
A Generic Deriving Mechanism for Haskell

José Pedro Magalhães
Atze Dijkstra, Johan Jeuring, Andres Löh

Summer School on Metaprogramming
Cambridge, UK

August 8, 2016

Outline

Overview

Viewpoints
End user
Compiler implementer
Library writer

Conclusion

Overview

I Haskell has a number of (built-in) type classes that can
automatically be derived: Bounded, Enum, Eq, Ord, Read,
and Show

I This talk is about a mechanism that lets you define these
classes and your own in Haskell such that they can be derived
automatically

I Implemented in the Glasgow Haskell Compiler

Features

We can:

I Handle meta-information such as constructor names and field
labels

I Derive all the Haskell 98 classes

I Derive most of the classes that GHC can derive, including
Typeable and classes of kind ?→ ? such as Functor

Outline

Overview

Viewpoints
End user
Compiler implementer
Library writer

Conclusion

Using generic functions

If a class is generic, it can be used in a deriving construct.
Assuming a type class

data Bit = 0 | 1

class Encode α where
encode :: α→ [Bit]

The end user can write

data Exp = Const Int | Plus Exp Exp
deriving (Show,Encode)

and then use

test :: [Bit]
test = encode (Plus (Const 1) (Const 2))

Outline

Overview

Viewpoints
End user
Compiler implementer
Library writer

Conclusion

Basic idea

I For each datatype, there is an equivalent internal
representation.

I All the concepts contained in the data construct (application,
abstraction, choice, sequence, recursion) are captured by a
limited set of representation types.

I The compiler generates an internal representation for every
datatype, together with conversion functions and derived
instances

Type representation

I The type representation is available in a module
(Generics.Deriving.Base).

I The representation types need to be bundled with the
compiler (much like Data.Data for syb on GHC), but the
library itself (generic-deriving on Hackage) is portable.

I The library contains a set of datatypes as well as a class that
allows conversion between a datatype and its representation.

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (C1 $ConstExp (Rec0 Int)
+ C1 $PlusExp (Rec0 Exp× Rec0 Exp))

Note that the representation is shallow – recursive calls are to Exp,
not RepExp

0 .
Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp

(

C1 $ConstExp

(

Rec0

Int)
+

C1 $PlusExp

(

Rec0

Exp×

Rec0

Exp))

Note that the representation is shallow – recursive calls are to Exp,
not RepExp

0 .
Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (

C1 $ConstExp

(

Rec0

Int)
+

C1 $PlusExp

(

Rec0

Exp×

Rec0

Exp))

Note that the representation is shallow – recursive calls are to Exp,
not RepExp

0 .
Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (C1 $ConstExp (

Rec0

Int)
+ C1 $PlusExp (

Rec0

Exp×

Rec0

Exp))

Note that the representation is shallow – recursive calls are to Exp,
not RepExp

0 .
Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (C1 $ConstExp (Rec0 Int)
+ C1 $PlusExp (Rec0 Exp× Rec0 Exp))

Note that the representation is shallow – recursive calls are to Exp,
not RepExp

0 .
Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

Lifting

Our approach can handle type classes with parameters of both

I kind ? such as Encode and Show;

I kind ?→ ? such as Functor.

We therefore represent all datatypes at kind ?→ ?.
Types of kind ? get a dummy parameter in their representation.

Representation types

data V1 ρ

data U1 ρ = U1

data (+) φ ψ ρ = L1 (φ ρ) | R1 (ψ ρ)

data (×) φ ψ ρ = φ ρ× ψ ρ

The void type V1 is for types without constructors.
The unit type U1 is for constructors without fields.
Sums represent choice between constructors.
Products represent sequencing of fields.

Meta-information

data K1 ι γ ρ = K1 γ

data M1 ι µ φ ρ = M1 (φ ρ)

These types record additional information, such as names and
fixity, for instance. They are instantiated as follows:

data D -- datatypes
data C -- constructors
data S -- record selectors

data R -- recursive calls
data P -- parameters

type D1 = M1 D
type C1 = M1 C
type S1 = M1 S

type Rec0 = K1 R
type Par0 = K1 P

We group five combinators into two because we often do not care
about all the different types of meta-information.

