
Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

(Mathematical) Logic for Systems Biology

Joëlle Despeyroux
INRIA & CNRS (I3S)

CMSB’2016, Cambridge, U.K.

Joint works with K. Chaudhuri (Inria Saclay), A. Felty (Univ.
of Ottawa), E. De Maria (Nice Univ.), C. Olarte & E. Pimentel
(Universidade Federal do Rio Grande do Norte, Brazil), P. Lio’

(Cambridge Univ.).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Motivation : Modeling and Analysis of Biological Systems

Specialized logistic systems (temporal logics: Computation
Tree Logic CTL∗, CTL, LTL, Probabilistic CTL,...)

Modeling in dedicated languages (stochastic π-calculus,
biocham, kappa, brane, ...) or in differential equations
↪→ transition systems

Express properties in temporal logic

Verify properties against Kripke models
or traces (→ external simulator)
↪→ model checking.

↪→ Reasoning is not done directly on the models.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

General Approach

An unified framework:

modeling systems of biochemical reactions as transition
systems: Linear Logic (LL)

transitions with (temporal, location, stochastic,...) constraints

modal extensions of LL: Hybrid Linear Logic (HyLL) or
Subexponential Linear Logic (SELL)

Both HyLL and SELL have a cut admitting sequent calculus,
focused rules, ... – modern logic

Proofs by induction and mechanized proofs: the Coq or
Isabelle proof assistant – future work: automatic proofs

proofs: Coq λ-terms containing HyLL/SELL proof trees

↪→ A logical framework(∗) for systems biology.
(*) A logic for encoding deductive systems and reasoning about them.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Outline

1 Motivation

2 Approach

3 HyLL

4 Example

5 Formal Proofs

6 vs Model Checking

7 SELL

8 HyLL and SELL

9 CTL in LL

10 Future Work

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Example

Activation:

Active(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ pres(b)).

Inhibition

Inhib(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ abs(b)).

Note. This is not Biocham/Kappa/...

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Linear Logic

Terms:

t, ... ::= c | x | f (~t) Ex: P53, ph(MAPK), complex(PER1, CRY1)

Propositions

A,B, ... ::= p(~t) | A⊗ B | 1 | A→B | A & B | > | A⊕ B | 0
!A | ∀x . A | ∃x . A

Ex: C(P53, 0.2), pres(x)⊗ abs(y)

Judgements are of the form: Γ; ∆ ` C , where
Γ is the unrestricted context

its hypotheses can be consumed any number of times.
∆ (a multiset) is a linear context

every hypothesis in it must be consumed singly in the proof.
C is true assuming the hypotheses Γ and ∆ are true
Ex: bio system; pres(x), abs(y) ` pres(z)

“C ” is a proposition, “C is true” is a judgement [Martin-Löf 83-96]

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Sequent Calculus for Linear Logic [1]

Judgemental rules:

Γ; p(~t) ` p(~t) [init]
Γ,A; ∆,A ` C

Γ,A; ∆ ` C
copy

Multiplicatives:

Γ; . ` 1 [1 R]
Γ; ∆ ` C

Γ; ∆, 1 ` C
1 L

Γ; ∆,A ` B

Γ; ∆ ` A→ B
[→R]

Γ; ∆ ` A Γ; ∆′,B ` C

Γ; ∆,∆′,A→ B ` C
[→L]

Γ; ∆ ` A Γ; ∆′ ` B

Γ; ∆,∆′ ` A⊗ B
⊗ R

Γ; ∆,A,B ` C

Γ; ∆,A⊗ B ` C
⊗ L

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Sequent Calculus for Linear Logic [2]

Additives:

Γ; ∆ ` T [T R] Γ; ∆, 0 ` C [0L]

Γ; ∆ ` A Γ; ∆ ` B

Γ; ∆ ` A & B
& R

Γ; ∆,Ai ` C

Γ; ∆,A1 & A2 ` C
& Li

Γ; ∆ ` Ai

Γ; ∆ ` A1 ⊕ A2
⊕ Ri

Γ; ∆,A ` C Γ; ∆,B ` C

Γ; ∆,A⊕ B ` C
⊕ L

Exponentials:
Γ; . ` A

Γ; . ` !A
!R

Γ,A; ∆ ` C

Γ; ∆, !A ` C
!L

Proofs are proof-trees, eventually including recursion (not described
here).

