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Multi-stage programming: a complement to abstraction

€ € Al problems in computer science can be
solved by another level of indirection



Multi-stage programming: a complement to abstraction

€ € Al problems in computer science can be
solved by another level of indirection

(...except for the problem of 99
too many layers of indirection.)



Mechanics: quotes and splices

MetaOCaml, Template Haskell, &c.: multi-stage programming with code quoting.

Stages: current (available now) and delayed (available later).
(Also double-delayed, triple-delayed, etc.)

Brackets Running code
.<e>. 1. e

Escaping (within brackets) Cross-stage persistence
.~e L<xX>.

Goal: generate a specialized program with better performance



Mechanics: evaluation

.<e>.

do not reduce e

.ve

(inside .<...>.)
reduce e



Multi-stage programming guarantees

I'HFle: 7
LHF'"te: 7 I'F"e: T code T
2 -run
['F" .<e>.: T code b | L
I'"e: 7 code I'(x)= 7(n—m)
T-escape AV
Pl—n+.~e:7' p FXl—n:T Tvar

Guarantee: well-typed generating programs generate well-typed programs

Guarantee: what you quote is what you get



Self-optimizing libraries
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Staged Generic Programming
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The power of multi-stage programming

power in one stage:

power :: Int — Int — Int
power x 0 = 1
power x n = x * power x (n - 1)

A> power 2 6
64



The power of multi-stage programming

power in multiple stages (first exponent, then base)
power :: Code Int — Int — Code Int

power x 0 = [1]
power x n = [$x * $(power [x] (n - 1))]

A> [\x — $(power [x] 6) |
\x —x* (x* (x*x x* &* &*1))) ]

Terminology: values of type Code t are dynamic. Other values are static.



The power of multi-stage programming

Generated code:

A> [\x — $(power [x] 6) |
N —x* x* x*x x*&x*x x*1)) ]

Problem: generated code rather inefficient. Better:
N —x* (x*x (x* (x* x*x))) ]
Even better:

[\x > let y=x*xinletz=y *xyinz *y |



How should we fix power? (first attempt)

Solution one: rewrite power to handlen = 1:

power :: Code Int — Int — Code Int

power x 0 = [1]
power x 1 = x
power x n = [$x * $(power [x] (m - 1))]

Generated code:

A> [\x — $(power [x] 6) |
N —x* (x* x* x* (x*x)) ]

Objection: changing code structure to help staging is undesirable



How should we fix power? (second attempt)

Solution two: introduce a type that subsumes static & dynamic

data SD a = Sta :: a — SD a
| Dyn :: Code a — SD a

and a function that converts sd values to code

cd :: Lift a = SD a — Code a
cd (Stas) = [ s | -- (cross-stage persistence)
cd (Dyn d) = d

and multiplication for sd values that special-cases 1 and 0:
(® :: SD Int — SD Int — SD Int

Stax®Stay=x*y

Sta 0 ® _ = Sta O

_®Sta 0 = Sta 0

Stal®y =y

y ® Sta 1 =y

X®y = [ $(cd x) * $(cd y) |

Finally, rewrite pow to use sd:

power x 0 = Sta 1
power x n = x ® pow x (n - 1)



How should we fix power? (second attempt: problems)

The sd type fixes pow (somewhat) without changing code structure:

A> [\x — $(cd (power (Dyn [x]) (Sta 6))) |
N —x*x x* x*x x*&x*x)) ]

However, sd is not a complete solution.
Consider the generated code for the following expression:
(Sta 2 ® Dyn [x]) ® Sta 3
~ (2% x) * 3]

We could simplify further (since * is associative & commutative).



Example: dot product

dot, unstaged:

dot :: [Int] — [Int] — [Int]
dot [1 [1 =0
dot (x:xs) (y:ys) = (x * y) + dot xs ys

dot, staged (assuming vector structure known, values of one vector unknown):

dot :: [Int] — [Code Int] — [Code Int]
dot D 01 =[0]
dot (x:xs8) (y:ys) = [ (x * $y) + $(dot xs ys) |

Generated code:
dot [1,0,2 [[x], [y, [z]2

~

[ A*x)+ ©x*y) +(2x*2z2)]

Desired code:
[ x+ (2x*2)]



Example: printf

sprintf, unstaged:

lit x = \k s — k (s ++ x) int = \k s x — k (s ++ show x)
f ‘cat  g=1£f - g sprintf p = fmt p id ""
Typical use:

sprintf ((int “cat”™ 1lit "a") “cat” (1it "b" “cat’ int))

sprintf, staged:
litx=\k s — k [ $s ++ x | int = \k s x — k [ $s ++ show $x |
f cat’ g=( - g sprintf p=p id [ "" |

Generated code:

[ 2 y = ((("" ++ show x) ++ "a") ++ "b") ++ show y |

Desired code:

[ Ax y —show x ++ ("ab" ++ show y) |



Small suspicion

Might these common problems
share a common solution?