Example: meta-information for expressions

GHC automatically generates the following for Exp:

data $Exp
data $ConstExp
data $PlusExp

instance Datatype $Exp where
moduleName = "ModuleName"

datatypeName = "Exp"

instance Constructor $ConstExp where conName = "Const"

instance Constructor $PlusExp where conName = "Plus"

The classes Datatype and Constructor can hold more information if
desired.

Conversion

We use a type class to mediate between values and representations:

class Generic α where
type Rep α :: ?→ ?
from :: α→ Rep α χ
to :: Rep α χ→ α

Instance for Exp (automatically generated by GHC):

instance Generic Exp where

type Rep Exp = RepExp
0

from (Const n) = M1 (L1 (M1 (K1 n)))
from (Plus e e′) = M1 (R1 (M1 (K1 e× K1 e′)))

to (M1 (L1 (M1 (K1 n)))) = Const n
to (M1 (R1 (M1 (K1 e× K1 e′)))) = Plus e e′

Conversion

We use a type class to mediate between values and representations:

class Generic α where
type Rep α :: ?→ ?
from :: α→ Rep α χ
to :: Rep α χ→ α

Instance for Exp (automatically generated by GHC):

instance Generic Exp where

type Rep Exp = RepExp
0

from (Const n) = M1 (L1 (M1 (K1 n)))
from (Plus e e′) = M1 (R1 (M1 (K1 e× K1 e′)))

to (M1 (L1 (M1 (K1 n)))) = Const n
to (M1 (R1 (M1 (K1 e× K1 e′)))) = Plus e e′

Compiler support

For each datatype, the compiler generates the following:

I Meta-information, i.e. datatypes and class instances.

I Representation type synonym(s).

I Generic and/or Generic1 instance.

Each deriving construct simple gives rise to an empty instance
(more on that later).

Design choices

There is a certain amount of flexibility in how the compiler
generates the representation.
For example, sums and products are currently balanced.
It is not clear how much of these details should be part of the
specification.

Outline

Overview

Viewpoints
End user
Compiler implementer
Library writer

Conclusion

Generic function definitions

The library writer defines generic (derivable) functions.
We use two classes: one for the base types (kind ?):

class Encode α where
encode :: α→ [Bit]

and one for the representation types (kind ?→ ?):

class Encode1 φ where
encode1 :: φ χ→ [Bit]

Simple cases

The generic cases are defined as instances of Encode1:

instance Encode1 V1 where
encode1 = []

instance Encode1 U1 where
encode1 = []

instance (Encode1 φ)⇒ Encode1 (M1 ι γ φ) where
encode1 (M1 a) = encode1 a

Sums and products

instance (Encode1 φ,Encode1 ψ)⇒ Encode1 (φ+ ψ) where
encode1 (L1 a) = 0 : encode1 a
encode1 (R1 a) = 1 : encode1 a

instance (Encode1 φ,Encode1 ψ)⇒ Encode1 (φ× ψ) where
encode1 (a× b) = encode1 a ++ encode1 b

Constants and base types

For constants, we rely on Encode:

instance (Encode α)⇒ Encode1 (K1 ι α) where
encode1 (K1 a) = encode a

In this way we close the recursive loop: if α is a representable type,
encode will call from and then encode1 again.
For base types, we need to provide ad-hoc instances:

instance Encode Int where encode = . . .
instance Encode Char where encode = . . .

Default generic instance

The generic case is provided by generic defaults:

class Encode α where
encode :: α→ [Bit]
default encode :: (Generic α,Encode1 (Rep α))

⇒ α→ [Bit]
encode x = encode1 (from x)

These are just like regular default methods, only with a different
type signature.

Using the generic instance

We are done:

data Exp = Const Int | Plus Exp Exp deriving Encode

will cause the generation of

instance Encode Exp where
encode x = encode1 (from x)

Back to the internals: kind ?→ ? types

For type constructors (kind ?→ ?) we use a few more
representation types:

newtype Par1 ρ = Par1 ρ

newtype Rec1 φ ρ = Rec1 (φ ρ)

newtype (◦) φ ψ ρ = Comp1 (φ (ψ ρ))

We use Par1 to store the parameter, Rec1 to encode recursive
occurrences of type constructors, and ◦ for type composition (eg.
lists of trees).

