Multi-stage programming
Part one: static vs dynamic

Jeremy Yallop
August 2019

Multi-stage programming: a complement to abstraction

€ € Al problems in computer science can be
solved by another level of indirection

Multi-stage programming: a complement to abstraction

€ € Al problems in computer science can be
solved by another level of indirection

(...except for the problem of 99
too many layers of indirection.)

Mechanics: quotes and splices

MetaOCaml, Template Haskell, &c.: multi-stage programming with code quoting.

Stages: current (available now) and delayed (available later).
(Also double-delayed, triple-delayed, etc.)

Brackets Running code
.<e>. 1. e

Escaping (within brackets) Cross-stage persistence
.~e L<xX>.

Goal: generate a specialized program with better performance

Mechanics: evaluation

.<e>.

do not reduce e

.ve

(inside .<...>.)
reduce e

Multi-stage programming guarantees

I'HFle: 7
LHF'"te: 7 I'F"e: T code T
2 -run
['F" .<e>.: T code b | L
I'"e: 7 code I'(x)= 7(n—m)
T-escape AV
Pl—n+.~e:7' p FXl—n:T Tvar

Guarantee: well-typed generating programs generate well-typed programs

Guarantee: what you quote is what you get

Self-optimizing libraries

Stream Fusion, to Completeness

Oleg Kiselyov Ageelos Biboudis Nick Palladinos .
Tehedku Ui versity, Japan University of Athers, Cineece Nessics [T 5.4 Athens, Greece Sta ged s‘t ream p rocessin g
olegBakmij arg biboudi@di.uoa.gr npal@nessos. gr

(POPL 2017)
Yannis Smamgdakis
Universaty of Athens, Greece
smaragd @di.uoa gr

Staged Generic Programming

Staged Scrap Your JEREMY YALLOP, University of Cambridge. UK
Boi[erp[ate (ICFP 2017) Generic programuming lilraries such as Sarap Yoor Boiler plare eliminate the need ta write repetitive cadk.

bt typically intmduce significant perfarmance averheads. This leaves pragrammers with the regrettatile
chaice betwe en writing succinet bt skw programs and writing tedious bt cfficient programs.

Applving structured multi-stage programming techniques transfarms Serap Your Boiferplate fram an
inefficient Ifrary inta a twed antimising cade seneratar. bringing its nerfrmance in fine with hand-written

A Typed, Algebraic Approach to Parsing Staged parser combinators

NEELAKANTAN R. KRISHNASWAMI, University of Cambridge (PLDI 2019)
JEREMY YALLOP, Univemsity of Cambridge

Implementations
ooll X -

1998 MetaML
2000 MetaOCaml
Template

2002

. Haskell

BER
Al MetaOCaml
Typed
2013 Template
2015 Modular Haskell
macros

5018 Dotty

macros

The power of multi-stage programming

power in one stage:

power :: Int — Int — Int
power x 0 = 1
power x n = x * power x (n - 1)

A> power 2 6
64

The power of multi-stage programming

power in multiple stages (first exponent, then base)
power :: Code Int — Int — Code Int

power x 0 = [1]
power x n = [$x * $(power [x] (n - 1))]

A> [\x — $(power [x] 6) |
\x —x* (x* (x*x x* &* &*1)))]

Terminology: values of type Code t are dynamic. Other values are static.

The power of multi-stage programming

Generated code:

A> [\x — $(power [x] 6) |
N —x* x* x*x x*&x*x x*1))]

Problem: generated code rather inefficient. Better:
N —x* (x*x (x* (x* x*x)))]
Even better:

[\x > let y=x*xinletz=y *xyinz *y |

How should we fix power? (first attempt)

Solution one: rewrite power to handlen = 1:

power :: Code Int — Int — Code Int

power x 0 = [1]
power x 1 = x
power x n = [$x * $(power [x] (m - 1))]

Generated code:

A> [\x — $(power [x] 6) |
N —x* (x* x* x* (x*x))]