Remainder of today




Partially-static data, motivated

With control over /5 only, generated code is inefficient:

A> [\x — $(power [x] 6) ]
N —x*x x*x x* x* x* x*1)))) ]

With support for algebraic laws we can generate better code:

[\x let y=x*xinletz=y *xyinz *y |



Partially-static data

Building equation-aware structures



Plan: drop-in replacements for
(String ++)
(Int,+,*)

(Bool, A, V)
etc.!



Magma, a minimal structure

class Magma a where (o) :: a —a —a



Instances of Magma

newtype Inty = Inty Int

instance Magma Int, where
Inty x @ Intx y = Int, (x X y)



Reducing terms

instantiate reduce

-
X
o



Trees with free variables

o A A A



Binding-time analysis

/NI /N

X 1 2 3
dynamic static

dynamic



Reducing terms with free variables

instantiate reduce
° b X P X

AN AA A

x 1 2 3 x 1 2 3 X 1



Back to Haskell: binding times

data BindingTime =
Sta -- available now
| Dyn -- available later

data BT :: BindingTime — * where
BTSta :: BT Sta
BTDyn :: BT Dyn



data SD ::
S ::
D ::

Possibly-static data (for leaves)

BindingTime — * — * where

a — SD Sta a
Code a — SD Dyn a

btSD :: SD
btSD (S _)
btsSD (D _)

bt a — BT bt

BTSta
BTDyn



Mixed magmas: binding-time-indexed normal forms

data Mag ::
LeafM ::

Brl ::
Br2 ::

BindingTime — * — * where

SD bt a — Mag bt a

Mag Sta a — Mag Dyn a — Mag Dyn a
Mag Dyn a — Mag r a — Mag Dyn a

btMag :: Mag bt a — BT bt
btMag (LeafM m) = btSD m
btMag (Brl _ _) = BIDyn
btMag (Br2 _ _) = BIDyn



Mag is a Magma

instance Magma a = Magma (Exists Mag a) where
EaeEb=mn (btMag a) (btMag b) a b

where
—— leave no static subtrees!
m BTSta BTSta (LeafM (Sa)) (LeafM (Sb)) = E (LeafM (S (aeb)))

m BTSta BTDyn 1 r =E@GBrl1lr)
m BTDyn  _ 1 r =E@GBr21 r)

A general-purpose existential type:

data Exists :: (ky — k, — *) — k, — * where
E :: £fba — Exists f a



Semigroups (magmas + associativity)

>
>

a L o C
b ¢ a b
class Magma a = Semigroup a —ae (bec) = (aeb) ec

instance Semigroup Inty



Normal forms for semigroups

Plain semigroups: fully right-associated

Mixed semigroups: also, no adjacent static data



Normalizing mixed-stage semigroup trees

reassociate reduce
b o b
° ° X ° X °
X; 2 3 X [ X2 6 X2



Mixed semigroups: binding-time-indexed normal forms

data Semi :: BindingTime — * — * where
LeafS :: SD bt a — Semi bt a
ConsS :: a — Semi Dyn a — Semi Dyn a
ConsD :: Code a — Semi r a — Semi Dyn a

cons a static element:

consS :: Magma a = a —> Exists Semi a — Exists Semi a
consS h (E (LeafS (S s))) E (LeafS (S (h e 5)))
consS h (E t@(LeafS (D _))) = E (ConsS h t)

consS h (E (ConsS s t)) E (ConsS (h e s) t)

consS h (E t@(ConsD _ _)) E (ConsS h t)

cons a dynamic element:

consD :: Code a — Exists Semi a — Exists Semi a
consDh (Et) = E (ConsD h t)



Semi is a Semigroup

instance Semigroup a = Magma (Exists Semi a)
-— o traverses the entire left operand
where E (LeafS (S s)) e 1 = consS s 1

E (LeafS (D d)) e1 =consDd 1
E (ConsSht) el =consSh(Etel)
E (ConsDh t) @1 =consDh (Et e 1)

instance Semigroup a = Semigroup (Exists Semi a)



e maps normal forms to normal forms

NN N
X; 2 szA, x1/\

A

X



e maps normal forms to normal forms

° ° ° °
AN N
1 ° 3 ° 1 °
VA N
Xy 2 \ \\ X 4 X4 °
AN

_ - 2X3

\
N 1
S o [ ]
coalesce =~ A
2 4

X



Adding commutativity

N o= A

a b b a

class Semigroup a = CSemigroup a ——aeb=bea



A new n-ary constructor: unordered children



Partially-static commutative semigroups: normal forms

Group together all static data & all dynamic data:

