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ABSTRACT
We developed a system to obtain a robot able to learn to
emulate the strategies used by a human facing a problem-
solving task. We have been able to solve this problem within
a particular setting in which the human behaviour can be
interpreted as time series of ‘observables’ of his/her problem-
solving strategy. Our solution encompasses the solution of
yet another problem, namely how to close a loop starting
with the behaviour of several humans, then going through
its analysis all the way up to the human strategies, auto-
matically transferring these strategies to a humanoid robot
and finally running this robot to generate observable data
of the same type as the ones obtained from observing the
humans.

1. INTRODUCTION
As early as 1984, Michael Brady placed robotics as an

important test field for artificial intelligence algorithms [5].
But the work on intelligent robots suffered for a while from
a lack of interest from industrialists. Special purpose in-
dustrial robots could perform their productive task without
fuss, and the appearance of the slow-walking Honda’s Asimo
did nothing to convince industrialists of the usefulness of hu-
manoids. But killer applications exist for humanoid robots.
Their advantage is that they function in the real world and
will be able to accomplish many of the tedious tasks of ev-
eryday life, such as cleaning the house, making the beds,
driving the kids to school, making sure granny takes her
medication, etc. All the tools, cooking appliances, etc. are
designed to be used by humans, so if a robot is to make itself
useful in a house it will have to be humanoid. As the general
population grows older, the need for close medical attention
and general care will increase.

In this context, the need for efficient human-robot inter-
faces is crucial. It seems very likely that the average robot
user will no more be willing to program his/her robot then
the average PC user is willing to program his/her PC. Learn-
ing by imitation provides an intuitive way for users to teach
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new tasks to their robots, because this is how a human would
teach another human. As each household is different, the
number of possible tasks in the real world is huge. Many
people also hold strong views concerning the best way to
perform household chores. Our system could enable robots
to learn, not just to cook an egg, but to cook it like its
user/teacher would cook it, and user satisfaction will play an
important role. Robots are not yet sufficiently advanced to
test whether people will expect a more intelligent behaviour
from a humanoid robot than from a box-shaped computer,
but even if the humanoid shape does not influence them into
increasing their expectations in this regard, realtime obedi-
ence in the real world is safety-critical and a robot ignoring
a “Stop!” command because it is busy installing an update
could lead to disaster.

Intelligent behaviour in unpredictable real-life environ-
ments can only be achieved through endowing the robot
with learning abilities. Even non humanoid robots would
benefit from them. A robot vacuum cleaner could be a trip-
ping hazard to a visually impaired person, and making them
audibly signal their presence would be annoying. Better to
have the robot quietly move away from the person and go-
ing to hide in an out-of-the-way spot. But a young child
or a persistently playful pet could then prevent the robot
from doing its job by chasing it. A user-interface enabling
the owner to order the robot to “Get out of the way of my
mother but ignore my son” is required to solve this prob-
lem and countless others, and this in turn requires powerful
learning algorithms to be running in the background.

The type of learning know as plan and/or goal recognition
[11], which our work takes one step further into strategy
recognition, will also have an important role to play. It
solves correspondence problems1. It is notoriously difficult
for a humanoid robot to carry a full cup of coffee, because it
implies very fine movement coordination, but a robot which
recognises the purpose can bring the empty cup and the
coffee pot, and only fill the cup once the destination has
been reached. A robot which recognises the strategy can do
this even in previously unknown surroundings.

2. RELATED WORKS
A large amount of work has been done in the field of robot

learning by imitation, a relatively new (about twenty years

1In robotics, “correspondence problems” refers to the prob-
lems which arise from the fact that no (existing) robot is
built exactly like a human. A humanoid robot may have a
morphology and physical capacities which are quite different
from these of its instructor [2].



old) field of research, see for example [4], [9] and [12]. This
field takes inspiration from a wide range of disciplines, in-
cluding psychology, biology, neurobiology, etc. [1], [3], [8]
and [6]. An example among others of the necessary mul-
tidisciplinarity is [2] who propose a mathematical solution
to the correspondence problem, which originally comes from
animal psychology: they formalise the correspondences by
giving mapping matrices to link agents with different mor-
phologies. Other research papers present work which is less
biomimetic, for example [7] who present an architecture for
extracting the relevant features of a given task and then
generalise the acquired knowledge to other contexts. They
demonstrated the effectiveness of their architecture by im-
plementing it on a humanoid robot learning to reproduce
the gestures of a human teacher. A formal definition of plan
recognition can be found in [11]. We take goal and intention
recognition a step further and we close the data-robot-data
learning loop so the robot which learns from a human in-
structor can later become the teacher to another robot (or
even to a human).

3. EXPERIMENTAL SETTINGS
In a sequence of psychological experiments, blindfolded

human volunteers explored a maze2 in search of a treasure
and, while doing so, expressed their search strategy3 by se-
quences of perception-actions pairs, which were filmed. Per-
ception here was limited to touch, and actions were limited
to moving in the maze, touching objects and picking up the
treasure, all of which could be observed on the videos. The
psychologist [10] and the mixed team [14] showed that the
volunteers in the mazes had several different goals which
they combined through some thought process akin to multi-
criteria optimisation to mentally construct and evaluate their
behaviours. On top of their given goal, finding the treasure,
their most often used strategies included the goals of not
getting lost, of not exploring the same place twice, of not
bumping into obstacles, etc.