Objection: changing code structure to help staging is undesirable

How should we fix power? (second attempt)

Solution two: introduce a type that subsumes static & dynamic

data SD a = Sta :: a — SD a
| Dyn :: Code a — SD a

and a function that converts sd values to code

cd :: Lift a = SD a — Code a
cd (Stas) = [s | -- (cross-stage persistence)
cd (Dyn d) = d

and multiplication for sd values that special-cases 1 and 0:
(® :: SD Int — SD Int — SD Int

Stax®Stay=x*y

Sta 0 ® _ = Sta O

_®Sta 0 = Sta 0

Stal®y =y

y ® Sta 1 =y

X®y = [$(cd x) * $(cd y) |

Finally, rewrite pow to use sd:

power x 0 = Sta 1
power x n = x ® pow x (n - 1)

How should we fix power? (second attempt: problems)

The sd type fixes pow (somewhat) without changing code structure:

A> [\x — $(cd (power (Dyn [x]) (Sta 6))) |
N —x*x x* x*x x*&x*x))]

However, sd is not a complete solution.
Consider the generated code for the following expression:
(Sta 2 ® Dyn [x]) ® Sta 3
~ (2% x) * 3]

We could simplify further (since * is associative & commutative).

Example: dot product

dot, unstaged:

dot :: [Int] — [Int] — [Int]
dot [1 [1 =0
dot (x:xs) (y:ys) = (x * y) + dot xs ys

dot, staged (assuming vector structure known, values of one vector unknown):

dot :: [Int] — [Code Int] — [Code Int]
dot D 01 =[0]
dot (x:xs8) (y:ys) = [(x * $y) + $(dot xs ys) |

Generated code:
dot [1,0,2 [[x], [y, [z]2

~

[A*x)+ ©x*y) +(2x*2z2)]

Desired code:
[x+ (2x*2)]

Example: printf

sprintf, unstaged:

lit x = \k s — k (s ++ x) int = \k s x — k (s ++ show x)
f ‘cat g=1£f - g sprintf p = fmt p id ""
Typical use:

sprintf ((int “cat”™ 1lit "a") “cat” (1it "b" “cat’ int))

sprintf, staged:
litx=\k s — k [$s ++ x | int = \k s x — k [$s ++ show $x |
f cat’ g=(- g sprintf p=p id ["" |

Generated code:

[2 y = ((("" ++ show x) ++ "a") ++ "b") ++ show y |

Desired code:

[Ax y —show x ++ ("ab" ++ show y) |

Small suspicion

Might these common problems
share a common solution?

Remainder of today

Partially-static data, motivated

With control over /5 only, generated code is inefficient:

A> [\x — $(power [x] 6)]
N —x*x x*x x* x* x* x*1))))]

With support for algebraic laws we can generate better code:

[\x let y=x*xinletz=y *xyinz *y |

Partially-static data

Building equation-aware structures

Plan: drop-in replacements for
(String ++)
(Int,+,*)

(Bool, A, V)
etc.!

Magma, a minimal structure

class Magma a where (o) :: a —a —a

Instances of Magma

newtype Inty = Inty Int

instance Magma Int, where
Inty x @ Intx y = Int, (x X y)

Reducing terms

instantiate reduce

-
X
o

Trees with free variables

o A A A

Binding-time analysis

/NI /N

X 1 2 3
dynamic static

dynamic

Reducing terms with free variables

instantiate reduce
° b X P X

AN AA A

x 1 2 3 x 1 2 3 X 1

Back to Haskell: binding times

data BindingTime =
Sta -- available now
| Dyn -- available later

data BT :: BindingTime — * where
BTSta :: BT Sta
BTDyn :: BT Dyn

data SD ::
S ::
D ::

Possibly-static data (for leaves)

BindingTime — * — * where

a — SD Sta a
Code a — SD Dyn a

btSD :: SD
btSD (S _)
btsSD (D _)

bt a — BT bt

BTSta
BTDyn

Mixed magmas: binding-time-indexed normal forms

data Mag ::
LeafM ::