[
s @

data CSemi a = CSemi (Maybe a) (MultiSet (Code a))



CSemi is a CSemigroup

instance CSemigroup a = Magma (CSemi a) where
CSemi s; d; @ CSemi s, d, = CSemi (s; e s,) (union d; d,)
where Nothing e, m =
m e; Nothing

Just m e; Just

m
m
n = Just (m e n)

instance CSemigroup a = Semigroup (CSemi a)
instance CSemigroup a = CSemigroup (CSemi a)



Partially-static data

General structure



Requirements (rough sketc

-- type of partially-static data
-—  (parameterised by class)
PS :: (* — Constraint) — * — *

-- injection of static values
sta :: algebra a — a — PS algebra a

—-- injection of dynamic values
dyn :: Code a — PS algebra a

-- turn partially-static values into dynamic
cd :: PS algebra a — Code a



Example: sta and dyn for CSemigroup

stacs = As —CSemi (Just s) empty

dyncs = Ad —CSemi Nothing (singleton d)

Question: How should we define the general PS?



Ingredient 1: coproducts

class (algebra a, algebra b, algebra (Coprod algebra a b)) =
Coproduct algebra a b
where
—-- coproduct representation (varies with algebra)
data family Coprod algebra a b :: *

-- injections
inl :: a — Coprod algebra a b
inr :: b — Coprod algebra a b

-- eliminator/fold

eva :: algebra c =
(@ —+ ¢) — (b - ¢) — Coprod algebra a b — ¢

evaf g (inl s; einrd, e ... ) ~» f s, egd;e ...



Ingredient 2: free objects

class algebra (FreeA algebra x) = Free algebra x where
—-— free object representation (varies with algebra)
data family FreeA algebra x :: *

-- variable injection
pvar :: x — FreeA algebra x

—-— eliminator/fold
pbind :: algebra ¢ = FreeA algebra x — (x — ¢c) — ¢

pbind f (pvar x; e pvar x, e ... ) ~ £ x, 0 fx, e .



Free extensions from coproducts & free objects

Free extension constraints:

FreeExtc :: (¥ —Constraint) — * — Constraint

type FreeExt: algebra a =
Coproduct algebra a (FreeA algebra (Code a))

Free extension types:

FreeExt :: (¥ — Constraint) — * — *

type FreeExt algebra a =
Coprod algebra a (FreeA algebra (Code a))



Free extensions, pictured

o sta FreeExt Monoid dyn FreeA Monoid
ring ——p
S String (Code String)
cd
[-1

Code String



frex interface: sta and dyn

-- sta: left injection into the free extension
sta :: (algebra a, FreeExtc algebra a) =

a — FreeExt algebra a
sta = inl

-— dyn: right injection of variables into the free extension
dyn :: (Free algebra (Code a), FreeExtc algebra a) =

Code a — FreeExt algebra a
dyn = inr - pvar



frex interface: cd

-— cd: elimination of free extensions into code
cd :: (Lift a, Free algebra (Code a), algebra (Code a),
FreeExt: algebra a) =
FreeExt algebra a — Code a
cd = eva tlift (“pbind” id)

-- (tlift turns static values into code)
tlift :: Lift a = a — Code a
tlift = 1iftM TExp - 1lift



Partially-static data

Instances & applications



Algebras and their free extensions

Algebra Free extension
monoids  alternating static/dynamic sequence
commutative monoids  (static element) x (bag of names)
commutative rings  multinomial
distributive lattices  multinomial (exponents 0 or 1)
F-algebras free algebra of coproducts
sets  binary sum



Coproduct of monoids

class Monoid t where
1::t
® :t—>t—>t

The coproduct is an alternating sequence:

data AorB = A | B

data Alternate :: AorB — * — * — * where
Empty :: Alternate any a b
ConsA :: a — Alternate B a b — Alternate A a b
ConsB :: b — Alternate A a b — Alternate B a b

instance (Monoid a, Monoid b) = Coproduct Monoid a b where
data Coprod Monoid a b where M :: Alt _ a b — Coprod Monoid a b
inl a = M (ConsA a Empty)
inr b = M (ConsB b Empty)



