TECHNISCHE UNIVERSITÄT WIEN Vienna Austria

WIEN

Institute of Computer Engineering Cyber-Physical Systems Group

From Artificial to Biological Neural Networks and Back

Radu Grosu

Parallel Parking: Deterministic Algorithm

while $(x > x_0)$ go back; Not smart/robust while $(\theta > \theta_0)$ turn; Optimization tough • Sliding problem

Optimization goal: Learn $\mathbf{x}_0, \mathbf{\theta}_0, \dots$

Parallel Parking: Deterministic Algorithm

while $(x > x_0)$ go back; while $(\theta > \theta_0)$ turn;

Not smart/robust

- Too restrictive
- Many correct solutions

Optimization goal: Learn $\mathbf{x}_0, \mathbf{\theta}_0, \dots$

Parking: where our journey starts

(http://www.bbc.com/news/magazine-22350646)

When we park:

- do it differently
- adapt to environment

What can we learn from biological systems to do better engineering?

Capturing freedom: Neural Network

Neural-Program Controller

Ontology O: NN of guard dependencies

• nwhile: Between neural-switch decisions

nwhile $(x > x_0, \sigma_1)$ go back; nwhile $(\theta > O_{\theta}(x), O_{\sigma}(x))$ turn;

Gaussian-Bayesian Network to learn the parameters

Parallel Parking: Neural Program Sketch

```
nwhile(currentDistance < targetLocation1, sigma1){</pre>
  moving();
  currentDistance = getPose();
  }
updateTargetLocations();
nwhile(currentAngle < targetLocation2, sigma2){</pre>
  turning();
  currentAngle = getAngle();
  }
updateTargetLocations();
nwhile(currentDistance < targetLocation3, sigma3){</pre>
  moving();
  currentDistance = getPose();
  }
```


Neural-Program: Learning

- 1. Convert the GBN to a MGD (multivariate Gaussian distr.)
- 2. Update the covariance matrix Σ^{-1} of the MGD
- 3. Extract sigmas and b_{ij} s from precision matrix $T = \sum^{-1}$

Neural-Program: Learning

Iterative learning procedure:

Incrementally update mean and covariance matrix of the prior

Covariance update:

$$\mathbf{s} = \sum_{h=1}^{m} (\mathbf{x}^{(h)} - \overline{\mathbf{x}}) (\mathbf{x}^{(h)} - \overline{\mathbf{x}})^{\mathsf{T}}$$
$$\mathbf{s}_{m+1} = \mathbf{s}_{m} + (\mathbf{x}^{(m+1)} - \overline{\mathbf{x}}_{m}) (\mathbf{x}^{(m+1)} - \overline{\mathbf{x}}_{m+1})^{\mathsf{T}}$$
$$\mathbf{T}^{-1} = \mathbf{s}$$

Pioneer Rovers: Normal2, Water, Paper

Emergent Behavior in Cardiac Cells

Arrhythmia afflicts more than 3 million Americans alone

Excitable Cells

Generate action potentials (elec. pulses) in response to electrical stimulation

• Examples: neurons, cardiac cells, etc.

Local regeneration allows electric signal propagation without damping

Building block for electrical signaling in brain, heart, and muscles

Neurons of a squirrel University College London

Artificial cardiac tissue University of Washington

Single Cell Reaction: Action Potential

Schematic Action Potential

Threshold

Good Old Artificial Neural Networks (2nd generation)

