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Preface
This volume contains the proceedings of ARW 2018, the twenty-fifth Workshop on Automated Reasoning,
held on 12th–13th April 2018, in Cambridge, UK. As in previous events in the series, this workshop provides
an informal forum for the automated reasoning community to discuss recent work, new ideas and current
trends. It aims to bring together theoreticians and practitioners from all areas of automated reasoning in
order to foster links between them and to encourage cross-fertilisation across various disciplines.

To mark this milestone 25th ARW, we organised a discussion panel on “Natural language processing
and information retrieval for automated reasoning”, invited two keynote speakers, presented 23 extended
abstracts contributed by participants of the workshop, and screened a documentary about Bletchley Park.

Our invited speaker Ekaterina Komendantskaya (Heriot-Watt University), presented her work on
“Machine learning for mining, understanding and automating computer proofs”. Our invited speaker
Larry Paulson (University of Cambridge), celebrated the contributions of one of the most distinguished
researchers in Automated Reasoning and spoke about “A Career in Research: Mike Gordon and Hardware
Verification”. The abstracts covered a wide range of topics including various theorem provers for different
domains and logics, their design and theoretical properties, novel extensions to calculi and logics, ontologies
and knowledge bases, and security aspects of automated reasoning systems.

I would like to thank the members of the ARW Organising Committee for their advice. I would also
like to express my sincere gratitude to all the colleagues who have helped with the local organisation,
namely, Angeliki Koutsoukou-Argyraki, Larry Paulson, Edward Ayers, Wenda Li, Chaitanya Mangla and
Zohreh Shams.

Cambridge Mateja Jamnik
April 2018
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Programme
Thursday 12 April

9:00 Registration

10:00 Invited Talk (Ekaterina Komendantskaya)

11:00 Coffee Break

11:30 Short Talks (see pages 4-13 of online booklet)

Meta-unification Juan Casanova and Alan Bundy
Separated Normal Form Transformation Revisited Cláudia Nalon, Ullrich Hustadt and

Clare Dixon
Models of Coinductive First-order Horn Clauses Yue Li
Pattern-Based Reasoning to Investigate the Correctness of Knowledge Graphs Kemas

Wiharja, Jeff Z. Pan, Martin Kollingbaum and Yu Deng
A tree-style one-pass tableau for an extension of ECTL+ Alexander Bolotov, Montserrat

Hermo and Paqui Lucio

12:30 Poster Session

13:00 Group Photo and Lunch

14:00 Short Talks (see pages 14-28 of online booklet)

Leo-III: A Theorem Prover for Classical and Non-Classical Logic Alexander Steen
The Elfe Prover — Verifying mathematical proofs of undergraduate students Maximilian

Doré
Higher-order Reasoning Vampire Style Ahmed Bhayat and Giles Reger
Proving security properties of CHERI-MIPS Kyndylan Nienhuis, Alexandre Joannou and

Peter Sewell
Extending the KSP Prover to More Expressive Modal Logics Fabio Papacchini, Cláudia

Nalon, Ullrich Hustadt and Clare Dixon
Detailed Models of Instruction Set Architectures: From Pseudocode to Formal Semantics

Alasdair Armstrong, Thomas Bauereiss, Kathryn E. Gray, Prashanth Mundkur,Alastair Reid,
Peter Sewell, Brian Campbell, Shaked Flur, Robert M. Norton, Christopher Pulte, Ian Stark
and Mark Wassell

Verifying Strong Eventual Consistency for Conflict-free Replicated Data Types Victor
B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan and Alastair R. Beresford

Formalisation of MiniSail in the Isabelle Theorem Prover Alasdair Armstrong, Neel Krish-
naswami, Peter Sewell and Mark Wassell

15:30 Poster Session and Coffee

16:30 Screening of a documentary about Bletchley Park. Finishing at 17:30.