Brl ::
Br2 ::

BindingTime — * — * where

SD bt a — Mag bt a

Mag Sta a — Mag Dyn a — Mag Dyn a
Mag Dyn a — Mag r a — Mag Dyn a

btMag :: Mag bt a — BT bt
btMag (LeafM m) = btSD m
btMag (Brl _ _) = BIDyn
btMag (Br2 _ _) = BIDyn

Mag is a Magma

instance Magma a = Magma (Exists Mag a) where
EaeEb=mn (btMag a) (btMag b) a b

where
—— leave no static subtrees!
m BTSta BTSta (LeafM (Sa)) (LeafM (Sb)) = E (LeafM (S (aeb)))

m BTSta BTDyn 1 r =E@GBrl1lr)
m BTDyn _ 1 r =E@GBr21 r)

A general-purpose existential type:

data Exists :: (ky — k, — *) — k, — * where
E :: £fba — Exists f a

Semigroups (magmas + associativity)

>
>

a L o C
b ¢ a b
class Magma a = Semigroup a —ae (bec) = (aeb) ec

instance Semigroup Inty

Normal forms for semigroups

Plain semigroups: fully right-associated

Mixed semigroups: also, no adjacent static data

Normalizing mixed-stage semigroup trees

reassociate reduce
b o b
° ° X ° X °
X; 2 3 X [X2 6 X2

Mixed semigroups: binding-time-indexed normal forms

data Semi :: BindingTime — * — * where
LeafS :: SD bt a — Semi bt a
ConsS :: a — Semi Dyn a — Semi Dyn a
ConsD :: Code a — Semi r a — Semi Dyn a

cons a static element:

consS :: Magma a = a —> Exists Semi a — Exists Semi a
consS h (E (LeafS (S s))) E (LeafS (S (h e 5)))
consS h (E t@(LeafS (D _))) = E (ConsS h t)

consS h (E (ConsS s t)) E (ConsS (h e s) t)

consS h (E t@(ConsD _ _)) E (ConsS h t)

cons a dynamic element:

consD :: Code a — Exists Semi a — Exists Semi a
consDh (Et) = E (ConsD h t)

Semi is a Semigroup

instance Semigroup a = Magma (Exists Semi a)
-— o traverses the entire left operand
where E (LeafS (S s)) e 1 = consS s 1

E (LeafS (D d)) e1 =consDd 1
E (ConsSht) el =consSh(Etel)
E (ConsDh t) @1 =consDh (Et e 1)

instance Semigroup a = Semigroup (Exists Semi a)

e maps normal forms to normal forms

NN N
X; 2 szA, x1/\

A

X

e maps normal forms to normal forms

° ° ° °
AN N
1 ° 3 ° 1 °
VA N
Xy 2 \ \\ X 4 X4 °
AN

_ - 2X3

\
N 1
S o []
coalesce =~ A
2 4

X

Adding commutativity

N o= A

a b b a

class Semigroup a = CSemigroup a ——aeb=bea

A new n-ary constructor: unordered children

Partially-static commutative semigroups: normal forms

Group together all static data & all dynamic data:

[
s @

data CSemi a = CSemi (Maybe a) (MultiSet (Code a))

CSemi is a CSemigroup

instance CSemigroup a = Magma (CSemi a) where
CSemi s; d; @ CSemi s, d, = CSemi (s; e s,) (union d; d,)
where Nothing e, m =
m e; Nothing

Just m e; Just

m
m
n = Just (m e n)

instance CSemigroup a = Semigroup (CSemi a)
instance CSemigroup a = CSemigroup (CSemi a)

Partially-static data

General structure

Requirements (rough sketc

-- type of partially-static data
-— (parameterised by class)
PS :: (* — Constraint) — * — *

-- injection of static values
sta :: algebra a — a — PS algebra a

—-- injection of dynamic values
dyn :: Code a — PS algebra a

-- turn partially-static values into dynamic
cd :: PS algebra a — Code a

Example: sta and dyn for CSemigroup

stacs = As —CSemi (Just s) empty

dyncs = Ad —CSemi Nothing (singleton d)

Question: How should we define the general PS?