Combinational Circuit

$$V_{1} \rightarrow W_{1} \rightarrow \Phi_{\sigma,\mu}(\sum_{k=1}^{n} W_{k}V_{k})$$

$$V_{n} \rightarrow W_{n} \rightarrow artificial neuron$$

p("0″ p("9" Memoryless Circuit

 $\Phi_{\sigma,\mu}$ nonlinear activation function

artificial neural networks

C.Elegans as a Model Organism

Human Brain

- 86 billion neurons
- 10 trillion synapses
- 25000 genes

C Elegans Nervous System

- 302 Neurons
- ~7000 synapses
- 20000 genes
- Known connectivity

Striking Similarity

- Neuro-transmitter
- Ionic Channels
- Developmental genes

C.Elegans: Tap Withdrawal Response

Wicks et al., 1996

C.Elegans: Neuronal Dynamics

Modeling Neuron

Leakage current

Current flowing out of neuron *i* given by:

$$I_{leak_i} = g_l(V_{leak_i} - V_i)$$

 g_i : leakage conductance of neuron *i*

 V_{leak_i} : leakage voltage of neuron *i*

• Gap-Junction

current flowing from neuron *j* to neuron *i* is given by:

$$\hat{I}_{ij} = \hat{\omega}_{ij} \hat{g} (V_j - V_i)$$

 \hat{g} : maximum gap junction conductance

 $\hat{\omega}_{_{ij}}$: number of gap-junction connections

Modeling Neuron

Chemical Synapse

Synaptic current flowing from pre-synaptic neuron *j* to post-synaptic neuron *i* is given as:

$$I_{ij} = \omega_{ij}g_{ij}(V_j)(E_j - V_i)$$
$$g_{ij}(V_j) = \frac{\overline{g}}{1 + e^{-4.39(\frac{V_j - V_{EQ_j}}{V_{RANGE}})}}$$

- E_i : Reversal potential for synaptic conductance of neuron *j*
- \overline{g} : maximum synaptic conductance
- V_{EQ_i} : Equibrium potential of V_j

 V_{RANGE} : Voltage range over which synapse is activated

 ω_{ii} : number of synaptic connections

Model for TW Circuit

The dynamic of i-th neuron of TW circuit:

$$C_{m_i} \frac{dV_i}{dt} = I_{leak_i} + \sum_{j=1}^N \hat{I}_{ij} + \sum_{j=1}^N I_{jj} + I_{stim}$$

 $I_{leak_{i}} = g_{l}(V_{leak_{i}} - V_{i}) \text{ (Leakage Current)}$ $\hat{I}_{ij} = \hat{\omega}_{ij}\hat{g}(V_{j} - V_{i}) \text{ (Gap-junction current)}$ $I_{ij} = \omega_{ij}g_{ij}(V_{j})(E_{j} - V_{i}) \text{ (Synaptic current)}$ $g_{ij}(V_{j}) = \frac{\overline{g}}{1 + \exp(-4.39(\frac{V_{j} - V_{EQ_{j}}}{V_{RANGE}}))}$

- C_m : Capacitance of neuron i
- I_{stim} : Stimulus current applied only to

sensory neurons

Circuit Output

$$\mathbf{Y} = \int_{T_i}^{T_f} (V_{AVB} - V_{AVA}) dt$$

 T_i : start time of stimulation T_f : end time of stimulation

Y >> 0: ReversalY << 0: AccelerationY ~ 0: No Response

Model Checking for C.Elegans

Given

- M(x,p) mathematical model of TW circuit
- x state vector
- *p* parameter vector

Find

• range of *p* s.t. $M(x,p) \models \phi$

Behaviors in Temporal Logic

Reversal:

$$\phi :: \forall t \in [T_i, T_f], V_{AVB}(t) > V_{AVA}(t)$$

• Acceleration:

$$\phi :: \forall t \in [T_i, T_f], V_{AVB}(t) < V_{AVA}(t)$$

No Response:

 $\phi :: \forall t \in [T_i, T_f], ||V_{AVB}(t) - V_{AVB}(0)|| < \delta \land ||(V_{AVA}(t) - V_{AVA}(0))|| < \delta$

Reach Tube Computation

Finite covers of initial set

Simulate from the center of each cover

Union of all such tubes gives an over-approximation of the reach set

Tap Withdrawal: ODE Simulations

Is nature like this?

Tap Withdrawal: Simulations with nwhile

Is nature like this?

How to account parameter variance in simulation?

