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ABSTRACT
Small humanoid robots are becoming a more and more pop-
ular device for entertainment. While the literature shows
many advanced techniques for the development of humanoid
robot motions, for example motion retargeting, most of the
commercially available products only provide a low level in-
terface where each motion is described in terms of keyframes
for which each joint angle is defined. In this paper we suggest
to employ tactile interaction as an intuitive way for users to
communicate with robots. The interface we developed serves
two purposes: it allows the user to develop robot motions
in a very natural way, and it allows us to collect data use-
ful for studying the characteristics of touching as a means
of communication. A supervised learning algorithm suited
to extract the meaning of touch patterns is presented, and
preliminary experiments that validate the feasibility of the
approach are presented.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Haptic I/O

General Terms
Humanoid Robot, tactile interaction

1. INTRODUCTION
In the domestic robotics field humanoid robots are becom-
ing a more and more easily available entertainment device
on the market, at a lower and lower cost. Among the numer-
ous commercial products we can cite for instance VStone’s
Robovie-X, Kondo kagaku’s KHR-HV series or Hitech’s Robo-
nova (see http://www.vstone.co.jp, www.kondo-robot.com
and http://www.hitecrobotics.com/ respectively). These

robots usually consist of rigid link body parts actuated by
servomotors, whose target position is set by a control board
(often by a Pulse Width Modulation signal). Most interfaces
for their programming appear as the one in Fig. 1.

The target position of each of the servomotors is specified by
the user using a slider [7] for some time instants, normally
called keyframes. The robot control board then interpolates
the keyframes to generate the motion. The motion pro-
cess therefore requires the user to identify, for each posture,
which are the parts of the robot which should be moved,
realize which are the joints, along the kinematic chain, that
cause the desired movements, and determine, for each of the
joints, the right rotation direction and the appropriate ro-
tation amount. Although other techniques, such as motion
capture and retargeting [4], can be employed, these meth-
ods are still cumbersome, and require the use of expensive
devices.

Touch is an intuitive method of communication employed in
human-machine interaction [5], as the success on the market
of newly introduced touch screen based cellular phones and
music players seems to confirm. Human-human interaction,
particularly teaching also benefits from tactile interaction.
For instance touch is frequently used by sports coaches or
dance instructors [6] to correct a learner’s posture or motion.
Tactile interaction therefore appears particularly appealing
as an intuitive method for humans to teach robots, and in
fact the literature shows how it can be used to program robot
arms [2].

Our goal is to validate the idea of employing touch as a
way for inexperienced users to program robot motions intu-
itively. As a concrete example, suppose a user just bought
a small humanoid robot and wants to develop a walking
motion. The systems available on the market requires her
or him to think at the motion in terms of keyframes and
for each of this key-postures the angles of each robot joint
must be specified by a moving slider. This process is not
straightforward, since, for instance, the user must identify
which is the joint that moves the robot parts in the desired
direction. Conversely, we can imagine that for novice users



Figure 1: A classical slider based interface.

Figure 2: An example of the context dependence of
the touch meaning. The user presses the same sen-
sor, but due to the different robot posture the de-
sired posture modifications (bend the leg and bend
the knees, respectively) differs.

directly touching the robot’s leg would be quite intuitive, as
in general with kinesthetic demonstration [3].

Essentially the teachers’ touching is a method of transmit-
ting their internal image of what the robot postures should
be. To make communication successful, the robot must then
interpret these touches in terms of adjusted body postures.
However, for the robot this reconstruction process is not
straightforward since similar touches could have different
meanings depending on the context. For example if the
robot is standing, touching the upper part of one leg could
mean that the leg should bend further backwards. However
if the robot is squatting, the same touch could mean that
the robot should move lower to the ground by bending its
knees (see Fig. 2).

Furthermore, the style and method of touching could be in
part or totally user-dependent. Defining a fixed protocol
and forcing the user to employ it would allow to solve these
ambiguity problems. However, we believe that by making
the robot’s instruction interpretation adaptive users will be
able to touch the robot more naturally and therefore develop
motions with a very low mental effort.

Our interface allows users to switch between two modalities.
In the “motion-development” phase the users press touch
sensors and the robots moves according to its interpretation
of the touch pattern. When users feel that the robot inter-
pretation does not reflect their intention, they just switch to
the “touch-meaning-teaching” phase and provide, by other
means (direct robot manipulation or classical, slider based

interface) the posture modification they intended by the ap-
plied touch. In this way the (supervised learning) algorithm
for touch interpretation can be refined more and more online,
i.e. during motion development. This approach presents an
interesting secondary advantage: the collected training ex-
amples, consisting of a touch pattern and the corresponding
desired joint modification, can be studied afterwards to help
improve our understanding of how humans communicate via
touch.

The development cycle and the learning algorithm will be
described in detail in section 2. Performed proof-of-concept
experiments are briefly reported in section 3. Section 4 con-
cludes presenting a model for supervised tactile interaction
and describes future works.