Pure syntactic part of logic; no models.
Sequent calculus is ideally suited for proof-search [Gentzen 1935-1969]

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Example

Activation:

Active(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ pres(b)).

Inhibition

Inhib(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ abs(b)).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Hybrid Linear Logic [1]

HyLL

Add a new metasyntactic class of worlds, written ”w”:

Definition

A constraint domain W is a monoid structure 〈W , ., ι〉.
The elements of W are called worlds, and
the partial order � : W ×W —defined as u � w if there exists
v ∈W such that u.v = w—is the reachability relation in W.

The identity world ι, �-initial, represents the lack of any
constraints: ILL ⊆ HyLL[ι] ⊂ HyLL[W].
Ex: Time: T = 〈IN,+, 0〉 or 〈R+,+, 0〉

J. D. and Kaustuv Chaudhuri.
A hybrid linear logic for constrained transition systems.
In Post-Proceedings of TYPES’2013, 2014.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Hybrid Linear Logic [2]

Make all judgements situated at a world : A @ w
A is true at world w

Judgements are of the form:
Γ; ∆ ` C @ w ,

where Γ and ∆ are sets of judgements of the form A @ w

All ordinary rules continue essentially unchanged:

Γ; ∆,A @ w ` B @ w

Γ; ∆ ` A→ B @ w
[→R]

Γ; ∆,A @ u ` C @ w Γ; ∆,B @ u ` C @ w

Γ; ∆,A⊕ B @ u ` C @ w
⊕ L

· · ·

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Hybrid Connectives

Make the claim that “A is true at world w”
a mobile proposition in terms of a satisfaction connective:

Propositions:

t ::= c | x | f (~t)
A,B, ... ::= . . . | A at w | ↓ u. A | ∀u. A | ∃u. A

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Satisfaction

To introduce the satisfaction proposition (A at u) (at any
world v), the proposition A must be true in the world u:

Γ; ∆ ` A @ u

Γ; ∆ ` (A at u) @ v
at R

The proposition (A at u) itself is then true at any world, not
just in the world u.

i.e. (A at u) carries with it the world at which it is true.
Therefore, suppose we know that (A at u) is true (at any
world v); then, we also know that A @ u:

Γ; ∆,A @ u ` C @ w

Γ; ∆, (A at u) @ v ` C @ w
at L

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Localisation

The other hybrid connective of localisation, ↓ u. A, is intended
to be able to name the current world:

If ↓ u. A is true at world w , then the variable u stands for w
in the body A:

Γ; ∆ ` [w/u]A @ w

Γ; ∆ `↓ u.A @ w
↓ R

Suppose we have a proof of ↓ u.A @ v for some world v ;
Then, we also know [v/u]A @ v :

Γ; ∆, [v/u]A @ v ` C @ w

Γ; ∆, ↓ u.A @ v ` C @ w
↓ L

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Properties of the Sequent Calculus System [1]

Lemma

1 If Γ; ∆ ` C @ w, then Γ, Γ′; ∆ ` C @ w (weakening)

2 If Γ,A @ u,A @ u; ∆ ` C @ w, then Γ,A @ u; ∆ ` C @ w
(contraction)

Theorem (identity - syntactic completeness)

Γ; A @ w ` A @ w

Theorem (cut - syntactic soundness)

1 If Γ; ∆ ` A @ u and Γ; ∆′,A @ u ` C @ w, then
Γ; ∆,∆′ ` C @ w.

2 If Γ; . ` A @ u and Γ,A @ u; ∆ ` C @ w, then Γ; ∆ ` C @ w.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Properties of the Sequent Calculus System [2]

Lemma (invertibility)

On the right: &R, >R, → R, ∀R, ↓ R and at R;

On the left: ⊗L, 1L, ⊕L, 0L, ∃L, !L, ↓ L and at L

Theorem (consistency)

There is no proof of .; . ` 0 @ w.

Theorem (conservativity)

For “pure” contexts Γ and ∆ and “pure” (in ILL) proposition A:
if Γ; ∆ `HyLL A @ w then Γ; ∆ `ILL A.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Properties of the Sequent Calculus System [3]

Theorem (HyLL is -at least as powerful as- S5)

.;♦A @ w ` �♦A @ w.

