
Concerning a Rational System-level Design Methodology
for Autonomous Robotic Systems

Lars Dalgaard
∗

Danish Technological Institute
Centre for Robot Technology

Forskerparken 10
DK-5230 Odense M

Denmark
lars.dalgaard@teknologisk.dk

John Hallam
Maersk McKinney Moller Institute
University of Southern Denmark

Campusvej 55
DK-5230 Odense M

Denmark
john@mmmi.sdu.dk

ABSTRACT
As autonomous robotic systems become inherently more complex
it becomes increasingly clear that ad-hoc design methods will fail
to deliver predictable and guaranteed performance. This paper mo-
tivates the need for a rational system design process and gives the
necessary properties and structure such a process must have.

1. INTRODUCTION
The field of robotics is inherently interdisciplinary covering most

areas of the natural sciences and even various aspects of project
management and social sciences. Each natural science discipline
has through the past decades been the focus of intense research
and has, at an ever growing pace, introduced increasingly more so-
phisticated and complex components to the market, supporting the
equally growing demands for new consumer, service and industrial
robot solutions. A large number of these solutions will in the fu-
ture be based on mobile robots capable of autonomous behaviour
in some specific context, be it household cleaning, the mowing of a
golf course or the transportation of units in a hospital.

Traditionally mobile robots have been applied in two main sce-
narios: 1) As “simple” transportation units in structured environ-
ments – for example factory floors – or 2) as research platforms
conceived in laboratories for the testing of various research specific
components – for example new navigation systems or controller ar-
chitectures. The new generation of mobile robots placed in unstruc-
tured and possibly unknown environments, have very specific tasks
to carry out, and are constrained in various ways by firm require-
ments of safety, social and legal compliance, stability, robustness,
maintainability, operability, cost, and the obvious performance cri-

∗LD is an Industrial PhD student at the Danish Technological In-
stitute, Centre for Robot Technology, Odense, Denmark, with JH
as university supervisor. LD is partially funded by stipend number
76303 from the Danish Council for Technology and Innovation.

c©Lars Dalgaard, John Hallam, 2009
Published by the British Computer Society
Beyond Gray Droids: Domestic Robot Design for the 21st Century
Workshop of HCI2009, September 2009, Cambridge, UK.

teria. In essence, the field of mobile robotics is shifting from a pure
mechatronic domain to a more socio-technical domain where peo-
ple who use and interact with the robots, the operational processes
and the emergent properties of the systems as a whole become cru-
cial. In this paper we refer to the constellation of the autonomous
robots, their users, the environment in which they work and the
tasks they carry out as an autonomous robot system; and, if the
context is of a more service or industrially oriented character, as an
autonomous robotic system abbreviated as ARS.

Today when robot researchers and developers have to conceive
and design a new robot, the process is often guided by several “lo-
cal” design approaches each linked to a specific domain, resulting
in a natural focus on the components of the system rather that on
the system as a whole. These traditional “component design ap-
proaches” are often sufficient when designing only parts of a sys-
tem solution but, if a complete robot- or robotic system has to be
conceived, chances are that the inevitable integration process will
be guided solely by experience and ad-hoc approaches. In our ex-
perience this practice often leads to systems which do not obey their
initial system requirements and may in the worst case result in a to-
tal project collapse – this, of course, depending on the complexity
of the system.

As more and more robots enter our homes and become integral
parts of service units in hospitals, social and legal compliance has
to be guaranteed by the provider. Such issues cannot easily be ad-
dressed after a robot has been devised but need to be an inherent
part of the design from the beginning. In these cases the need for a
rational system design process becomes particularly pressing.

The ad-hoc robot design approach is therefore no longer suffi-
cient and an approach is needed that is able to balance the design
(or choice) of the system’s physical robot(s) and their components,
their working environment, and the task they are required to solve,
under the constraints imposed by the requirements of both the sys-
tem and component levels. This view point is essential since only
by keeping the design focus at the system-level whilst handling the
component level can a design be conceived which can account for
the tangled interdisciplinary interactions inherent in robotic sys-
tems.