2. INTERFACE
As reported in the introduction our system allows to develop
motions by touching. In particular the development cycle al-
ternates execution and editing of the motion. The motion is
played on the real, physical robot and the actual evolution
of the motion is recorded. The user then watches the exe-
cuted movement by a 3D representation of the robot, selects
the instant in time where the motion should be modified and
touches the robot to modify the posture in that time instant.
Employing a virtual representation of the robot instead of
the robot itself for the motion editing allows to use this ap-
proach for all kind of robot, even for those not equipped
with touch sensors, as most of the humanoids available on
the market. This representation does not need to simulate
the dynamics and therefore can be a rough approximation
of the robot. In fact our interface simplifies the robot links
by parallelepipeds, and simulates a touch sensor on each of
the faces. Expressly the sensors, which are assumed to be
binary, can be pushed by clicking them with the mouse, and
the clicking time of each sensor is recorded and given as input
to the touch interpreter algorithm. Assuming binary sensors
gives the system high robustness, and tests performed on a
robot equipped with touch sensors showed that real touch
sensors can be employed seamlessly. The touch interpreter
then uses the examples of touch pattern and correspond-
ing joint change to infer the desired joint modification. As
stated in the introduction the mapping is context dependent,
so to be more precise the algorithm realizes a mapping from
a touch pattern and a context to a joint modification. Cur-
rently the context consists of:

• the angle of each of the joints, as the meaning of touches
may depend on the posture (Fig. 2);

• the orientation (roll, pitch and yaw) of the robot, since
the meaning can change, for instance, whether the
robot is standing or lying down;

• the velocity vector of the center of gravity, since, for
instance, the meaning could be different if the robot is
falling down.

Distance weighted nearest neighbor algorithm with k = ∞
was employed to realize the mapping. More concretely each
example provided by the user consists of an input (touch pat-
tern and context) Ii and an associated intended joint mod-
ification vector Mi. Given an input I∗, the system output



vector M∗ can be obtained by weighting the joint modifica-
tions present in the collected examples Mi, with weights ωi

calculated employing the distance (in the high dimensional
space) between the system input I∗ and each example coor-
dinates Ii. Expressly, denoting by E the number of collected
example M∗ =

P

E

i=1 ωiMi

Employing a decreasing function of the Euclidean distance
for the weights was shown to give poor estimations of the
desired joint modification, so we devised a specific metric.
First of all, touch information (pushing time of each of the
sensors) should be prioritized over the context. As a trivial
example, if the human operator designed an arm motion and
therefore only provided examples involving the arm, then
when he/she will push sensors on the leg the arm will move
depending on the stored closest context, while in such cases
of no available knowledge it would be intuitive not to apply
any posture modification. To avoid these situations our algo-
rithm sets ωi = 0 for the examples where a sensor pressed in
the example is not pressed in the input I∗. The second prob-
lem arises because every distance is a symmetric function.
Suppose to have just one training example, where a sensor
was pushed for τ milliseconds, and this corresponded to a
single motor joint change. A user might expect that pushing
for less time will cause a smaller change in that joint, while
a longer press should produce a larger angle variation. Con-
versely the system behavior with a distance based weighting
would be that any touch on that sensor with duration dif-
ferent from τ , both longer and shorter, would result in a
smaller angle change. This problem can be overcome calcu-
lating the weight ωi as the product of two terms, one linearly
increasing with the pressure time and one decreasing with
the dissimilarity between the current input I∗ and the i-th
example input Ii. Formally denote by Ti [s], 1 ≤ s ≤ n,
1 ≤ i ≤ E the pushing time of the s-th sensors in the i-th
example and by Pi, Oi and Vi, 1 ≤ i ≤ E the joint an-
gles of the robot in i-th example, the orientation (pitch roll
and yaw) of the robot in the i-th example and the center
of gravity velocity vectors for the i-th example respectively.
Assume then an analogous definitions for the current input
I∗. We defined the weight ωi as

ωi =

(

0 if
W

n

s=1 (Ti [s] > 0) ∧ (T∗ [s] = 0)

αi · βi otherwise

αi =
Y

s:Ti[s]>0

T∗ [s] /Ti [s] , βi =
1

1 +
√

γi

γi =
X

s:Ti[s]=0

T ∗[s]2 + ‖P∗ − Pi‖2 + ‖O∗ − Oi‖2 + ‖V∗ − Vi‖2

The structure of Eq. 2 emerges from practical experiments:
several decreasing functions were tested and the one which
appeared to give the most intuitive behavior was chosen. A
deeper and more formal analysis will be conducted in future
works. A more extended description of the algorithm will
be provided in [1].