Theorem (HyLL admits a - sound and complete - focused system)

Focusing reduces non-determinism during proof search.
↪→ normal form of proofs.
↪→ (full) adequacy (i.e. soundness and completeness) of encodings.

Theorem (adequacy)

Sπ can be fully adequately encoded in (focused) HyLL

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Defined Modal Connectives - Delay

Defined modal connectives:

�A
def
= ↓u. ∀w . (A at u.w) ♦A

def
= ↓u. ∃w . (A at u.w)

δv A
def
= ↓u. (A at u.v) †A

def
= ∀u. (A at u)

The connective δ represents a form of delay:
Derived right rule:

Γ; ∆ ` A @ w .v

Γ; ∆ ` δv A @ w
δ R

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Example

Activation:

Active(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ pres(b)).

Inhibition

Inhib(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ abs(b)).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Modeling Approach

In a first experiment:

Boolean models

(i) a set of boolean variables,
(ii) a (partially defined) initial state, and
(iii) a set of rules of the form Li ⇒ Ri

Rules are asynchronous (one rule can be fired at a time).

Encode both the model and the property in HyLL, and prove
the property in HyLL + Coq.

Elisabetta de Maria, J. D., and Amy Felty.
A logical framework for systems biology.
In FMMB, 2014.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Activation/Inhibition Rules [1]

Lack of information:
0 active(a, b)

def
= pres(a)−◦ δ1 pres(b).

Without consumption:

w active(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ pres(b)).

More precise:

s active(a, b)
def
= pres(a)⊗ abs(b)−◦δ1(pres(a)⊗ pres(b)).

Looping:

l active(a, b)
def
= pres(a)⊗ pres(b)−◦δ1(pres(a)⊗ pres(b)).

General:

active(a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))
−◦ δ1 (pres(a)⊗ pres(b)).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Activation/Inhibition Rules [2]

Inhibition:

inhib(V , a, b)
def
= pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))
−◦ δ1 (pres(a)⊗ abs(b)).

Inhibition with consumption:

inhibc(V , a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))
−◦ δ1 (abs(a)⊗ abs(b)).

Strong inhibition

inhibs(V , a, b)
def
= (abs(a)⊕ (abs(a)⊗ pres(b))⊕ (abs(a)⊗ abs(b)))
−◦ δ1 (abs(a)⊗ pres(b)).

...

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Oscillation

A ∧ EF(B ∧ EFA)

Definition (one oscillation)

oscillate1 (A,B, u, v)
def
= A & δu(B & δv A) & (A & B −◦ 0).

Definition (oscillation - object)

oscillateh (A,B, u, v)
def
= †[(A−◦ δu B) & (B −◦ δv A)] & (A & B −◦ 0).

Definition (oscillation - meta)

oscillate (A,B, u, v)
def
= for any w , (A @ w ` B @ w .u), (B @ w .u ` A @ w .u.v),

and (` A & B −◦ 0 @ w).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Example - Definition

The P53/Mdm2 DNA-damage repair mechanism

P53 is a tumor suppressor protein that is activated in reply to DNA
damage. P53 is controlled by another protein: Mdm2.

DNA damage increases the degradation rate of Mdm2 so that the
control of this protein on P53 becomes weaker and (after ev.
oscillations) the concentration of p53 can increase. P53 can thus
either repair DNA damage or provoke apoptosis.

Boolean Model, in Biocham:

Initial states: P53 is absent and Mdm2 is present.

1) Dnadam⇒ ¬Mdm2 4) Mdm2⇒ ¬P53
2) ¬Mdm2⇒ P53 5) P53⇒C ¬Dnadam
3) P53⇒ Mdm2 6) ¬Dnadam⇒ Mdm2

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Specification in HyLL [1]

In HyLL[〈IN,+, 0〉]

unchanged(x ,w)
def
= ! [(pres(x) at w −◦ pres(x) at w .1) &

(abs(x) at w −◦ abs(x) at w .1)].

unchanged(V ,w)
def
= ⊗x∈V unchanged(x ,w).

active(V , a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))

⊕ (pres(a)⊗ abs(b)))
−◦ δ1 (pres(a)⊗ pres(b))
⊗ ↓ u. unchanged(V \ {a, b}, u)).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Specification in HyLL [2]

well defined0(V)
def
= ∀a ∈ V . [pres(a)⊗ abs(a)−◦ 0].