The free monoid

instance Free Monoid x where
newtype FreeA Monoid x = P [x] deriving (Monoid)
pvar x = P [x]
P [] “pbind” f
P xs "pbind" f

1
foldr (®) - f) 1 xs



Using the monoid free extension

printf:

sprintf ((int @ lit "a") @ (1it "b" & int)

printf, staged with [ ] and $:

[ A x y = ((("" ++ show x) ++ "a") ++ "b") ++ show y |

printf, staged with partially-static data:

[ Ax y — show x ++ "ab" ++ show y |



Free extension of commutative monoids

class Monoid m = CMonoid m

The coproduct is a product!

instance (CMonoid a, CMonoid b) = Coproduct CMonoid a b where
data Coprod CMonoid a b =C a b
inla=Cal
inrb=C1hb
evafg(Cab)=fa®gh

The free object is a bag

instance Ord x = Free CMonoid x where
newtype FreeA CMonoid x = CM (MultiSet x)



Using the commutative monoid free extension

power

power 5 [x]

power, staged with [ ] and $:

[ 1% xx*x &x*x xx*x&=*x)) ]

power, With partially-static data:

[ let y=x*xinlet z=y *xy in x * z |



Free commutative rings

class Ring a where
@, @ ::a—a—a
rneg :: a — a
O, 1 :: a

Free rings are multinomials with integer coefficients:

data Multinomial x a = MN (Map (MultiSet x) a)

instance Ord x = Free Ring x where
newtype FreeA Ring x = RingA (Multinomial x Int)
pvar x = RingA (MN (singleton (singleton x) 1))
RingA xss "pbind® f = evalMN initMN f xss



Free extension of commutative rings

No closed form for coproducts. But can define free extension!

Free extension: multinomials with coefficients in a:

instance (Ring a,0rd x) = Coproduct Ring a (FreeA Ring x) where
newtype Coprod Ring a (FreeA Ring x) = CR (Multinomial x a)
inl a = CR (MN (singleton empty a))
inr (RingA (MN x)) = CR (MN (map initMN x))
eva f g (CR c) = evalMN f (g - pvar) c

evafg(@a+bxly) ~ fad®d (fbRgxRgxgy



Using the commutative ring free extension

inner product

[1; 0; 21 “dot™ [[x]; [y]; [z]2

inner product, staged with [ ] and $:

[ (0 *xx)+ ©x*xy) + (2x*2z2)]

inner product, with partially-static data

[ x+ (2% 2) ]



Lots more examples!
(see the paper’)

'Partially-Static Data as Free Extension of Algebras, J. Yallop, T. von Glehn, O. Kammar (ICFP’18)



Using frex



1. write the instance

instance Monoid String where
1 =n"n
@ = (++)

2. use frex’s Monoid (FreeExtc ...) instance:

(dyn x ® sta "a") ® (sta "b" ® dyn x)

3. convert to code:

cd ((dyn x ® sta "a") ® (sta "b" ® dyn x))
~ x4+ "ab" ++ x|



Using frex with existing polymorphic code

dot :: Ringr = [r] — [r] — r
dot xs ys = sum (zipWith (X) xs ys)

mmmul :: Ring r = [[r]] — [[r]] — [[x]]
mmmul m n = [[dot a b | b < transpose n] | a < m]



Matrix multiplication unfolded

cdMtx $ staMtx (V (VO 1) (V1 2)) ‘mmmul’ dynMtx [m]

convert vectors to lists of partially-static values

cdMtx $ [[sta 1, sta 0], ‘mmmul® [[dyn [m!0!0], dyn [m'0!1]],
[sta 1, sta 2]] [dyn [m!1!0], dyn [m!'1!1]]]

partially-static arithmetic with mmmul

cdMtx $ [[1x[m!0!0] + Ox[m!110], 1x[m!0!1] + Ox[m!111]],
[1x[m!0!0] + 2x[m!110], 1x[m!0!1] + 2x[m!111]]1]

conversion to optimized code

[ v (v m!0!0 m!0!1 )
(V. m!0!0 + 2xm!1!0 m!0!1 + 2xm!1!1) |



X Performance improvements

Matrix multiplication

601 - _ _ - = unstaged (naive)
unstaged (linear)
staged (naive)

50 1 frex

40 4

" M _ - — _ _ —_
< 30+ = = -
20
10 |
0 T T T T T —=
0% 20% 40% 60% 80% 100%

Sparseness



=4 pPerformance improvements

Printf invocation
900

unstaged

800 staged (naive)
frex

700

600 A

500

us

400 -

300 4

200 +

100 A

0 T T T T T T
0 1 2 3 4 5 6 7 8 9

Parameter count
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