
University of Cambridge

Coeffects: Programming languages for rich environments

University of Cambridge, {name.surname}@cl.cam.ac.uk

Tomas Petricek Dominic Orchard supervisor: Alan Mycroft

Computer Laboratory

Motivation: Why context-tracking matters
 Applications today run in diverse environments, such as mobile

phones or the cloud. Different environments provide different
capabilities, data with meta-data and other resources.

 Applications access information and resources of the environment.

Such context-dependent interactions are often more important
than how the application affects or changes the environment.

 Tracking and verifying how computations affect the environment

can be done in a unified way using monadic effect systems, but no

such mechanism exists for tracking and verifying how computa-

tions access and rely on the context.

Example 1: Liveness analysis & optimization
Annotate variable context with false (0) if it is definitely not live;
true (1) if it may be accessed. Unused context can be optimized away.

Context is modelled as dependent Maybe type: C1 A = A and C0 A = 1.

Example 2: Distributed language with resources
Context carries additional rebindable resources that may be ac-

cessed. Annotation specifies a set of resources that are available.
Context is represented using a product type: Cr A = A × (r → Res).

Resource requirements of a function are split between the call site

and the declaration site. Multiple typings are possible, depending
on how the function is used.

Example 3: Efficient data-flow language
Context provides access to previous values of variables. The
annotation specifies how many past values may be needed.
Context is represented as a non-empty list; the annotation
specifies the length of the list: Cn A = A×(A1×…×An)

Unified system: Flat coeffect calculus
Captures the essence of context-dependence tracking. Our unified model
identifies common properties of the three examples and has desirable
theoretical properties (subject reduction and categorical model)
 Sequential composition given by a monoid (⊕, ⟘) or (⊕, ⟙)
 Context is propagated (∨) and split (∧) using two additional operators

Generalized system: Structural coeffect calculus
We often need to capture fine-grained structure with context requirements

corresponding to individual variables (liveness, data-flow, provenance).
 Compose annotations using a product (×) that reflect variable structure
 Write system using structural rules that change annotation accordingly

Effect systems

 Track or infer information

about what the computation

does to the environment
 Information σ, such as set of

performed memory operations,

attached to the result
 Propagate information for-

ward to the overall result
 Modeled as morphisms α → β

where is a monad

Coeffect systems

 Track or infer information

about what the computation
requires from the environment

 Information σ, such as set of
accessed resources, attached to

the variable context
 Propagate information back-

ward to the initial input
 Modeled as morphisms α → β

where is a comonad

fun () →
 let evts = access EventsDatabase
 let date = access CurrentDate
 query evts ʺSELECT Count(*) WHERE Date > %1ʺ date