well defined1(V)
def
= ∀a ∈ V . [pres(a)⊕ abs(a)].

well defined(V)
def
= well defined0(V), well defined1(V).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Specification in HyLL [3]

The system:

vars
def
= {p53, Mdm2, DNAdam}.

rule(1)
def
= inhib(vars, DNAdam, Mdm2).

rule(2)
def
= inhibs(vars, Mdm2, p53).

rule(3)
def
= active(vars, p53, Mdm2).

rule(4)
def
= inhib(vars, Mdm2, p53).

rule(5)
def
= inhibc(vars, p53, DNAdam).

rule(6)
def
= inhibs(vars, DNAdam, Mdm2).

system
def
= vars, rule(1), rule(2), rule(3),

rule(4), rule(5), rule(6), well defined(vars).
Initial state:

initial state
def
= abs(p53)⊗ pres(Mdm2), initial state at 0.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Informal Proofs

Linear Logic ↪→ we sometimes need, in the theorems:

dont care(x)
def
= pres(x)⊕ abs(x)

dont care(V)
def
= ⊗x∈V dont care(x).

Alternative: prove (· · · ⊗ T).

In the proofs:

Case analysis on the possible values of variables
(using well defined1).

Definitions:

state0
def
= abs(p53)⊗ pres(Mdm2)

state1
def
= pres(p53)⊗ abs(Mdm2).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Property 1

As long as there is DNA damage, the system can oscillate (with a
short period) from state0 to state1 and back again.

Proposition (Property 1, Version 1)

For any world w, there exists two worlds u and v such that both u
and v are less than 3 and the following holds:
† system @ 0 ; state0 ⊗ pres(DNAdam) @ w
` δu [(state1 ⊗ dont care(DNAdam)) &

(δv (state0 ⊗ dont care(DNAdam)))] @ w

Proposition (Property 1, Version 2)

† system @ 0 ; state0 ⊗ pres(DNAdam) @ w
` state1 ⊗ dont care(DNAdam) @ w .u and

† system @ 0 ; state1 @ w .u ` state0 @ w .u.v

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Property 2

DNA damage can be quickly recovered.

Proposition (Property 2)

For any world w, there exists a world u such that u is less than 5
and the following holds:
† system @ 0; state0 ⊗ pres(DNAdam) @ w
` state0 ⊗ abs(DNAdam) @ w .u

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Induction/Case Analysis

Case analysis on the set of fireable rules:

fireable(1)
def
=

(pres(DNAdam)⊕ (pres(DNAdam)⊗ pres(Mdm2))⊕
(pres(DNAdam)⊗ abs(Mdm2))) ⊗ dont care(p53)

not fireable(1)
def
= abs(DNAdam) ⊗ dont care({Mdm2, p53})

...

“for any fireable rule r ,P”
for any rule r in [1..6], (fireable(r) & P)⊕ not fireable(r)

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Property 3

If there is no DNA damage, the system remains in the initial state.

A first attempt at formalizing this property might be:

For any world w , the following holds:
† system @ 0, abs(DNAdam) @ 0 ` state0 ⊗ abs(DNAdam) @ w .

We want to prove that if abs(DNAdam) @ 0 then
state0 ⊗ abs(DNAdam) @ w holds, for all worlds w , no matter
which rule is fired to get to w .

Thus our property requires a case analysis on the rules of the
biological system.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Property 3 (con’t)

Proposition (Property 3)

Let P denote the formula state0 ⊗ abs(DNAdam). For any world
w, the following holds: † system @ 0, P @ 0 ` P at 0 @ w ;
and for any world w, for any rule r in the interval [1..6], the
following holds:
† system @ 0 ` P −◦ (fireable(r) & δ1 P) ⊕ not fireable(r) @ w

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Property 4

There is no path with two consecutive states where p53 and Mdm2

are both present or both absent.
In other words: from any state where p53 and Mdm2 are both
present or both absent, we can only go to a state where either p53
is present and Mdm2 is absent or p53 is absent and Mdm2 is present.

This requires a stronger (natural) hypothesis: we need the property
that each rule modifies at least one entity in the system.