19:00 Dinner (Clare College Old Court). Dinner is served at 19:00. Please arrive before 18:50.
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Friday 13 April
9:00 Short Talks (see pages 29-38 of online booklet)

Real-world formal documentation Thomas Tuerk
Tuning Natural Deduction Proof Search by Analytic Methods. Alexander Bolotov and

Alexander Gorchakov
Instantiation for Theory Reasoning in Vampire Giles Reger and Martin Riener
Towards Polynomial Time Forgetting and Instance Query; Rewriting in Ontology Languages

Sen Zheng and Renate A.Schmidt
Iterative Abduction using Forgetting Warren Del-Pinto and Renate Schmidt

10:00 Coffee and Poster Session

10:30 Short Talks (see pages 39-48 of online booklet)

Equivariant ZFA with Choice: a position paper Murdoch J. Gabbay
BREU with Connections Peter Backeman
Designing a proof calculus for the application of learned search heuristics Michael Rawson

and Giles Reger
Contradiction Separation Based Dynamic Multi-Clause Synergized Automated Deduction

Yang XU, Jun LIU, Shuwei CHEN, Xiaomei ZHONG and Xingxing HE
Reasoning with Large Theories Using Over-Approximation Abstraction-Refinement

Julio Cesar Lopez Hernandez and Konstantin Korovin

11:30 Coffee and Poster Session

12:00 Discussion Panel

13:00 Lunch

14:00 Invited Talk (Larry Paulson)

15:00 Coffee and Business meeting
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Machine learning for mining, understanding and
automating computer proof

Ekaterina Komendantskaya, Heriot-Watt University

As software for mechanised proofs flourishes, we are about to enter the age of
“Big Proof” (i.e. a Big Data stage of mechanised proof development). Large
corpora of computer proofs, written in a range of programming languages, is al-
ready available on the Web. The question is: How much of Big Data technology
is applicable in “Big Proof” domain?

In this talk, I will give a comparative overview of several machine learning meth-
ods used to mine, analyse and understand the existing corpora of mechanised
proofs, and to automate new proofs. I will use the Machine Learning for Proof
General (ML4PG) tool for Demos.
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A Career in Research: Mike Gordon and
Hardware Verification

Lawrence Paulson, University of Cambridge

The story of Mike Gordon’s scientific career is instructive. Mike conceived the
radical idea of hardware verification in the late 70s, a surprising choice given
the number of other new fields he could have joined. Mike talked to researchers
in the systems side of his Department (at Edinburgh). With impressive method,
he learned about hardware and designed a small microcoded computer. Then
he investigated the problem of how to verify this computer.

First he wanted to model behaviours using recursive domain equations. Then
he opted for a CCS-like process calculus and implemented it on top of LCF.
Finally he opted for higher-order logic, again a radical choice compared with the
favoured alternatives of first-order logic and dependent type theory. Ultimately
he realised his ambitions on a grand scale, with the verification of the ARM6
processor and landmark work on verifying assembly language code and proof-
producing compilation. His foresight and boldness allowed him to transform the
practices of verification and hardware design.

2



Discussion Panel: Natural language processing
and information retrieval for automated reasoning

Ekaterina Komendantskaya, Lawrence Paulson and Yiannos Stathopoulos

The focus of the discussion will be on large-scale mathematical knowledge avail-
able in formalised libraries; In particular, on how these libraries can support so-
phisticated searches using natural language processing and information retrieval
technologies. Amongst others, an important aim of developing sophisticated
search tools is to provide automated support for construction of formal proofs,
for example, by mining libraries for proof patterns and clustering lemmas based
on the similarity of the proofs they are used in.
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Meta-unification: An algorithm for finding solutions to constraint
systems over unifiers with meta-variables

Juan Casanova juan.casanova@ed.ac.uk Alan Bundy a.bundy@ed.ac.uk
University of Edinburgh, 10 Crichton St, Edinburgh EH8 9AB

Abstract: Certain approaches to detecting faults in ontologies rely on the ability to obtain provable instan-
tiations of schematic formulas containing meta-variables (variables ranging over sub-formulas). One way to
obtain such instantiations is to solve systems of constraints over unifiers arising from a generalization of res-
olution. A system of constraints over unifiers is a set of equations including first-order logic terms and atoms,
as well as unifier variables. Such a system is satisfied by a set of substitutions (one for each unifier variable)
if the equations hold for those substitutions and if each substitution is the most general unifier for the equa-
tion of which it is the outer-most unifier. Without meta-variables, each well formed system has at most one
solution, which can be obtained by the well known most general unifier algorithm. However, when a system
includes meta-variables, which are instantiated before solving the system, there may be different instantiations
of the meta-variables that give rise to different most general unifiers. We implemented an algorithm designed
to solve systems with meta-variables, giving an enumeration of both most general unifiers and meta-variable
instantiations in an efficient way.