The purpose of this paper is to offer the initial steps towards de-
vising a rational design methodology for ARSs. This paper will
focus mainly on the necessary properties and structure of such a
design methodology and only lightly deal with how to apply it in



real-life. This issue will be addressed more thoroughly in later pub-
lications.

The structure of this paper is as follows: Section 2 provides an
overview of relevant previous work in system design, Section 3
outlines the necessary properties of the proposed robotics design
methodology, Section 4 presents the resulting structure of the de-
sign methodology and Section 5 presents a comparison to existing
methods and methodologies. Section 6 sums up the results and in-
dicates what future work needs to be done.

2. PREVIOUS WORK
This section gives a short overview of some of the system-level

design methods and methodologies that are used in scientific disci-
plines directly related to the field of robotics.

Software Engineering has a long history of broad systems-level
thinking where user-interfaces, maintenance and economic consid-
erations alongside the actual design of the software functionality
often are key issues. Examples can be found by regarding for ex-
ample the field of Object Oriented Analysis and Design (OOAD)
[10] and Extreme Programming [3].

In the design of digital electronics and embedded systems con-
taining for example Field Programmable Gate Arrays (FPGA) and
micro-controllers, various system-level design methods exist. An
example is an UML-based design methodology for real-time and
embedded systems presented in [6].

In (traditional) Robotics- and Control Engineering, some broader
system-level approaches exist but they are mostly concerned with
designing kinematic configurations of modular robots to suit given
application contexts, as is for example the case with the work of
Farritor et. al. [8] and Paredis [13]. Other approaches more focused
on the mechatronical parts of systems can be found in for example
[7] and [5].

Within the field of Systems Engineering several systems-level
methods do exist, for example [1, 2, 12, 18, 9], but have, to the best
of our knowledge, not yet been directly applied to the robotics field
at least with results accessible to the public.

The field of Product Development has traditionally much fo-
cus on the system-level as its development models treat all aspects
from concept development to product maintenance [19]. Some
commonly used tools hereof, such as Quality Function Deploy-
ment (QFD) [16], have been applied to robotics systems, for ex-
ample [17]. However, we have found no references to complete
robotic systems being developed solely using product development
methodologies.

Only relatively few disciplines within the robotics research com-
munity seem to have actually dealt with system-level oriented de-
sign approaches for designing complete ARSs, and most of this
work is based on the design and evolution of the robots’ controller
architecture or the controller itself as is the case for many disci-
plines within the AI field (see for example [4] for a discussion). Of
these, Embodied AI is possibly the discipline with the focus closest
to ours (see for example [15]).

Based on this brief outline of different design methods and method-
ologies and on our personal experiences, we do not believe that an
actual system-level design methodology for complete ARSs has yet
been devised.

3. PROPERTIES OF THE METHODOLOGY
The overall aim is a design methodology which will facilitate the

design task by equipping the robotic system designer with tools and
guidelines that allow him/her to transform 1) the task to be carried
out, 2) the environment in which the system must operate and 3) the
imposed constraints, into a process description leading to sufficient
system designs meeting the initial requirements.

The process description will consist of techniques from vari-
ous scientific fields facilitating a rational system-level design pro-
cess while concurrently managing the organisational aspects of the
project. The sufficient system designs will consist of sets of design
recommendations of the robot(s) needed, of its/their functional de-
sign, of the possible alteration of the environment and of the pos-
sible adaptation of the initial task specification. These recommen-
dations will describe different scenarios leading to solutions of the
initial problem.

The overall structure of the design methodology is sketched in
Fig. 1, where the altered Environment and the adapted Task are
denoted Environment* and Task* respectively.

Environment

Task

Design Process

Environment *

Task*

Robots
Requirements

Problem Designs

Figure 1: The overall structure of the design methodology.

In order to ensure that the proposed design methodology will
provide the necessary means to handle effectively a design pro-
cess that results in sufficient system designs, its structure must
be well established. Seeking inspiration in Software Engineering,
Mathiassen et. al. [11] state that a design process is about balancing
the choice of a mode of operation, which can be either analytical
or experimental, and a choice of means of expression, which can
be either specifications or prototypes. Mathiassen et. al. summarise
their results in what they call “The Principle of Limited Reduction”
where they argue that a successful design process of a complex
(software) system has to comprise both analytical and experimen-
tal modes of operation and both specifications and prototypes as
means of expression. We believe this principle applies equally well
to the design of ARSs and it can therefore be used as a basis for
comparing and combining different design approaches.