↪→ strong inhibition and activation rules:

s active(V , a, b)
def
= pres(a)⊗ abs(b)−◦

δ1(pres(a)⊗ pres(b))⊗ ↓ u. unchanged(V \ {a, b}, u)).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Property 4 (con’t)

L := (pres(p53) ⊗ pres(Mdm2)) ⊕ (abs(p53) ⊗ abs(Mdm2))
R := ((pres(p53) ⊗ abs(Mdm2)) ⊕

(abs(p53) ⊗ pres(Mdm2)))⊗ dont care(DNAdam)

from L we can only go to R, no matter which rule is fired.
↪→ case analysis on the set of fireable rules:

Proposition (Property 4)

For any world w, for any rule r in the interval [1..6], the following
holds:
† system @ 0; .
` L −◦ (s fireable(r) & δ1R)⊕ s not fireable(r) @ w

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Formal Proofs

Proofs fully formalized in Coq,
using a λProlog prover to help with partial automation of the proofs.

Two-level style of reasoning, with HyLL as the specification logic

(HyLL is implemented as an inductive predicate in Coq).

↪→ Both prove meta-level properties of HyLL (ex: weakening)
and reason at the object-level (i.e. prove HyLL sequents).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Comparison with Model Checking

Model checking:

- encode the biological system as a finite transition system,

- specify properties in propositional temporal logic, and

- verify properties by exhaustive enumeration of all reachable S

+ efficient tools

CCind-λProlog-HyLL:

+ HyLL has a very traditional proof theoretic pedigree: sequent
calculus, cut-elimination and focusing;

+ unified framework to encode both transition rules and (both
statements and proofs of) temporal properties;

+ all the models containing the rules satisfy a (∃) property.

- theorem proving can be time consuming and needs expert.
Can however provide partial, and sometimes complete,
automation of the proofs.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Further Advantages w.r.t Model Checking

We do not need to blindly try all possible rules at each step
but we can guide the proof.

Proof of a property of the system which is not desirable:
we can look for the rules to be removed/modified among
those that have been used in the proof.

“P is true at every even state of an infinite path”:
∀n = 2k. P at n.

Couple our models with other models sharing some variables.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Subexponentials in Linear Logic

SELL [V. Danos, J.-B. Joinet and H. Schellinx, 93]

Subexponential Signature

Σ = 〈I ,�,U〉 where I is a set of labels, U ⊆ I set of unbounded
subexp and � is a pre-order among the elements of I .
� is upwardly closed wrt U [if a ∈ U and a � b, then b ∈ U]

F ::= 0 | 1 | > |⊥| p(~t) | F1 ⊗ F2 | F1 ⊕ F2 | F1
...
............
.................................. F2 | F1 & F2 |

∃x .F | ∀x .F | !aF | ?aF | ∀x : a.F | ∃x : a.F

!aF means that F holds in a.
!s?sF means that F is confined to s.
Moreover if a ∈ U then !aF is a classical formula (as ! F in LL)
Assume two independent spatial domains a and b (a 6� b). Then,

(!aC−◦!bD), !bC 6`!bD

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Quantification on Subexponentials

SELL∀ [V. Nigam and C. Olarte and E. Pimentel, 2011-2016]

F ::= · · · | ∀x : a.F | ∃x : a.F

Creating “new ” locations: Γ, ∃l .(F) ` G
Asserting something about all locations: Γ,∀l .(F) ` G
Proving that all locations satisfies G : Γ ` ∀l .(G)
Proving that G holds in some location: Γ ` ∃l .(G)

Theorem (Cut-elimination)

For any signature Σ, the proof system SELL∀ admits
cut-elimination.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

HyLL and SELL∀

Linear logic defines two kind of contexts: classical
(unbounded) and linear.

SELL generalizes this idea by slitting the context in as many
parts as needed.

Subexponentials are not canonical: !aF 6⇔ !bF , thus SELL as
a logical framework is more expressive than LL.

What about HyLL? Do the worlds in HyLL add more
expressive power?

