotational
I seek meaning
I algebras
I evaluation rather than rewriting

9

Compositionality

The meaning of a complex expression is determined by its
structure and the meanings of its constituents.
http://plato.stanford.edu/entries/compositionality/

eval (Add e1 e2) = eval e1 + eval e2

I Evaluators and other interpreters are compositional
I Denotational semantics must be compositional
I Compositionality is modularity
I Compositionality is context-insensitivity
I Bottom-up reconstruction of meaning
I Compositional processing is fold

http://plato.stanford.edu/entries/compositionality/

10

More problems, homework

I Assemblies, with multiple inputs and outputs
I Adder
I Sharing
I AND X X X

I Implement various simplifications

11

Outline

I Conclusions

12

Why Tagless Final style?

Thinking about meaning helps

I Algebraic perspective: focus on operations, on what we
need to do (and how to add more: extensibility)

I Denotational perspective: focus on what we eventually
want: eye on the prize rather than on word shuffling

	Conclusions