Tap Withdrawal: Simulations with nwhile

Biological model: $\frac{dV^{(i)}}{dt} = \frac{V_{Leak} - V^{(i)}}{R_m^{(i)} C_m^{(i)}} + \frac{\sum_{j=1}^N (I_{syn}^{(ij)} + I_{gap}^{(ij)}) + I_{stim}^{(i)}}{C_m^{(i)}} \qquad 1: \text{ nwhile } (t \le t_{dur}, 0)$ $2: \text{ compute } I_{gap}^{(ij)} \text{ using equation } 2$ $I_{gap}^{(ij)} = w_{gap}^{(ij)} g_{gap}^{(ij)} (V_j - V_i) \qquad (2) \qquad 3: \text{ nwhile } (t \le w_{syn}^{(ij)}, 0)$ $I_{svn}^{(ij)} = w_{svn}^{(ij)} g_{svn}^{(ij)} (E^{(ij)} - V^{(j)})$ (3) 4)

$$g_{syn}^{(ij)}(V^{(j)}) = \frac{g_{syn}}{\frac{\kappa\left(\frac{V^{(j)} - V_{eq_j}}{V_{range}}\right)}}$$
(4)

Neural Program:

nif $(V^{(j)} \leq V_{eq}, K/V_{range})$ 4: $g_{svn}^{(ij)} \leftarrow g_{svn}^{(ij)} + g_{syn}$ 5: 6: compute $I_{syn}^{(ij)}$ using equation 3 7: compute $dV^{(i)}$ using equation 1 8: $V^{(i)} \leftarrow V^{(i)} + dV^{(i)}$ 9: $t \leftarrow t + dt$

We explicitly allow controllable variance in the program

Tap Withdrawal: Simulations with nwhile

Artificial versus Real Neurons

real neuron

$$\dot{V}_{i} = \sum_{k=1, k \neq i}^{n} \Phi_{\sigma_{k}, \mu_{k}}(V_{k}) W_{k}(\mathsf{E}_{ik} - V_{i})$$

Neural-Circuit Controller

Pioneer Rover with Neural Circuit Control

Automatic Parking inspired by part of the mechanosensory neural circuit

Pioneer Rover with Neural Circuit Control

Automatic Parking inspired by part of the mechanosensory neural circuit

Why is the entire circuit so complicated?

Why nature does not make it simple?

Why nature does not make it simple?

Cycles in Neural Circuit

Why is the entire circuit so complicated?

Why is the nervous system of the nematode designed by nature the way it is?

White, John G., et al. (1986)

Model of a Neuron

 $C \downarrow m dV/dt = -(I \downarrow Ca + I \downarrow K + I \downarrow SK + I \downarrow Leak) + \sum i I \downarrow Syn + I \downarrow gap + I \downarrow Stimul$

A. L. Hodgkin, et all. (1952), M. B. Goodman, et al. (1998), M. Kuramochi, et al. (2010)

Model of Synapses

 $I\downarrow syn = n\uparrow ij \ G\downarrow syn \ /1 + e\uparrow - (V\downarrow Pre - V\downarrow shift) \ /V\downarrow range \quad (E\downarrow syn - V\downarrow post) \\ I\downarrow gap = n\downarrow gap \ G\downarrow gap \ (V\downarrow pre - V\downarrow post)$

Model Implementation

Unpublished

The neuron

 $C \downarrow m \, dV/dt = -(I \downarrow Ca + I \downarrow K + I \downarrow SK + I \downarrow Leak) + \sum I \downarrow Syn + I \downarrow gap + I \downarrow Stimuli$

Model Implementation

Features:

- ✓ Monitoring the dynamics of every single ion channel current together with its parameters and specially observing dynamics of intracellular calcium concentration of a neuron.
- ✓ Easy access to the channel parameters such as lonic conductance, equilibrium potential of channels, gate rate functions, time constant of the activation and inactivation of a gate.
- Easy access to the membrane capacitance and resting potential of the neuron.
- ✓ capable of adding **stochasticity** to the system.

