Computer Laboratory University of Cambridge

Coeffects: Programming languages for rich environments

Tomas Petricek Dominic Orchard supervisor: Alan Mycroft

University of Cambridge, {name.surname}@cl.cam.ac.uk

Motivation: Why context-tracking matters Effect systems Coeffect systems

e Applications today run in diverse environments, such as mobile
phones or the cloud. Different environments provide different )
capabilities, data with meta-data and other resources. e Track or infer information e Track or infer information

e Applications access information and resources of the environment. about what the computation about what the computation
Such context-dependent interactions are often more important does to the environment requires from the environment
than how the application affects or changes the environment.

e Information o, such as set of Information o, such as set of

e Tracking and verifying how computations affect the environment performed memory operations, accessed resources, attached to

can be done in a unified way using monadic effect systems, but no el e el Ao werdelle et

such mechanism exists for tracking and verifying how computa-
tions access and rely on the context. e Propagate information for- Propagate information back-

ward to the overall result ward to the initial input
Example 1: Liveness analysis & optimization

e Modeled as morphisms a = Cf Modeled as morphisms Da — 3

Annotate variable context with false (0) if it is definitely not live; where C is a monad where D is a comonad
true (1) if it may be accessed. Unused context can be optimized away.

Context is modelled as dependent Maybe type: C1A =A and Co A = 1.

Unified system: Flat coeffect calculus

r L S
: — :
Clkheln o1 ket Captures the essence of context-dependence tracking. Our unified model

C™VEAT 1 eq ey Ty identifies common properties of the three examples and has desirable

theoretical properties (subject reduction and categorical model
x:T€l  nef012..) properties (sub) 5 )

CIT = x: T COT = n- ¢ e Sequential composition given by a monoid (B, 1) or (B, T)
e Contextis propagated (V) and split (A) using two additional operators

Example 2: Distributed language with resources
C'T I €1 CtT1 — T9 C°T €21

Context carries additional rebindable resources that may be ac-

cessed. Annotation specifies a set of resources that are available. CTVEDOT |- €1 €: Ty
Context is represented using a product type: C-A = A x (r — Res). CTS (F, X Tl) - e: T,
fun () - C'T+Ax.e:C5t1 = 15
let evts = access EventsDatabase
let date = access CurrentDate x:T €l x:T€l
n sk 0] ] Or
query evts "SELECT Count(*) WHERE Date > %1" date CiT - v T C'TExT

Resource requirements of a function are split between the call site

and the declaration site. Multiple typings are possible, depending Generalized system: Structural coeffect calculus

on how the function is used. | | | |
We often need to capture fine-grained structure with context requirements

C™YS(T,x:11) F e: 1, corresponding to individual variables (liveness, data-flow, provenance).

C'TFAx.e:C°ty = 19 « Compose annotations using a product (x) that reflect variable structure

; e Write system using structural rules that change annotation accordingly
Crr|—€1:CT1—)T2 CSFFezlfl

. rt :
CTUSUtl" - e ey: T C’Tl - €1. C 11 = 1o CSFZ - €r:Tq
CTX(SAt) (Fl, Fz) - €1 €279

Example 3: Efficient data-tflow language

rxs : ,
Context provides access to previous values of variables. The C (F, X Tl) - et
annotation specifies how many past values may be needed. C'TF Ax.e: CST 1 > Ty

Context is represented as a non-empty list; the annotation

T'XS [ nn. . T
specifies the length of the list: Ch A = Ax(A1x...xAy) C (x 1,V. T) Fe:T

C™Vs(z:t) v {z/x¥{z/yle: T

CTF - €1. CtT1 — 1o CSF - €r2.Tq
f, b (rs+OT - €1 €2:TH
C'Tre:T
C"*IT + preve:t

UNIVERSITY OF

4 A

4% CAMBRIDGE