We have identified 12 criteria that we deem essential of a rational
design methodology for ARSs where the first ten criteria concern
the design process level and the last two the system design level.
Each of the criteria will be presented in the following along with a
brief elaboration on their background.

1. Facilitate a rational design process: A design process be-
ing rational implies that every step taken is always on the
optimal path to the goal. Such processes obviously only ex-
ist in theory, however, it is possible to fake one by following
the ideal process as closely as possible and producing the
documentation we would have produced had it indeed been
rational [14].

2. Facilitate iterations: Developing component prototypes and
conducting experiments are integral parts of a robotic sys-
tem design process as this is often the only way to gather
the necessary information needed to make rational decisions.
Iterations are therefore imperative to the design process.

3. Offer the means to evaluate the fitness of a design: A way
of evaluating the fitness of a given system design is imper-



ative. Such a measure will enable a continuous tracking of
the overall design progress thereby facilitating that the design
process can be kept as rational as possible.

4. Facilitate collaborative design: Often several partners have
to collaborate in the design and construction of a robotic sys-
tem due to its inherently interdisciplinary nature. The means
to establish what competences are needed to carry out a par-
ticular project are therefore necessary in a design methodol-
ogy.

5. Facilitate prototypes and experimental setups: Prototypes
and experimental setups often create undesired branches in a
project process. The design methodology must therefore in-
corporate the means to determine what type of physical con-
struction is feasible at any given point during the process.

6. Produce process deliverables: It is imperative to produce
sufficient deliverables at the end of each design increment,
containing at least the process documentation, the design doc-
umentation and possibly any constructed prototypes.

7. Facilitate different design tools: The design methodology
should provide flexible interfaces to allow easy employment
of project specific design tools needed during the design pro-
cess.

8. Be easy to explain and use: The structure of the method-
ology, its tools and the project specific tools constitute the
actual design method, and it is important that the individual
design tasks can be readily communicated to and understood
by the people actually carrying them out.

9. Allow for different levels of generalisation: The design
methodology should support the development of robotic sys-
tems with various levels of generalisation, that is, from sys-
tems comprising generic robot platforms to systems compris-
ing highly specialised robot platforms.

10. Allow for different levels of autonomy: The design method-
ology should support solutions employing different levels
of autonomy, that is, from systems comprising remote con-
trolled robots to systems comprising fully autonomous robots.

11. Give a set of solutions: Designing a robotic system is a
complex task and may naturally result in several feasible de-
sign solutions obeying the initial requirements and solving
the task. The design methodology should be able to produce
these sets of solutions and not discard solutions prematurely.

12. Produce design documentation: Since the design process
is rational, the design documents delivered at the end of the
design process reflect a rational design process, meaning a
recipe showing how to progress from the initial analysis to
the final design in a single pass, thus masquerading as a
strictly sequential process.

4. STRUCTURE OF THE METHODOLOGY
In order to be a useful tool for the robotic system designer the de-

sign methodology must provide a homogeneous and rational con-
text setting in which both the design process and the actual design
can be represented. That means that the various components of the
methodology need to have clear interfaces to neighbouring compo-
nents in order to guarantee an unambiguous, yet adaptable, method-
ology.

A natural choice is to divide the process into phases representing
the sequential flow of the incremental process. Each phase may
have several iterations internally and will at the end produce a set
of deliverables comprising documentation, prototypes and possibly
components. This overall structure is sketched in Fig. 2.