1 Introduction

In the context of automated fault detection in logical
ontologies (e.g. OWL), we conducted previous work
involving meta-logical reasoning [1] and, in particular,
finding instantiations of meta-variables in schematic
formulas (representing typical error patterns in ontol-
ogy design) that make them inferable (provable) in the
ontology. Under this framework, we can automate the
process of finding these patterns, a common approach
in the ontology community (see, for example, [2]). Our
first implementation of this framework using a naive al-
gorithm proved to be intractable even for the simplest cases.

To the best of our knowledge, theorem proving over
formulas with meta-variables has not been thoroughly ex-
plored in the literature, and as a consequence, we designed
and implemented an algorithm which solves unification
with meta-variables with promising performance. This
can be paired with a simple generalization of resolution to
automatically find provable instantiations of a formula with
meta-variables.

This is work in progress. The algorithm has been im-
plemented and has passed a set of unit tests for correction,
but its performance has not yet been thoroughly evaluated
and it still lacks a robust theoretical background. Here,
we present the ideas behind the algorithm and its current
results.

2 Systems of unifier constraints with meta-variables

A unification problem in first-order logic consists in finding
the most general substitution σ that, when applied to two

different terms1, makes them equal. This can be expressed
as an equation:

σt1 = σt2 (1)

where σ is a unifier variable, t1 and t2 are given terms and
there is an implicit constraint that σ is the most general
substitution satisfying the equation.

In the context of resolution theorem proving, several uni-
fication problems are solved, with a different unifier applied
to each, and where results from previous unifications can
be arguments to latter ones. Situations like this can be ex-
pressed as systems of constraints, such as:

σ1x = σ1f(y, z)
σ2g(w,w) = σ2σ1g(x,w)
σ3σ1x = σ3σ2w

(2)

where f, g are function symbols in the logic signature.

This representation easily allows to include meta-
variables. Each instantiation of meta-variables gives rise
to a new system of constraints with a different set of most
general unifiers, and corresponds to a different theorem in
the proof that generated the constraints. We will use upper
case letters starting from A to represent meta-variables.

A solution to such a problem is a set (an enumeration, as
the set is in many cases infinite) of meta-variable instanti-
ations that make the resulting system of constraints satisfi-
able. For example, the system:

σ1A = σ1f(y)
σ2σ1B = σ2f(y)

(3)

1Or atoms. For the rest of the text, we will refer only to terms, because
atom unification can be easily reduced to term unification, even with meta-
variables.
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has as a possible solution the instantiationA := f(y), B :=
f(y), but also A := x,B := f(z).

3 Dependency factorization unification

We define a dependent to be one or more unifier variables
applied to a variable. For example, σ2σ1x. An equation
like σ1x = σ1f(y, z) establishes a relation between the de-
pendents σ1x, σ1y and σ1z. Namely, σ1x = f(σ1y, σ1z).
We represent these relations in a dependency graph where
nodes are dependents and edges are dependencies. Note
that this is a multi-graph where edges may have multiple
sources. For example, the edge σ1x = f(σ1y, σ1z) has
two sources: σ1y, σ1z and one target: σ1x.

The most general unifier algorithm acts by matching the
outer-most function symbol of the two sides of an equation,
if they have one, and recursively unifying their sub-terms.
Inspired by this idea, we can solve unification problems by
a process of factorization of dependencies in a dependency
graph, where equations have been previously simplified to
express dependencies. For example, the equation

σ1f(x, g(x)) = σ1f(g(y), g(g(h(z)))) (4)

can be simplified to the two equations:

σ1x = g(σ1y)
σ1x = g(h(σ1z))

(5)

corresponding to dependencies in a dependency graph. We
can then factorize this graph2 by merging all incoming
dependencies to the dependent σ1x (as they must be equal),
which gives us the new dependency σ1y = h(σ1z).