Unpublished

Model Implementation

The neuron – Response of a Single Neuron

Applying current stimuli to a single neuron and observing its membrane potential and its intracellular Calcium concentration

Model Implementation Synapses

Unpublished

Model Implementation Synapses

Features:

- $\checkmark\,$ Monitoring input voltage and output current of a synapse
- Easy access to the parameters of synapses such as: Number of synaptic connections between two neurons, Synaptic weight, Shift and range voltages of the synapse.
- ✓ Set the level of excitation and inhibition of a chemical synapse by varying E↓chem.

Unpublished

Neural Circuit Implementation

Tap-Withdrawal Circuit

File

0

Ready

IJi

Tools

4 View

10

28

PVC

ALM

2

Forward

AVM

Simulation Help

🔍 - 💮 -

AVB

AVA

10 21

<u>ک</u>

56

fluorescence intensity

Cyber-Physical-Systems Group

Unpublished

Spiking Neurons in Hardware (TrueNorth)

- How to capture leaky-integrate-and-fire (LIF) behavior in hardware?
- TrueNorth Neural Model from IBM:
- developed specifically for hardware implementation
- does not use floating point computations
- extends the LIF model

connections

TrueNorth: Extension of LIF Model

Synaptic Integration:

- Take into account outputs of other neurons
- Leak Integration
- Model energy loss over time (absence of input)

Threshold, Fire, Reset:

• Fire a spike if membrane potential exceeds threshold

TrueNorth: Extension of the LIF Model

Synaptic Integration:

- Weighted sum of inputs / probabilistic sum
- Integer weights

probabilistic flag random sample

$$V_j(t) \leftarrow V_j(t-1) + \sum_j in_j \left[(1-b_j)w_j + b_j \cdot F(w_j, \rho) \cdot \text{sgn}(w_j) \right]$$

Membrane Potential (integer)

weights

1st step of Neuron Computation

(Cassidy et. al. 2013)

TrueNorth: Extension of the LIF Model

Leak Integration:

- Standard / leak reversal mode
- Energy loss captured by leak weight

TrueNorth: Extension of the LIF Model

TrueNorth: Extension of LIF Model

Given

- TrueNorth Neuron Model
- MTL specification φ
- A run of a system

Build

Runtime monitor that checks φ using the TrueNorth model

Building Hardware Monitors with Neurons

Logical Operations with TrueNorth

Combinatorial behavior with TrueNorth Model:

- Impose memoryless behavior
- Find parameter values of neurons
- AND, OR, NOT, NAND, NOR require one neuron
- Example: find parameters for 3-AND

- n3 must fire only when n0, n1, and n2 fire
- Always reset n3 after computation (memoryless)
- Finding parameters can be stated as ILP

Logical Operations with TrueNorth

Temporal Operations with TrueNorth

Past STL with TrueNorth Model:

- Constraints analogous to previous (details in the paper)
- Composition of combinational & temporal operators
- Example: "n₁ since n₀" circuit with TrueNorth

"Monitoring of MTL Specifications with IBM's Spiking Neural Model", DATE 2016

MTL Monitoring with TrueNorth in Action

Efficient Modeling of a CMOS Band-Gap Reference Circuit Using Neural Networks

Band-Gap:

 Provides a constant 1V at its output

Trimming:

 3 digital inputs, 8 possible output values ranging from 0.8-1.2

Load Jump:

 variation of output in case of load

Line Jump:

change of the output as a result of variations on the power supply

VDD

Non-Linear Auto-Regressive Neural Network with exogenous Input (NARX)

Response of the designed NARX NN behavioral Models

2-Layer Stack Neural Network

Unpublished

Combining the developed behavioral models

Deep Structure:

6-Layer Time-Delayed Neural Network with 3 delay components

Test dataset response

- 3- input delay components
- layer 1: 50 neurons
- Layer 2-6: 10 neurons each

Unpublished