J. D., Carlos Olarte, and Elaine Pimentel.
Hybrid and subexponential linear logics.
In LSFA, 2016.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Modal Connectives

Defined modal connectives in HyLL:

�A
def
= ↓u. ∀w . (A at u.w) ♦A

def
= ↓u. ∃w . (A at u.w)

δv A
def
= ↓u. (A at u.v) †A

def
= ∀u. (A at u)

in SELL∀:

�uA
def
= ∀l : u. !lA ♦uA

def
= ∃l : u. !lA

�A
def
= ∀t :∞. !tA ♦A

def
= ∃t :∞. !tA

[[δv A]]u
def
= [[A]]u.v [[†A]]u

def
= ∀u :∞.[[A]]u

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Bio Example

Inhibition in HyLL

Inhib(a, b)
def
= pres(a)−◦ δ1(pres(a) ⊗ abs(b))

Inhibition in classical SELL∀

Inhib(a, b)
def
= ∀t :∞. !ta−◦ !t+1(a ⊗ b⊥)

Inhib(a, b, c)
def
= ∀t :∞.[

!ta⊗ (b⊕ b⊥)⊗ c−◦ !t+1(a ⊗ b⊥)⊗ c
]

&[
!ta⊗ (b⊕ b⊥)⊗ c⊥ −◦ !t+1(a ⊗ b⊥)⊗ c⊥

]
Inhibition in SELL∀

Inhib(x , y , z)
def
= ∀t :∞. !tcount(1, y , z)−◦!t+1count(1, 0, z)

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

More Examples

HyLL has been used to
encode transition systems (Sπ calculus) and
to specify/verify biological interacting systems.
Biological example with formal proofs in Coq.

SELL∀ has been used to
represent contexts of proof systems
to specify systems with temporal, epistemic
and spatial modalities
and soft-constraints or preferences;
to specify bigraphs and
to specify/verify biological/multimedia interacting systems.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Encodings in Linear Logic

Two meta-level predicates b·c and d·e for identifying objects that
appear on the left or right side of the sequents in the object logic.
Rules

∆,A −→ Γ

∆,A ∧ B −→ Γ
∧L1

∆,B −→ Γ

∆,A ∧ B −→ Γ
∧L2

∆ −→ Γ,A ∆ −→ Γ,B

∆ −→ Γ,A ∧ B
∧R

are specified in LL as

∧L : ∃A,B.(bA ∧ Bc⊥ ⊗ (bAc ⊕ bBc))

∧R : ∃A,B.(dA ∧ Be⊥ ⊗ (dAe& dBe))

The linear logic connectives indicate how these object level
formulas are connected: contexts are copied (&) or split (⊗), in
different inference rules (⊕) or in the same sequent (

...
............
..................................).

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

HyLL and Linear Logic

HyLL rules can be encoded in LL as:

⊗ R : ∃C ,C ′,w .(d(C ⊗ C ′)@we⊥ ⊗ dC @we ⊗ dC ′@we)
⊗ L : ∃C ,C ′,w .(b(C ⊗ C ′)@wc⊥ ⊗ (bC @wc ...

............
.................................. bC ′@wc))

at R : ∃C , u,w .(d(C at u)@we⊥ ⊗ dC @ue)
at L : ∃C , u,w .(b(C at u)@wc⊥ ⊗ bC @uc)
↓ R : ∃A, u,w .(d↓ u.A@we⊥ ⊗ d(A w)@we)
↓ L : ∃A, u,w .(b↓ u.A@wc⊥ ⊗ b(A w)@wc)

Theorem (Adequacy)

Let Υ be the set of above clauses. The sequent Γ; ∆ ` F @w is
provable in HyLL iff ` ?Υ, ?bΓc, b∆c, dF @we is provable in LL.
The adequacy of the encodings is on the level of derivations [i.e.
when focusing on a LL specification clause, the (bipole) derivation
corresponds exactly to applying the introduction rule at the object
level].

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

HyLL and SELL

HyLL rules into SELL∀:

⊗ R : ∃C ,C ′.∃w :∞.(!wd(C ⊗ C ′)@we⊥ ⊗ ?wdC @we ⊗ ?wdC ′@we)
at R : ∃A.∃u :∞,w :∞.(!wd(A at u)@we⊥ ⊗ ?udA@ue)
at L : ∃A.∃u :∞,w :∞.(!wb(A at u)@wc⊥ ⊗ ?ubA@uc)
↓ R : ∃A.∃u :∞,w :∞.(!wd↓ u.A@we⊥ ⊗ ?wd(A w)@we)
↓ L : ∃A.∃u :∞,w :∞.(!wb↓ u.A@wc⊥ ⊗ ?wb(A w)@wc)