4. STEPS
We performed a detailed analysis of the videos, starting

with a digitalisation, and including feature extraction, auto-
mated feature selection and semi-automated tracking. Our
goal was to learn the underlying strategy of each volunteer
and to abstract it sufficiently reproduce it in new contexts.

Automatically extracting from a database the strategies
used by humans in a problem-solving situation takes more
than a good preprocessing and then running the database
through the appropriate data mining algorithm. To go from
the database of observables to the strategies, we had to de-
fine a middle ground. Fig.1 (left) models the human’s cog-
nitive processes as a very simplified version of the HCog-Aff
(Human Cognitive Affects, [13]) model, and superimposes
our definitions. The raw data, called the observables, are
indicated in fig.1. They are the basic facts such as the posi-
tion of the body of the person in the maze at a given time
step, etc. Primitives are combinations of observables, and

2The mazes were not virtual, they were built with rows of
tables and sometimes cupboards in a large room.
3Our use of the expression “search strategy” here does not
imply the volunteers were searching according to an explicit
plan. Randomly searching through the maze is also a“search
strategy”, and so is “not searching at all”.

Figure 1: From human strategies to robot strategies

sometimes of observables and static maze descriptors. Tac-
tics are a combination of observables and primitives. We
defined 4 categories of tactics and the combined effect of en-
acting one of each is a strategy. Fig.1 shows the path we
followed in this work: First a bottom-up generalisation, in
several steps, which started with the log file recording the
movements of the human and was achieved with the help
of machine learning algorithms. Then the top-down imple-
mentation of the induced strategies into control variables
and (robot) body movements.

5. STRATEGIES
A situation variable is a descriptor of perceptions of the

environment external to the controller4. Each of the M sit-
uation variables has a finite and known number of possible
values. A control variable is a descriptor of robot action.
Each of the N control variables has a finite and known num-
ber of possible values.

Formally, a robotic strategy is:

• A finite set of external situation states, E. Each situa-
tion state of E is expressed by a vector of M situation
variables values: (e1, ..., eM ).

• A finite set of internal action states, I. Each action
state of I is expressed by a vector of N control variables
values: (i1, ..., iN ).

• An action transition matrix mapping all possible sit-
uation states to all possible action states. The values
contained in this matrix are the probabilities of the
robot enacting the behaviour described by an action
state given a situation. We call it ΛA = aij .

• An action duration mean transition matrix mapping
all possible situation states to all possible action states.
The values contained in this matrix are the means,
should the robot enact the behaviour described by an
action state, of the duration of all control variables of
this behaviour. We call it ΛAD = ad−ij .

• An action duration standard deviation transition ma-
trix mapping all possible situation states to all possible

4Not necessarily “external to the robot”, the input from a
sensor describing the state of the internal battery would be
a situation variable value.



action states. The values contained in this matrix are
the standard deviations, should the robot enact the
behaviour described by an action state, of the dura-
tion of all control variables of this behaviour. We call
it ΛASD = asd−ij .

Whenever the situation state of the robot changes, the
robot goes into a certain action state chosen randomly ac-
cording to the probabilities of ΛA. It draws durations, in
independent draws, for all the control variables values ac-
cording to the Gaussian probability distributions defined by
ΛAD and ΛASD and starts a count down to implement these
durations. When the situation state of the robot does not
change but one of the control variable values reaches the
end of its randomly assigned number of time steps, the robot
goes into another action state chosen randomly, according to
the probabilities of ΛA, among all action states which have
the same values for all the other control variables and a dif-
ferent value for the control variable which is due for a change.
It draws a duration for this new control variable value ac-
cording to the probability distributions defined by ΛAD and
ΛASD. So switches from one action state to another can be
triggered both externally, by a change of situation state, and
internally, by the reaching the end of some control variable
value life span. When the log file shows a such a switch
happening independently of these two conditions, it corre-
sponds to a change of strategy. Changes of strategy are
defined by a subset of situation states, either of which trig-
gers the change, by a consecutive sequence of situation states
belonging to this subset, or by a time limit assigned to each
consecutive strategy. When a strategy is reproduced from
a given log file, the probabilities of transitions which never
occurred can be set to zero and the corresponding values of
ΛAD and ΛASD left undefined.

This definition of a strategy resembles a Hidden Markov
Model (HMM). Our ΛA corresponds to the confusion ma-
trix of a HMM. But we have no internal state transition
matrix, it is replaced by two external matrices, grounding
every internal transition probability into the external con-
text and time. This also removes the need for the vector
of initial internal state probabilities. Another difference is
that the count down mechanism makes the internal state of
the system dependant not only upon the previous internal
state, nor upon any fixed number of previous states, but
upon a variable number of previous states. Our two ex-
ternal matrices ΛAD and ΛASD models the variability over
time intrinsic to human behaviour. In every day speech, a
”robotic behaviour” has come to mean an inhumanly rigid
and repeating behaviour. Our goal being to learn human
problem-solving strategies our model needed this flexibility
over time. Moreover, we believe that this flexibility is one
of the advantages humans have over robots, an advantage
which contributes to making humans more efficient in real-
life situations. ΛAD and ΛASD also have“the opposite effect”
as they enable the robot to “remember what it is doing” and
so preclude erratic behaviour.

