
x

y

z

a

Start

x

y

z

a

Point 1
var x, y, z, a;

void foo() {
 x = y;
 bar(z);
 x = z;
}

void bar(var b) {
 a = b;
}

1

2

4

3

x

y

z

a

Point 2

b

x

y

z

a

Point 3

b

x

y

z

a

Point 4

Example
At the start of the piece of code on the right, we have the variables
x, y, z and a all pointing to some memory location. As the code
executes, some variables start to point to the same location as each
other; we say they are aliased.

At the end of the code, variables x, z and a all point to the same
object.

If we now store a value into x, the values in z and a will be affected
as well; after all, they all point to the same thing in memory!

What’s the problem?
• It’s really difficult to see from the code which variables point to

the same thing, even for our simple example. Imagine what this
is like in a complex program!

• Aliasing changes all the time while the program is executing.
• If two variables are aliased but shouldn’t be, we get unexpected

changes because they are connected. This is a common cause of
bugs.

We get a very complex aliasing structure, spaghetti references!

The Problem: Spaghetti References

In modern object-oriented programming,
a variable stores a reference to an object
(a particular memory location).

Variable Object

Aliasing Contracts – Untangling Spaghetti References
Janina Voigt, Alan Mycroft

Computer Laboratory, University of Cambridge

Proposed Solution: Aliasing Contracts

We annotate each variable with a boolean expression (called an
aliasing contract) which we can evaluate to true or false at runtime.

Contracts specify under which circumstances the object to which
the variable points can be accessed.

When an object is accessed, the contracts of all variables currently
pointing to it must be evaluated. If any of these evaluates to false,
the access fails.

We use the special variables accessor and accessed to refer to the
object making the access and the object being accessed.

Contracts don’t restrict aliasing itself but mitigate the effects of
aliasing. We can specify when an object should be accessible; if we
try to illegally access it through an alias, this will give a contract
error!

x

o1 o
contract

Contract Meaning
accessor == this Only the object holding reference x (object o1)

can access object o.
true There are no restrictions on accessing o: it can

always be accessed (if all other contracts for it
evaluate to true as well).

false o can never be accessed.

accessor == accessed o can only be accessed by o itself.
accessor canaccess this o can only be accessed if the accessor also has

the right to access the object holding reference
x (object o1).

Example: Linked List
In this example, we have a linked list, where each node holds a link to
the next node. The linked list itself only has a link to the head node.

The nodes should only be accessible to the linked list. To enforce this,
we use aliasing contracts.

Even if another part of the program now has an alias to a node, it
cannot use it for accesses, since this would cause a contract error.

The nodes in our list are now fully protected from the effects of
aliasing!

LinkedList

Node Node Node

accessor
== this

accessor
canaccess

this

accessor
canaccess

this

head

next next

 LinkedList list = new LinkedList();
 list.head = new Node();
 list.head.next = new Node();

This way, we can have multiple variables pointing to the same
object!