The dependency graph has several properties that relate
to those of the unification problem. For example, a cycle
in this directed graph indicates an occurs check. Perhaps
more interestingly, a root in this graph (for example, σ1z)
indicates a dependent which does not depend on anything.
This is where the most general unifier constraint becomes
important, as if the dependent is independent, then the most
general unifier must necessarily replace it with a fresh vari-
able, call it zσ1

. This means that we can solve this node
as σ1z = zσ1 and then propagate this value through the
dependencies.

4 Enter meta-variables

The dependency graph representation is particularly useful
for dealing with meta-variables. We may include a new
kind of dependents corresponding to meta-variables. For
example, σ1A, and generate, factorize and propagate
dependencies in the same way that we did when there were
no meta-variables.

2Note that this does not correspond the usual notion of graph factor-
ization.

The catch, however, is that a root in a graph with meta-
variables does not necessarily mean that we can assume
that dependent to be independent. For example, the graph
with the two dependencies σ1A = f(σ1x), σ1y = f(σ1z)
has σ1z as one of its roots, but if A were instantiated to
A := z, then σ1z would no longer be independent. Not all
is lost, though, and especially when considering systems of
constraints with plenty of unifiers (such as the ones arising
from a resolution proof), meta-variables may appear with
different unifiers and there may be variables (like zσ1

)
which cannot be part of a meta-variable instantiation,
and so certain parts of the graph may be solved before
enumerating possible values for meta-variables.

Calculating which root dependents can be safely given a
value has low complexity (at most quadratic). If there were
none of these, then we are left with the inevitable task of
enumerating all possible values of a meta-variable, result-
ing in a dependency graph for each possible instantiation.

5 Implementation

We currently have a working implementation in Haskell.
This has given correct results for an extensive set of test
cases. The algorithm’s performance is also promising (out-
putting several hundreds of solutions to systems with two
meta-variables in one minute). However, we have not yet
had the time to properly evaluate it and compare it with
more naive approaches to the problem, or to provide theo-
retical results in this regard.

6 Conclusion

We believe that, in conjunction with a resolution procedure,
our algorithm is a promising approach to finding provable
instantiations of formulas with meta-variables in an effi-
cient manner. It is designed to enumerate meta-variables
only when, as far as we understand it, it is absolutely
necessary to do so, therefore reducing inefficiencies as
much as the problem itself permits.

Future work includes thorough evaluation of the algo-
rithm, building the resolution procedure on top of the meta-
unification algorithm, developing theoretical justifications
for the algorithms workings and, of course, application to
the original motivating problem of ontology fault detection.
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Separated Normal Form Transformation Revisited
Cláudia Nalon1 Ullrich Hustadt2 Clare Dixon2

1 Department of Computer Science, University of Brası́lia, Brası́lia, Brazil
nalon@unb.br

2 Department of Computer Science, University of Liverpool, Liverpool, UK
{U.Hustadt, CLDixon}@liverpool.ac.uk

Abstract: We consider the transformation of propositional linear time temporal logic formulae into a clause
normal form, called separated normal form, suitable for resolution calculi. In particular, we investigate the
effect of applying various pre-processing techniques on characteristics of the normal form and determine the
best combination of techniques on a large collection of benchmark formulae.

1 Introduction

Clause normal forms are the foundation of most resolu-
tion calculi and such calculi exist for a wide range of log-
ics, including propositional, first-order, modal and tempo-
ral logics. Given a formula, its clause normal form is typi-
cally computed using a combination of equivalence or sat-
isfiability preserving rewrite steps, including simplification
as a special case, and renaming, which replaces complex
subformulae by new propositional variables. Variations in
the normal form can greatly influence the performance of
resolution-based reasoning systems and transformation pro-
cedures that compute clause normal forms typically aim to
produce fewer and/or shorter clauses for a given formula.
For propositional and first-order logic the computation of
such ‘small’ clause normal forms is well-studied [4, 1, 5].
However, the problem has been not been investigated to the
same extent for non-classical logics, one exception being
the work by Dixon and Nalon on prenexing versus anti-
prenexing for modal logics [3].

In this paper we revisit the problem of computing a
clause normal form for propositional linear time tempo-
ral logic (PLTL), called separated normal form (SNF). In
particular, we determine the effect of applying various pre-
processing techniques during the computation.

