
TX
RING

RX
RING

Write Dev Config
Write Dev Mem

Write Host Mem

Read Dev Config
RD Dev Mem Write Host Mem

Read Host Mem Generate MSI

User Space Virtual PCI Interface

K
ernel Space

U
ser Space

WR Dev Config RD Dev Config Read Host Mem

Test Application Thread Virtual Hardware Thread

WR Dev Mem RD Dec Mem

Kernel Space Virtual PCI Interface

Traditional Timeline
Years Months

S
pecification

D
esign

Im
plem

entation

Verification

Testing

Rev 2,3,4….

D
esign

Im
plem

entation

Testing

Rev 2,3,4….

Hardware Development Driver Development

Recent Timeline Months

Rev 2,3,4….

Device Development
S

pecification

D
esign

Im
plem

entation

Verification

Testing

Months

D
esign

Im
plem

entation

Testing

Rev 2,3,4….

Driver Development

Ideal Timeline

Rev 2,3,4….

Device Development

D
esign

Im
plem

entation

Verification

Testing

D
esign

Im
plem

entation

Testing

Rev 2,3,4….

Driver Development

S
pecification

Months

Test Application

Network Stack

Development Driver uvPCI

PCIe Stack

uvPCI
User Space Virtual NIC

Network Stack

Commodity Driver

PCIe Stack

Raw Socket I/O

Commodity NICDevelopment NIC

Socket I/O
uvBus
File I/O

uvBus

uvMAC
uvPHY

K
ernel Space

U
ser Space

H
ardw

are

Commodity NIC

Test Application

Network Stack

Commodity Driver

PCIe Stack

Commodity NIC

Socket I/O

uvNIC

By using a message passing transport layer, similar in design to
hardware implementations of PCIe, important properties such as
blocking reads and read/write/interrupt message ordering is maintained
and consistent with reality.

The user space virtual bus makes the kernel dependent on user space in
the same way that the kernel is dependent on hardware. This is kept safe
by appropriate use of yield() and spinning timeouts.

The user space virtual NIC is implemented on top of the user space
virtual PCI (uvPCI) implementation, which itself is implemented on top
of the user space virtual bus (uvBus) implementation.

How do you make software look like hardware?

Approved for Public Release

This work was supported in part by the EPSRC INTERNET Project EP/
H040536/1, the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contract FA8750-11-C-0249.
The views, opinions, and/or findings contained in this article/presentation are
those of the author/presenter and should not be interpreted as representing
the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense.

With thanks to Andrew W. Moore and Robert M. Watson

uvNIC: Rapidily Prototyping Network Devices
M. P. Grosvenor

Key to uvNIC is the ability to augment an existing network interface
card with new features and then write a functional device driver for
the new virtual network interface.

The user space virtual NIC is a standalone, userspace software
application which is developed as a functional specification of a new
NIC that is under development.

uvNIC: Making software look like hardware.

The uvNIC device driver builds against a parallel implementation of
the PCI kernel interface. Switching over to real hardware operation
involves little more than a search/replace and a recompilation.

Traditional network interface controllers (NICs) underwent hardware
interface revisions over a timespan of years. New programable fabric
network cards can be reimplemented in months or even weeks.

Network hardware isn't what it used to be

Driver development does not usually begin until hardware is available to
test against, but hardware can now be developed so quickly that driver
development must take place simultaneously with hardware development.

Driver developers can't keep up

To the driver developer we could present the functional equivalent of a
physical device. To the hardware designer we could present a fully
functional model against which the hardware can be tested and verified.

What if driver developers could write the hardware?

uvNIC@srg

http://goo.gl/bPmQO