Example: representing lists I

data List ρ = Nil | Cons ρ (List ρ)
deriving (Show,Encode,Functor)

The compiler generates instance of Generic for kind ? functions:

type RepList
0 ρ =

D1 $List (C1 $NilList U1

+ C1 $ConsList (Par0 ρ× Rec0 (List ρ)))

instance Generic (List ρ) where

type Rep (List ρ) = RepList0 ρ
from Nil = M1 (L1 (M1 U1))
from (Cons h t) = M1 (R1 (M1 (K1 h× K1 t)))

to (M1 (L1 (M1 U1))) = Nil
to (M1 (R1 (M1 (K1 h× K1 t)))) = Cons h t

Example: representing lists II

type RepList
0 ρ =

D1 $List (C1 $NilList U1

+ C1 $ConsList (Par0 ρ× Rec0 (List ρ)))

And an instance of Generic1 for kind ?→ ? functions:

type RepList
1 = D1 $List (C1 $NilList U1

+ C1 $ConsList (Par1 × Rec1 List))

instance Generic1 List where

type Rep1 List = RepList1

from1 Nil = M1 (L1 (M1 U1))
from1 (Cons h t) = M1 (R1 (M1 (Par1 h× Rec1 t)))

to1 (M1 (L1 (M1 U1))) = Nil
to1 (M1 (R1 (M1 (Par1 h× Rec1 t)))) = Cons h t

Back to the library writer: generic map I

We show how to define Functor generically as an example of a kind
?→ ? function. For consistency, we again use two type classes:

class Functor φ where
fmap :: (ρ→ α)→ φ ρ→ φ α

default fmap :: (Generic1 φ,Functor1 (Rep1 φ))
⇒ (ρ→ α)→ φ ρ→ φ α

fmap f x = to1 (fmap1 f (from1 x))

class Functor1 φ where
fmap1 :: (ρ→ α)→ φ ρ→ φ α

Generic map II

Most cases are trivial:

instance Functor1 U1 where
fmap1 f U1 = U1

instance Functor1 (K1 ι γ) where
fmap1 f (K1 a) = K1 a

instance (Functor1 φ)⇒ Functor1 (M1 ι γ φ) where
fmap1 f (M1 a) = M1 (fmap1 f a)

instance (Functor1 φ,Functor1 ψ)⇒ Functor1 (φ+ ψ) where
fmap1 f (L1 a) = L1 (fmap1 f a)
fmap1 f (R1 a) = R1 (fmap1 f a)

instance (Functor1 φ,Functor1 ψ)⇒ Functor1 (φ× ψ) where
fmap1 f (a× b) = fmap1 f a× fmap1 f b

Generic map II

The most interesting instance is the one for parameters:

instance Functor1 Par1 where
fmap1 f (Par1 a) = Par1 (f a)

Recursion and composition rely on Functor:

instance (Functor φ)⇒ Functor1 (Rec1 φ) where
fmap1 f (Rec1 a) = Rec1 (fmap f a)

instance (Functor φ,Functor1 ψ)⇒ Functor1 (φ ◦ ψ) where
fmap1 f (Comp1 x) = Comp1 (fmap (fmap1 f) x)

Generic map III

Now the compiler can derive Functor for List:

instance Functor List where
fmap f x = to1 (fmap1 f (from1 x))

Outline

Overview

Viewpoints
End user
Compiler implementer
Library writer

Conclusion

Conclusion

I The deriving mechanism does not have to be “magic”: it can
be explained in Haskell.

I Derivable functions become accessible and portable.

I We provide an implementation in GHC and detailed
information on how to implement it for other compilers.

I We hope that the behaviour of derived instances can be
redefined in Haskell Prime, perhaps along the lines of our
work.

	Overview
	Viewpoints
	End user
	Compiler implementer
	Library writer

	Conclusion