Ingredient 1: coproducts

class (algebra a, algebra b, algebra (Coprod algebra a b)) =
Coproduct algebra a b
where
—-- coproduct representation (varies with algebra)
data family Coprod algebra a b :: *

-- injections
inl :: a — Coprod algebra a b
inr :: b — Coprod algebra a b

-- eliminator/fold

eva :: algebra c =
(@ —+ ¢) — (b - ¢) — Coprod algebra a b — ¢

evaf g (inl s; einrd, e ...) ~» f s, egd;e ...

Ingredient 2: free objects

class algebra (FreeA algebra x) = Free algebra x where
—-— free object representation (varies with algebra)
data family FreeA algebra x :: *

-- variable injection
pvar :: x — FreeA algebra x

—-— eliminator/fold
pbind :: algebra ¢ = FreeA algebra x — (x — ¢c) — ¢

pbind f (pvar x; e pvar x, e ...) ~ £ x, 0 fx, e .

Free extensions from coproducts & free objects

Free extension constraints:

FreeExtc :: (¥ —Constraint) — * — Constraint

type FreeExt: algebra a =
Coproduct algebra a (FreeA algebra (Code a))

Free extension types:

FreeExt :: (¥ — Constraint) — * — *

type FreeExt algebra a =
Coprod algebra a (FreeA algebra (Code a))

Free extensions, pictured

o sta FreeExt Monoid dyn FreeA Monoid
ring ——p
S String (Code String)
cd
[-1

Code String

frex interface: sta and dyn

-- sta: left injection into the free extension
sta :: (algebra a, FreeExtc algebra a) =

a — FreeExt algebra a
sta = inl

-— dyn: right injection of variables into the free extension
dyn :: (Free algebra (Code a), FreeExtc algebra a) =

Code a — FreeExt algebra a
dyn = inr - pvar

frex interface: cd

-— cd: elimination of free extensions into code
cd :: (Lift a, Free algebra (Code a), algebra (Code a),
FreeExt: algebra a) =
FreeExt algebra a — Code a
cd = eva tlift (“pbind” id)

-- (tlift turns static values into code)
tlift :: Lift a = a — Code a
tlift = 1iftM TExp - 1lift

Partially-static data

Instances & applications

Algebras and their free extensions

Algebra Free extension
monoids alternating static/dynamic sequence
commutative monoids (static element) x (bag of names)
commutative rings multinomial
distributive lattices multinomial (exponents 0 or 1)
F-algebras free algebra of coproducts
sets binary sum

Coproduct of monoids

class Monoid t where
1::t
® :t—>t—>t

The coproduct is an alternating sequence:

data AorB = A | B

data Alternate :: AorB — * — * — * where
Empty :: Alternate any a b
ConsA :: a — Alternate B a b — Alternate A a b
ConsB :: b — Alternate A a b — Alternate B a b

instance (Monoid a, Monoid b) = Coproduct Monoid a b where
data Coprod Monoid a b where M :: Alt _ a b — Coprod Monoid a b
inl a = M (ConsA a Empty)
inr b = M (ConsB b Empty)

The free monoid

instance Free Monoid x where
newtype FreeA Monoid x = P [x] deriving (Monoid)
pvar x = P [x]
P [] “pbind” f
P xs "pbind" f

1
foldr (®) - f) 1 xs

Using the monoid free extension

printf:

sprintf ((int @ lit "a") @ (1it "b" & int)

printf, staged with [] and $:

[A x y = ((("" ++ show x) ++ "a") ++ "b") ++ show y |

printf, staged with partially-static data:

[Ax y — show x ++ "ab" ++ show y |

Free extension of commutative monoids

class Monoid m = CMonoid m

The coproduct is a product!