3. PROOF OF CONCEPT STUDY
A commercially available robot, Vstone’s Vision4G (see Fig. 3),
was employed to validate the feasibility of the approach. The
context includes the velocity and orientation of the robot

Figure 3: Photo of the robot employed in the exper-
iments and its 3D representation.

and while these could be estimated using the internal gyro-
scopes and accelerometers, for simplicity we preferred to use
a motion capture system (Eagle Digital System developed
by Motion Analysis Corp). A stand up motion, a walking
motion and a jump motion (developed with a rubberband
pulling the robot from the top to ease the task) were suc-
cessfully realized. In detail the jump motion was realized
both with the touching approach and with a classical slider-
based interface for comparison. Similar motions were ob-
tained, respectively, in 17 minutes and in over 40 minutes.
This preliminary result provides support to the hypothesis
that motion development time can be reduced by introduc-
ing touch-based programming.

The data collected during the motion development were an-
alyzed to see if the mapping from touch to change in joint
angles could be formalized by a simple linear model obtained
by linear regression. Denote by X the matrix which consists
of the row vectors Ii, 1 ≤ i ≤ E, and by Y the matrix
having Mi, 1 ≤ i ≤ E, as rows. Assuming a linear model
Y = XA + ǫ where ǫ can be interpreted as Gaussian noise,
we applied ridge regression, i.e. we calculated the matrix
A = (XT X + ρI)−1XT Y where ρ was tuned heuristically
to 0.1 observing the cross validation error. Expressly we
created three datasets, one of examples collected during the
development of the jumping motion, one relative to the walk-
ing motions and one given by their union. Table 1 reports
the average of the Euclidean distance of the predicted Mi

(i.e. the value Ii ∗ A) to the actual Mi obtained using just
one of the data sets to construct the A matrix and testing
the prediction on all the three data sets. For comparison the
table reports the average distance (error) yielded when em-
ploying the k-Nearest Neighbor algorithm with the weight-
ing schema we devised. We can clearly notice that on unseen
data our algorithm outperforms linear regression since the
latter tends to overfit the data.

User dependence was investigated asking six subjects (male
computer science students, age in the range 23-27, mean
24.5, standard deviation 1.87) to develop the same motions,
a walking and a kicking motion. Some tactile patterns seem
to be naturally shared between the users. For instance in
the default robot posture the arms are opened (see Fig. 3)
and five out of six people pushed the arms from the back
to close them. However the main finding was that differ-
ent users gave different abstraction levels in providing touch



Table 1: Average errors in the output prediction by
linear regression and by k-NN algorithm.

Training Dataset Test Dataset LR error KNN error

JUMP JUMP 0.2846 0.1985

JUMP WALK 13.717 0.5938

WALK JUMP 2.0567 1.0198

WALK WALK 0.0314 0.0588

WALK COMBINED 0.3626 0.2223

COMBINED JUMP 0.3219 0.1425

COMBINED WALK 3.7272 0.3006

COMBINED COMBINED 1.5462 0.7778

instructions:

• a nearly fixed mapping from a small set of sensors to
the joints; the context has little or no influence;

• a mapping on physical considerations (the joints are
imagined to be “elastic”); in this case, the context,
for instance the position of the ground, becomes cru-
cial; this strategy strongly resembles the“pin and drag”
model [8] used for computer animation, and the fact
that this approach is taken intuitively by some users
probably confirms the high usability of the pin and
drag interface;

• a very high level representation of the motion, where
for instance just the limb that should be moved is indi-
cated by touching; at this level of abstraction a single
touch corresponds to a motion primitive.

Quantitative analysis of the difference in the user data per-
formed using multidimensional scaling will be provided in a
work in progress that focuses on the development of motions
for humanoid soccer robots [1] using touch.

4. CONCLUSIONS AND FUTUREWORK
In this paper we presented a system that utilizes tactile in-
teraction to program robot motions. We believe touch to be
a promising way of interacting with robots, even in the case
of virtual robots. The focus of this work is not optimizing
the motion performances (for instance far better walking can
surely be obtained using specific concepts like the Zero Mo-
ment Point) but allowing inexperienced users to intuitively
program robots, and, at the same time, gather insights in
how humans employ touch to express their desired motion
modifications. Figure 4 summarizes graphically the emer-
gence of touch instructions. Users have an intended joint
modification and, depending on some of the features of the
physical context that they unconsciously perceive, they pro-
vide a tactile instruction. Our interface aims at construct-
ing the inverse mapping from touch instruction and physical
context to intended joint modification, by using examples
consisting in tuples that include the touch instruction, the
context and a directly communicated joint modification.

A proof-of-concept system was implemented and preliminary
data analysis was performed on the collected data. As ex-
pected simple linear models failed to capture the structure
of the mapping. Our algorithm instead revealed to perform
well (at least in comparison to ridge regression) on unseen
validation data and preliminary experiments suggest that

Figure 4: Conceptual schema of the generation of
touch instructions.

the employed system can reduce the motion development
time with respect to classical slider based interfaces. The
presence of a strong user dependency of the touch proto-
col was identified using a limited number of users. Future
works will need to employ more users to provide more sta-
tistically significant analysis. Furthermore the features of
the physical context that influence the touch meaning must
be analyzed more systematically and possibly extended with
more dynamical features like the acceleration of the center
of gravity or the location of the center of pressure.
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