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By using a message passing transport layer, similar in design to 
hardware implementations of PCIe, important properties such as 
blocking reads and read/write/interrupt message ordering is maintained 
and consistent with reality.

The user space virtual bus makes the kernel dependent on user space in 
the same way that the kernel is dependent on hardware. This is kept safe 
by appropriate use of yield() and spinning timeouts. 

The user space virtual NIC is implemented on top of the user space 
virtual PCI (uvPCI) implementation, which itself is implemented on top 
of the user space virtual bus (uvBus) implementation. 

How do you make software look like hardware?
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uvNIC: Rapidily Prototyping Network Devices
M. P. Grosvenor

Key to uvNIC is the ability to augment an existing network interface 
card with new features and then write a functional device driver for 
the new virtual network interface.

The user space virtual NIC is a standalone, userspace software 
application which is developed as a functional specification of a new 
NIC that is under development.

uvNIC:  Making software look like hardware.

The uvNIC device driver builds against a parallel implementation of 
the PCI kernel interface. Switching over to real hardware operation 
involves little more than a search/replace and a recompilation. 

Traditional network interface controllers (NICs) underwent hardware 
interface revisions over a timespan of years. New programable fabric 
network cards can be reimplemented in months or even weeks.

Network hardware isn't what it used to be

Driver development does not usually begin until hardware is available to 
test against, but hardware can now be developed so quickly that driver 
development must take place simultaneously with hardware development.

Driver developers can't keep up

To the driver developer we could present the functional equivalent of a 
physical device. To the hardware designer we could present a fully 
functional model against which the hardware can be tested and verified. 

What if driver developers could write the hardware?

uvNIC@srg
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