Theorem (Adequacy)

Let Υ be the set of formulas resulting from the encoding in the
above definition. The sequent Γ; ∆ ` F @w is provable in HyLL
iff ` ?cΥ, ?cbΓc, b∆c, ?wdF @we is provable in SELL∀. Moreover,
the adequacy of the encodings is on the level of derivations.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Information Confinement

Information confinement in SELL:
inconsistency is local: !w?w0 6` 0
inconsistency is not propagated: !w?w0 6` !v?v0

In HyLL it is not possible to confine inconsistency:
even if we exchange the rule 0L by

Γ; ∆, 0@w ` F @w [0L]

the rule 0L would still be admissible:

Γ; ∆, 0@w ` (0 at v)@w 0L
Γ; ∆, 0@v ` F @v 0L

Γ; ∆, (0 at v)@w ` F @v
atL

Γ; ∆, 0@w ` F @v
cut

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

CTL in HyLL [1]

Encoding of temporal logic operators in HyLL[T], where
T = 〈IN,+, 0〉, representing instants of time:

State quantifiers
F ⇔ ♦, G⇔ � and XP ⇔ δ1P

P1UP2 ⇔↓ u. ∃v . P2 at u.v ⊗ ∀w ≺ v . P1 at u.w

Path quantifiers
E corresponds to the existence of a proof: EF⇔ ♦, EG⇔ �
A: consider all the possible rules to be applied at each step.
Let R be the set of rules of our transition system.

AXP is encoded as forall r in R δ1P. More precisely:
AXP ⇔ forall r in R (fireable(r) & δ1P)⊕ not fireable(r)
AGP ↔ P ∧ AG(P −◦ AX(P)).
AGP ⇔ P ⊗ ∀n. (P at n)−◦ forall r in R (P at n + 1).
AFP ↔ P ∨ AX(AFP).
for a bound k on the number of steps needed.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

CTL in HyLL [2]

Let V = {a1, ..., an} propositional variables and
s = p1(a1) ∧ · · · ∧ pn(an) represent a state where pi ∈ {pres, abs}
and r : s→ s′ be a state transition.
Encoding [[·]] from CTL states and state transitions to HyLL:

[[pres(ai)]] = pres(ai) [[abs(ai)]] = abs(ai)
[[s]] =

⊗
i∈1..n

[[pi (ai)]] [[r : s→ s′]] = ∀w . (([[s]] at w)−◦ δ1([[s′]]) at w)

Let F ,G be CTL formulas built from states and ∧,∨,U,EX,EF.

C[[s]] = [[s]] C[[F ∧ G]] = C[[F]] & C[[G]]
C[[F ∨ G]] = C[[F]]⊕ C[[G]] C[[E[F UG]]] = C[[F]]U C[[G]]
C[[EXF]] = δ1 C[[F]] C[[EFF]] = ♦C[[F]]

Such encodings are faithful, i.e. a CTL formula F holds at state s

in R iff [[R]]@0; [[s]]@w ` C[[F]]@w is provable in HyLL.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

CTL in µMALL

MALL is the core of LL: without exponentials (! and ?).
µMALL: extension of MALL with (least and greatest) fixed points

Σ ` ∆,S~t ~x ` B S~x , (S~x)⊥

Σ ` ∆, νB~t
ν

Σ ` ∆,B(µB)~t

Σ ` ∆, µB~t
µ

where S is the (co)inductive invariant. The µ rule corresponds to
unfolding while ν allows for (co)induction. Σ represents the
(first-order) signature.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

CTL in µMALL [1]

Path quantifiers as fixpoints:

EFF = µY .F ∨ EXY E[F UG] = µY .G ∨ (F ∧ EXY)
EGF = νY .F ∧ EXY

AFF = µY .F ∨ AXY A[F UG] = µY .G ∨ (F ∧ AXY)
AGF = νY .F ∧ AXY

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

CTL in µMALL [2]

Definition (CTL into µMALL)

Let R be of transition rules and a state s = p1(a1) ∧ · · · ∧ pn(an).