Deliverables

Environment *

*Task

Robots

Environment

Task

Deliverables Deliverables

Phase 2 Phase N DesignPre−phase

Requirements

Problem Phase 1

Figure 2: The phases of the design methodology

Table 1: A comparison of our design methodology to other
system-level design methods

U
P

W
M

SM X
P

N
A

SA

D
oD

IN
C

O
SE

SM
C

C.1 × × × × × × ×
C.2 × × × × × × ×
C.3 × × × ×
C.4 × × × × × × ×
C.5 × × × × × ×
C.6 × × × × × × × ×
C.7 × × × × × × × ×
C.8 × × ×
C.9 × × × × × × × ×
C.10 × × × × × × × ×
C.11 × × × ×
C.12 × × × × × × × ×

An initial phase, pre-phase, is needed to process the information
from the problem domain and make preliminary analysis needed
throughout the design process – for example stakeholder analysis
and analysis of the competences needed for realising the project.
The information will also help set up the management structure of
the project.

The subsequent phases, Phase 1–Phase N, will each comprise
the disciplines needed to carry out the design process for the sys-
tem in question. Several standard tools and methods from Product
Development, Systems Engineering and Software Engineering can
easily be used to handle the more general process specific tasks
such as customer requirements, test and experiment planning, and
project management, alongside the more domain specific tasks like
simulations tools, CAD applications and rapid prototyping equip-
ment. Also a per-system customisation will often be required in
order to accommodate, for instance, project specific requirements.
If a robotic system based on mobile robots is to be realised such
that it can carry out tasks in the home of a disabled person, knowl-
edge regarding, for example, the design, construction and control
of specialised grasping equipment may be crucial. Tools to support
this will be directly applicable in the design methodology.

5. COMPARISONS
As presented in Section 2, Previous Work, not much work has

been done previously in rational system-level design methodolo-
gies or methods for robotic systems. However, many contributions
exist in the related fields of Software Engineering and Systems En-
gineering. Both have for many years contributed to theory and
practice on methods and methodologies and thus form a natural
basis of comparison to our proposal.

Eight methods have been chosen for comparison: The Unified
Process (UP), the Waterfall model (WM), the Spiral model (SM),
Extreme Programming (XP), NASA’s-, DoD’s-, INCOSE’s- and
SMC’s Systems Engineering methodologies. In Table 1 each method
is evaluated with respect to the required properties presented in
Section 3, and are marked with an “×” if the method supports the
property.

The comparison reveals that within Software Engineering, the



Unified Process (UP) and Extreme programming seem to be the
methods fulfilling the criteria best. The Waterfall model falls through
and the Spiral Model is more of a reference model than a fixed
model – it can therefore be adapted to the required needs.

Within Systems Engineering, the identified test methodologies
are actually all full development models that all deal with the re-
quired criteria in more or less the same way. However, their ap-
plication scope being very broad and primarily dedicated to high-
performance military equipment, potentially makes them cumber-
some to apply in our context. This does not disqualify them in any
way, but our impression is that as our research progress we will find
specific issues that call for more dedicated design methodology.

The conclusion is, that methods and methodologies exist in both
Software Engineering and Systems Engineering that may be used
and adapted – at least partially – to the design of ARSs. That im-
plies that several concepts, methods and ideas from the test cases
will help shape our methodology and may well become directly
part of its final tool box.

6. CONCLUSIONS AND FUTURE WORK
This paper makes a first contribution towards the realisation of a

rational design methodology for autonomous robotic systems. We
have argued that such a methodology is increasingly necessary as
robotic systems are targeted toward more complex tasks and en-
vironments. We have presented the properties required of such a
methodology and have proposed a structure that will support them.
The structure is based on an iterative development model imple-
mented as several sequential phases each containing one or more
development iterations, producing deliverables comprising docu-
mentation, prototypes and possibly components.

We have compared our methodology to eight existing methods
and methodologies from Software Engineering and Systems Engi-
neering and have concluded that no one existing method will suffice
in our case. However, several concepts, methods and ideas from
some of them may well become part of the final design methodol-
ogy tool box.

Much work is still needed before a finished design methodology
is ready. The next period of our research will be concentrated on
refining the methodology by 1) establishing more specifically what
the design phases shall contain, 2) conducting further work on the
proposed design tool and the knowledge representations support-
ing it, and 3) choosing a representation of the task, environment
and requirements used as input parameters to our methodology, and
transforming them into processable information.