instance (CMonoid a, CMonoid b) = Coproduct CMonoid a b where
data Coprod CMonoid a b =C a b
inla=Cal
inrb=C1hb
evafg(Cab)=fa®gh

The free object is a bag

instance Ord x = Free CMonoid x where
newtype FreeA CMonoid x = CM (MultiSet x)

Using the commutative monoid free extension

power

power 5 [x]

power, staged with [] and $:

[1% xx*x &x*x xx*x&=*x))]

power, With partially-static data:

[let y=x*xinlet z=y *xy in x * z |

Free commutative rings

class Ring a where
@, @ ::a—a—a
rneg :: a — a
O, 1 :: a

Free rings are multinomials with integer coefficients:

data Multinomial x a = MN (Map (MultiSet x) a)

instance Ord x = Free Ring x where
newtype FreeA Ring x = RingA (Multinomial x Int)
pvar x = RingA (MN (singleton (singleton x) 1))
RingA xss "pbind® f = evalMN initMN f xss

Free extension of commutative rings

No closed form for coproducts. But can define free extension!

Free extension: multinomials with coefficients in a:

instance (Ring a,0rd x) = Coproduct Ring a (FreeA Ring x) where
newtype Coprod Ring a (FreeA Ring x) = CR (Multinomial x a)
inl a = CR (MN (singleton empty a))
inr (RingA (MN x)) = CR (MN (map initMN x))
eva f g (CR c) = evalMN f (g - pvar) c

evafg(@a+bxly) ~ fad®d (fbRgxRgxgy

Using the commutative ring free extension

inner product

[1; 0; 21 “dot™ [[x]; [y]; [z]2

inner product, staged with [] and $:

[(0 *xx)+ ©x*xy) + (2x*2z2)]

inner product, with partially-static data

[x+ (2% 2)]

Lots more examples!
(see the paper’)

'Partially-Static Data as Free Extension of Algebras, J. Yallop, T. von Glehn, O. Kammar (ICFP’18)

Using frex

1. write the instance

instance Monoid String where
1 =n"n
@ = (++)

2. use frex’s Monoid (FreeExtc ...) instance:

(dyn x ® sta "a") ® (sta "b" ® dyn x)

3. convert to code:

cd ((dyn x ® sta "a") ® (sta "b" ® dyn x))
~ x4+ "ab" ++ x|

Using frex with existing polymorphic code

dot :: Ringr = [r] — [r] — r
dot xs ys = sum (zipWith (X) xs ys)

mmmul :: Ring r = [[r]] — [[r]] — [[x]]
mmmul m n = [[dot a b | b < transpose n] | a < m]

Matrix multiplication unfolded

cdMtx $ staMtx (V (VO 1) (V1 2)) ‘mmmul’ dynMtx [m]

convert vectors to lists of partially-static values

cdMtx $ [[sta 1, sta 0], ‘mmmul® [[dyn [m!0!0], dyn [m'0!1]],
[sta 1, sta 2]] [dyn [m!1!0], dyn [m!'1!1]]]

partially-static arithmetic with mmmul

cdMtx $ [[1x[m!0!0] + Ox[m!110], 1x[m!0!1] + Ox[m!111]],
[1x[m!0!0] + 2x[m!110], 1x[m!0!1] + 2x[m!111]]1]

conversion to optimized code

[v (v m!0!0 m!0!1)
(V. m!0!0 + 2xm!1!0 m!0!1 + 2xm!1!1) |

X Performance improvements

Matrix multiplication

601 - _ _ - = unstaged (naive)
unstaged (linear)
staged (naive)

50 1 frex

40 4

" M _ - — _ _ —_
< 30+ = = -
20
10 |
0 T T T T T —=
0% 20% 40% 60% 80% 100%

Sparseness

=4 pPerformance improvements

Printf invocation
900

unstaged

800 staged (naive)
frex

700

600 A

500

us

400 -

300 4

200 +

100 A

0 T T T T T T
0 1 2 3 4 5 6 7 8 9

Parameter count

	Generalizing
	Instances and applications