Brute force mimicking of a human strategy according to
this definition of a strategy would be trivial (the matrices
can be filled by counting the relevant occurrences in the
log file corresponding to the strategy of this human) but it
would also be intractable in any but the most basic settings
and it would require very large log files. Luckily strong
simplifications are possible without deterring from human-
like behaviour. In a complex situation these simplifications

Figure 2: 10 minutes robot run in a maze

cannot be hand-crafted, they can only be achieved through
the use of machine learning algorithms. Our definition has
an inherent simplicity in that it only takes into account the
influences of situation variables upon action variables. The
influences of action variables upon situation variables are not
part of our definition of a strategy. The influences of action
variables upon situation variables describe the maze and not
the strategy. One simplification is to limit the length of the
vectors of E, another is to eliminate all task-achievement-
irrelevant behaviours (even if the psychologists find them
meaningful). Attribute construction and attribute selection
algorithms were used to build and select useful descriptors.

6. RESULTS
We consider that the fact that some human problem-

solving strategies are learnable is more important than the
actual strategies being learnt here.

The purpose of the volunteers was to find the treasure, so
their performance in terms of time to achievement and/or
ground coverage depended too much upon the original loca-
tion of the treasure for performance comparisons to be made.
We only had the logs of ten human runs. Each human only
went through a maze once. They did not all go through
the same maze. Three humans definitely did not spend all
their time in the maze searching for the treasure. The logs
of “performant humans” do not generate better controllers.
In fact in one case it was quite the opposite. On average
the humans took 11’32” to find the treasure. Our controller
induced from the combined logs of all humans reached be-
tween 78% and 94% of all reachable squares (ground and
tables) at least once after 10 minutes, depending on maze
size and complexity. But concluding that, given uniformly
random treasure locations, the robot did better than the
humans would be, to say the least, premature. Given these
facts and lack of human-related data we regretfully forwent
comparison measurements.

Our program can read the log file of any individual hu-
man volunteer and automatically translate it into an imple-
mented robotic strategy. But the results we give here are
the results of the program generated from all logs joined to-
gether. Fig.2 records the track of such a run of our program
in a maze. The unreached squares, about 14%, are the ones



which are part of the (white) ground and not touched by the
track. We could also have unreached squares on the tables,
though this is not the case here: the robot went at least once
along a side (or both) of all table-made “maze walls” and ex-
plored them all (the track shows the position of the body of
the robot, not the position of the hands). The settings for
the following were the four mazes from which one or several
logs had been drawn, and six extra (invented) mazes used
for testing purposes.

• The performance was not better in the “known”mazes
than in the invented mazes, showing that the strategies
had really been abstracted from their original settings.

• All tables had been explored after at most 11 minutes
(scale and speed corresponding to the real settings).

• On average, 83% of the tables had been explored after
3 minutes.

• Dividing the ground in squares 20 pixels across5, which
corresponds to the average “width” of a human as seen
on the videos, between 78% and 94% of all reachable
squares had been reached at least once after 10 min-
utes, the actual average values varying according to
maze size and complexity.

• These percentages increase with run duration.

Our goal was to show that the strategies of humans in a
problem-solving situation are learnable, not to implement an
efficient sweeper. We were pleased to see that the psycho-
logical bias “bottles are on tables and not on the ground”
was learnt by our robot. We consider this a success even
though it detracts from search efficiency when the treasure
is on the ground.

For an example of possible practical application let us
consider the vacuum-cleaner again. An elderly user always
switches it off when the telephone rings, the better to hear.
For the robot this is an unmistakable change of strategy be-
cause it goes from cleaning to idle. Automated feature ex-
traction and selection would quickly learn the correlation be-
tween this change of strategy and its trigger, so once taught
the robot would stop when the telephone rings and resume
its work when the user puts the receiver down again.

7. CONCLUSION
The primary purpose of this work is showing that humans

when they are in position of solving a problem make use of
strategies that can be analysed and transferred to a robot.
Obviously, it could be possible to reproduce the exact be-
haviour of the observed humans and we have the “robotic
simulations”which do so, (noise excepted). These traces are
very useful in order to compare what a “real human” does
with what a “simulated human” does but they are useless to
robotics since the humans are always observed in a partic-
ular setting and the slightest change in this setting would
make the trace useless. Nor are they very useful to the
psychologist since they are nothing more than a digitalised
version of the video we started from. This is why it is neces-
sary to analyse the human behaviour and to generalise it to
problem solving strategies that can applied in any setting,

5Due to lack of scaling we used pixels for our distance unit.
20 pixels roughly correspond to 30 cm.

and to other problems as well, as long as these strategies are
meaningful for the new problem.
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