2 PLTL and SNF

PLTL is an extension of propositional logic with unary op-
erators # (in the next moment of time), 2 (always) and 3
(eventually) and binary operators U (until) andW (unless).
PLTL-formulae are interpreted over infinite sequences of

τ1(2(¬q ∨ ¬#ϕ)) = τ1(2(¬q ∨# q′)) ∧ τ1(2(¬q′ ∨ ¬ϕ)) (1)
τ1(2(¬q ∨2 l)) = 2(¬q ∨ l) ∧2(¬q ∨ q′) ∧2(¬q′ ∨# l) ∧2(¬q′ ∨# q′) (2)

τ1(2(¬q ∨ (ϕ U ψ))) = τ1(2(¬q ∨ (q′ U ψ)) ∧ τ1(2(¬q′ ∨ ϕ)) if ϕ is not a literal (3)
τ1(2(¬q ∨ (ϕ U ψ))) = τ1(2(¬q ∨ (ϕ U q′)) ∧ τ1(2(¬q′ ∨ ψ)) if ψ is not a literal (4)
τ1(2(¬q ∨ (l1 U l2))) = 2(¬q1 ∨3 l2) ∧2(¬q ∨ l1 ∨ l2) ∧2(¬q ∨ q′ ∨ l2)

∧2(¬q ∨# l1 ∨# l2) ∧2(¬q ∨# q′ ∨# l2)
(5)

Figure 1: Partial Definition of Transformation Function τ1

states σ = (si)i∈N such that each si, 0 ≤ i, is a proposi-
tional valuation. A PLTL-formula ϕ is satisfiable iff there
exists an infinite sequence of states σ = (si)i∈N such that
ϕ holds at s0 in σ. Two PLTL-formulae ϕ and ψ are equi-
satisfiable iff ϕ is satisfiable if and only if ψ is satisfiable.

A PLTL-formula
∧

1≤i≤n Ci is in Separated Normal
Form (SNF) iff every conjunct (clause) Ci, 1 ≤ i ≤ n,
has one of the following three forms.

∨m
i=1 li (initial clause)

2(
∨m
i=1 li ∨

∨n
j=1 # l′j) (global clause)

2(
∨m
i=1 li ∨3 l′1) (eventuality clause)

where n,m ≥ 0 and for every 1 ≤ i ≤ m, 1 ≤ j ≤ n,
li and l′j are propositional variables. Such a finite set N is
equivalent to the conjunction of its elements.

Every PLTL-formula ϕ can be transformed into an equi-
satisfiable formula in SNF. Fisher, Dixon and Peim [2] de-
scribe functions τ0 and τ1 with τ0(ϕ) = (q1 ∧ τ1(2(¬q1 ∨
ϕ))), where q1 is a fresh propositional variable not occur-
ring in ϕ, such that τ0(ϕ) is in SNF and equi-satisfiable to
ϕ. The function τ1 proceeds top-down and uses renaming
to deal with subformulae that are not yet in normal form.
Part of the inductive definition of τ1 is shown in Figure 1.

It is easy to see that τ1 will not always produce a normal
form with the smallest number of clauses. For example,
ϕ1 = 2(¬q ∨ ¬#¬p) is equivalent to 2(¬q ∨# p) which
is in normal form, but, according to (1), τ1(ϕ1) would pro-
duce a conjunction of two clauses. This could be avoided
by converting formulae to negation normal form before ap-
plying τ1. The formula ϕ2 = 2(¬q ∨ (p U p)) is equiv-
alent to 2(¬q ∨ p) which again is in normal form, but,
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according to (5), τ1(ϕ2) would produce a conjunction of
five clauses. This could be avoided by simplification using
well-known equivalences among temporal formulae. Us-
ing such equivalences we can also extend or reduce the
scope of temporal operators. For example, anti-prenexing
would replace 3(p∨q) by the equivalent (3 p∨3 q) while
prenexing would do the opposite. Since τ1 only preserves
satisfiability, we can go even further for ϕ1 and ϕ2. In
both these formulae the propositional variable p only occurs
with positive polarity. In analogy to propositional logic, we
can apply pure literal elimination, that is, we replace vari-
ables that only occur positively (negatively) by > (⊥), and
then simply. For ϕ1 and ϕ2 we obtain > as result. Fi-
nally, a peculiarity of the normal form transformation by τ0
and τ1 is that for a formula ϕ in normal form, τ0(ϕ) will
not be equal to ϕ. Say, ϕ3 is (q2 ∧ 2(¬q2 ∨ p)). Then
τ0(ϕ3) = (q1 ∧ τ1(2(¬q1 ∨ ((q2 ∧ 2(¬q2 ∨ p))))). Com-
puting τ1 will involve (2), creating four additional clauses.
We can ameliorate this problem by modifying τ1 so that it
treats 2(¬q1∨2ϕ) like 2(¬q1∨ϕ) for the specific propo-
sitional variable q1 used by τ0.