[[pres(ai)]] = ai [[abs(ai)]] = a⊥i [[p]] = pos(p)
[[s]] = [[p1(a1)]]⊥

...
............
.................................. · · · ... [[pn(an)]]⊥

pos(s) = [[p1(a1)]]⊗ · · · ⊗ [[pn(an)]]
neg(s) = ([[p1(a1)]]⊥ ⊗>)⊕ · · · ⊕ ([[pn(an)]]⊥ ⊗>)

p is a state formula. pos(s) (resp. neg(s)) tests if r can (resp.
cannot) be fired at the current state.
We map CTL ∧ [resp. ∨] into & [resp. ⊕].

C[[AXF]]R = &
s→s′∈R

(neg(s)⊕ (pos(s)⊗ ([[s′]]
...
............
.................................. φ))

C[[EXF]]R =
⊕

s→s′∈R
(pos(s)⊗ ([[s′]]

...
............
.................................. φ))

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

CTL in µMALL [3]

Definition (CTL into µMALL (con’t))

C[[AFF]]R = µY . φ⊕ &
s→s′∈R

(neg(s)⊕ (pos(s)⊗ ([[s′]]
...
............
.................................. Y))

C[[EFF]]R = µY . φ⊕
⊕

s→s′∈R
(pos(s)⊗ ([[s′]]

...
............
.................................. Y))

C[[AGF]]R = νY . φ& &
s→s′∈R

(neg(s)⊕ (pos(s)⊗ ([[s′]]
...
............
.................................. Y))

C[[EGF]]R = νY . φ&
⊕

s→s′∈R
(pos(s)⊗ ([[s′]]

...
............
.................................. Y))

C[[A[F UG]]]R = µY .ψ ⊕
(
φ& &

s→s′∈R
(neg(s)⊕ (pos(s)⊗ ([[s′]]

...
............
.................................. Y)))

)
C[[E[F UG]]]R = µY .ψ ⊕

(
φ&

⊕
s→s′∈R

(pos(s)⊗ ([[s′]]
...
............
.................................. Y))

)

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

CTL in µMALL [4]

Let s |=RCTL F denote “the CTL formula F holds at state s in R”.

Theorem (Adequacy)

Let V = {a1, ..., an} be a set of propositional variables, R be a set
of transition rules on V and F be a CTL formula. Then, s |=RCTL F
iff the sequent ` [[s]], C[[F]]R is provable in µMALL.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Example in Biomedicine

[Ongoing joint work with P. Lio’]
Formalizing the evolution of cancer cells - driver or passenger
mutations.

An intravasating Circulating Tumour Cell:

In HyLL: C(n, breast, f , [EPCAM])−◦ δd C(n, blood , 1, [EPCAM])

In SELL∀: ∀t :∞.
!t !brC(n, f , [EPCAM])−◦ !t+d !blC(n, 1, [EPCAM])

where f is a fitness parameter.

Our long term goal here is the design of a Logical Framework for
disease diagnosis and therapy prognosis.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Conclusion and Future Work

Done: HyLL and SELL∀ for biology (first steps),
HyLL vs SELL∀ (HyLL into LL, HyLL into SELL∀,
simplicity/efficiency vs expressiveness/localities),
CTL into µMALL.

Claim: Logical Frameworks are safe and general frameworks,
for specifying and verifying properties of a large number of
systems.

To do: automatic proofs for HyLL/SELL∀ for biology,
biomedicine (diagnosis and prognosis), neuroscience, ...

and also: external events, stochastic constraints, formal proofs
of (meta-theoretical) properties of HyLL/SELL (in Coq), ...,
a resource-aware stochastic or probabilistic λ-calculus that has
HyLL propositions as (behavioral) types. type-theory.

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

Thanks for your attention

Motivation Approach HyLL Example Formal Proofs vs Model Checking SELL HyLL and SELL CTL in LL Future Work

J. D. and Kaustuv Chaudhuri.
A hybrid linear logic for constrained transition systems.
In Post-Proceedings of TYPES’2013, 2014.

Elisabetta de Maria, J. D., and Amy Felty.
A logical framework for systems biology.
In FMMB, 2014.

J. D., Carlos Olarte, and Elaine Pimentel.
Hybrid and subexponential linear logics.
In LSFA, 2016.

	Motivation
	Approach
	HyLL
	Example
	Formal Proofs
	vs Model Checking
	SELL
	HyLL and SELL
	CTL in LL
	Future Work

