
Tomas Petricek
University of Cambridge, tp322@cam.ac.uk

Don Syme
Microsoft Research Cambridge, dsyme@microsoft.com

Introduction

Many programming languages provide syntax that allows writing

computations for generating sequences, asynchronous program-

ming or for working with monads. They all use different syntax and

work with different abstract computation types.

F# computation expressions are a flexible syntactic sugar for

writing abstract computations. The library author controls what

constructs to use by providing different operations. As a result,

they can choose natural syntax for every computation type.

We identify what abstract computations can be encoded using this

mechanism and give examples of the most suitable syntax.

def duplicate(inputs):

 for number in inputs:

 yield number

 yield number * 10

let rec listFiles dir = seq {

 yield! Dir.GetFiles(dir)

 for subdir in Dir.GetDirectories(dir) do

 yield! listFiles(subdir) }

Non-standard computations in C# and Python

async Task<string> GetLength(string url) {

 var html = await DownloadAsync(url);

 return html.Length;

}

Async in C# 5 (left): Binding using await does not block

the running thread and uses continuation passing style.

Generators in Python (right). The yield keyword is

used to return a sequence of results from a function.

Haskell do notation. Syntax for working with monads.

let htmlStrings = asyncSeq {

 for url in addressStream do

 let! html = wc.AsyncDownloadString(url)

 do! Async.Sleep(1000)

 yield url, html }

University of Cambridge

Syntax Matters: Writing abstract computations in F#

Computer Laboratory

Computation expression design principles

Asynchronous sequences

Monad with imperative control flow constructs

 bind : Async → (→ AsyncSeq) → AsyncSeq

 for : [] → (→ AsyncSeq) → AsyncSeq

 for : AsyncSeq → (→ AsyncSeq) → AsyncSeq

 yield : → AsyncSeq

Sequence expressions

Combines monadic and monoidal computation type

 combine : Seq → Seq → Seq

 yield : → Seq

 for : Seq → (→ Seq) → Seq

Asynchronous workflows

let trafficLight() = async {

 while true do

 for color in [green; orange; red] do

 do! Async.Sleep(1000)

 displayLight(color) }

Monad with imperative control flow constructs

 bind : Async → (→ Async) → Async

 for : [] → (→ Async 1) → Async 1

 while : (1 →) → Async 1 → Async 1

Unify single-purpose syntactic sugar
Customize binding and control flow

Unify
extensions

Reuse the standard F# syntax
The library author specifies the syntax

Standard
syntax

Reinterpret standard F# constructs
Make operation types flexible

Flexible
interpretation

Applicative
(Formlets, ZipList)

Monad

Applicative
Formlets, ZipList

Monad + F# syntax
Async Workflows

Monoid

Monoid + F# syntax
Integers with 1 and *

Additive monad

Additive monad + F# syntax
Sequences, Parsers

Monad transformers
Async Sequences