3 Implementation and Evaluation

We have implemented τ0, τ1 and the techniques described
in Section 2 in the tool pre-trp. By default, pre-trp

Fresh Prop. Total Sum
Options Class Variables #Clauses Size Times

acacia 4,385 8,922 56,149 0.00
alaska 25,588 69,884 467,918 0.00
anzu 29,684 73,917 500,610 0.00
forobots 1,344 4,460 37,096 0.00
rozier 441,771 977,463 6,662,647 0.25
schuppan 6,871 14,311 86,963 0.00
trp 81,357 211,201 1,401,406 0.00
total 591,000 1,360,158 9,212,789 0.25

-isnf acacia 3,091 6,334 41,915 0.00
-simp alaska 22,309 63,345 431,659 0.00

anzu 14,270 33,361 214,015 0.00
forobots 996 3,745 33,146 0.00
rozier 370,371 806,835 5,469,589 0.27
schuppan 6,532 13,612 83,105 0.00
trp 9,417 65,986 595,355 0.00
total 426,986 993,218 6,868,784 0.27

-isnf acacia 1,187 2,237 14,170 0.00
-ple alaska 22,062 62,904 429,018 0.00
-simp anzu 13,995 32,824 210,659 0.00

forobots 996 3,745 33,146 0.00
rozier 201,605 418,405 2,828,619 0.00
schuppan 6,467 12,687 77,480 0.00
trp 9,417 65,761 593,229 0.00
total 255,729 598,563 4,186,321 0.00

-aprenex acacia 2,936 5,317 31,227 0.00
-isnf alaska 39,142 116,696 786,720 0.00
-ple anzu 33,909 70,842 424,796 0.00
-simp forobots 996 3,745 33,146 0.00

rozier 517,913 965,768 6,476,842 0.25
schuppan 6,867 13,387 81,386 0.00
trp 287,470 542,456 3,192,606 0.00
total 889,233 1,718,211 11,026,723 0.25

Table 1: Evaluation of SNF Transformation

will just compute τ0 for a given PLTL-formula. Options
allow the user to enable additional techniques: -simp for
simplification, -ple for literal elimination, -aprenex for
anti-prenexing, -isnf for the modified version of τ1.

To evaluate the effectiveness of each technique and their
combinations we have used a set of PLTL-formulae col-
lected by Schuppan and Darwiche [6]. The collection con-
sists of 7450 formulae divided into seven classes (acacia,
alaska, anzu, forobots, rozier, schuppan, trp). Half of the
formulae are obtained by negating the original formulae.
Since we also compared pre-trp with an earlier imple-
mentation of the SNF transformation, we have only used
6135 of these formulae.

Table 1 shows for particular combinations of pre-trp
options and for each class the total number of fresh propo-
sitional variables introduced in the transformation, the total
number of clauses produced, the total size of the normal
time and the sum of individual computation times. Over-
all, the combination of -isnf, -simp, and -ple offers
the best result. The option -isnf offer the greatest im-
provement on the trp class, as half its formulae are already
in normal form. The option -ple, pure literal elimination,
shows the greatest improvement on the rozier class as most
formulae in that class are randomly generated and contain
a large number of pure literals. Option -aprenex, anti-
prenexing, appears to have a detrimental effect. This is in
contrast to the results in [3] for basic modal logic, where
anti-prenexing was found to be beneficial.