From there the focus will be mainly on robotic systems contain-
ing mobile robots as part of the design solution. This is to focus our
work effort and create a more well-defined basis for real-world test
cases. It is our belief that only through field tests can our design
methodology really prove its worth.

We are also currently in the process of developing a design tool
that will aid the robotic system designer in rationally selecting phys-
ical system components by allowing her/him to easily observe their
system wide impacts. We expect this tool to become a natural part
of the tool-box when designing future ARSs.

7. REFERENCES
[1] Systems Engineering Handbook: A "How to" Guide For All

Engineers. International Council on Systems Engineering
(INCOSE), second edition, July 2000.

[2] SMC Systems Engineering Primer & Handbook. Concetps,
Processes, and Techniques. Space & Missile Systems Center,
U.S. Air Force, third edition, April 2005.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Pearson Education, Inc., publishing as Addison
Wesley Longman, 2000.

[4] P. M.-O. celik and A. K. Mackworth. Situated Robot Design
with Prioritized Constraints. In Proceedings of the
International Conference on Intelligent Robots and Systems
(IROS) 2004, Sendai, Japan, 2004.

[5] P. Coste, F. Hessel, P. L. Marrec, Z. Sugar, M. Romdhani,
R. Suescun, N. Zergainoh, and A. A. Jerraya. Multilanguage
Design of Heterogeneous Systems. In Proceedings of the
Seventh International Workshop on Hardware/Software
Codesign, 1999. (CODES ’99), pages 54–58, 1999.

[6] G. de Jong. A UML-Based Design Methodology for
Real-Time and Embedded Systems. In Proceedings of the
2002 Design, Automation and Test in Europe Conference and
Exhibition (DATE’02), pages 776–779, March 2002.

[7] C. W. de Silva. Mechatronics: An Integrated Approach. CRC
Press, 2005.

[8] S. Farritor, S. Dubowsky, N. Rutman, and J. Cole. A
Systems-Level Modular Design Approach to Field Robotics.
In Proceedings of the 1996 IEEE International Conference
on Robotics and Automation, volume 4, pages 2890–2895,
Minneapolis, MN, USA, April 1996.

[9] D. K. Hitchins. Systems Engineering: A 21st Century
Systems Methodology. Wiley Series in Systems Engineering
and Management. John Wiley & Sons, Ltd, 2007.

[10] L. Mathiassen, A. Munk-Madsen, P. A. Nielsen, and J. Stage.
Objekt Orienteret Analyse og Design. Marko, Aalborg,
Denmark, 1998.

[11] L. Mathiassen and J. Stage. Information, Technology and
People, volume 6, chapter The Principle of Limited
Reduction in Software Design. 1992.

[12] NASA. NASA Systems Engineering Handbook. Technical
report, NASA, June 1995.

[13] C. J. J. Paredis. An Agent-Based Approach to the Design of
Rapidly Deployable Fault Tolerant Manipulators, August
1996.

[14] D. L. Parnas and P. C. Clements. A Rational Design Process:
How and Why to Fake It. IEEE Transactions on Software
Engineering, SE-12(2):251–257, february 1986.

[15] R. Pfeifer. Building Fungus Eaters: Design Principles of
Autonomous Agents. In Maes, Mataric, Meyer, Pollack, and
Wilson, editors, Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior, 1996.

[16] J. B. ReVelle, J. W. Moran, and C. A. Cox. The QFD
Handbook. John Wiley & Sons, Inc., 1998.

[17] C. G. Sørensen, R. N. Jørgensen, J. M. Pedersen, and
M. Nørremark. Hortibot: Application of Quality Function
Deployment (QFD) Method for Horticultural Robotic Tool
Carrier Design Planning. Presentation at the 2006 American
Society of Agricultural and Biological Engineers (ASABE)
Annual Meeting, July 2006.

[18] D. o. D. Systems Management College. Systems Engineering
Fundamentals. Defense Acquisition University Press, Fort
Belvoir, Virginia 22060-5565, January 2001. Supplementary
text.

[19] K. T. Ulrich and S. D. Eppinger. Product Design and
Development. McGraw-Hill, fourth edition, 2008.