Overall, the results show that the application of pre-
processing techniques significantly reduced the size of the
normal form and that, if implemented well, as in pre-trp,
this application comes at negligible computational cost.
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Abstract: Proof-theoretic study of coinductive Horn clauses needs to establish soundness of proposed coin-
ductive algorithms. Soundness is with respect to coinductive models of logic programs. In this paper we give
examples on coinductive Horn clauses, and we review the two standard coinductive models for logic programs.

1 Introduction

Coinduction in logic programming refers to phenomena of
non-terminating SLD-derivations and perhaps computation
of infinite data therein. The name “coinduction” alludes to
some association with “induction”, explained later. Work
on coinductive Horn clauses started in the 80s up till now,
with significant progress made on model-theoretic seman-
tics of infinite computation [4] and finite modelling of coin-
duction using loop detection [2, 3], and in the reference lit-
eratures there are motivating applications.

There are different ways to categorize coinductive Horn
clauses, such as, whether or not the derivation is subject
to loop detection, and, whether or not infinite data is com-
puted. We give examples of coinductive Horn clauses be-
low.

Example 1. Given program P1 : r(X) ⊃ r(X) (we use ⊃
for implication), the goal r(a) gives rise to an infinite SLD-
derivation r(a)−r(a)−r(a)−· · · which does not compute
infinite data but is subject to loop detection as there exist a
sub-goal r(a) that can be unified with an ancestor goal r(a).

Example 2. Given P2 : p(s(X)) ⊃ p(X), the goal p(a)
gives rise to an infinite SLD-derivation p(a) − p(s(a)) −
p(s(s(a)))− · · · which does not compute infinite data and
is not subject to loop detection as there does not exist a sub-
goal that can be unified with its ancestor goal.

Example 3. Given P3 : p(X) ⊃ p(s(X)), the goal p(X)
gives rise to an infinite SLD-derivation p(X) − p(X1) −
p(X2) − · · · . In this case loop detection is applicable, for
instance, sub-goal p(X1) unifies with its ancestor p(X) and
produces infinite data X = s(s(· · · )). Meanwhile, the
SLD-derivation itself also computes towards the same in-
finite data as given by loop detection.

Example 4. Given P4 : q(s(X), L) ⊃ q(X, [X|L]),
the goal q(0, L) gives rise to an infinite SLD-derivation
q(0, L)− q(s(0), L1)− q(s(s(0)), L2)− · · · . The infinite
data L = [0, s(0), s(s(0)), . . .] is computed by the SLD-
derivation but loop detection is not applicable.

The challenge is to extract finite patterns of irregular
non-terminating SLD-derivations, which cannot be done
by loop detection, as shown in Examples 2 and 4. Above
all, within the wider mathematical and computing commu-
nity, the concept of proof by coinduction itself is much less
renowned and appears much more obscure than the con-
cept of proof by mathematical induction, despite that a fair

amount of work on coinduction has been done in some
branches of theoretical computing [5].

Our ongoing work promises to solve both problems men-
tioned above. Particularly, in our proof-theoretic study of
coinduction, we explain about what kind of logical reason-
ing constitutes coinductive reasoning, and in what sense a
coinductively derived conclusion is no less valid than an in-
ductively derived one. For instance, a coinductive proof of
a statementH , given a set P of premises, is merely an ordi-
nary logical reasoning (i.e. based on classical or intuition-
istic logic) that derives H from the augmented set P ∪{H}
of premises, such that H itself is asserted as known truth
and is used in its own proof. Indeed it seems like a circular
proof with self-referencing, but this is done in a guarded
way so that the asserted H is not used directly to prove it-
self. The consequence of such reasoning is the conclusion
thatH is coinductively true with respect to P , which means
that H cannot be refuted based on P .

In a mathematical sense, an inductively proved statement
F from P is in the least fixed point of P which collects all
conclusions of P that has a finite inductive proof, while a
coinductively proved statement H from P is in the great-
est fixed point of P , which additionally has all conclusions
of P such that no attempt of inductive proof can terminate.
In Section 2 we review these fixed points in order to set up
a necessary mathematical context for discussion of logical
soundness of our proof-theoretic presentation of coinduc-
tion. We conclude and discuss related topics in Section 3.

2 Models for logic programs

We review the two coinductive models of logic programs.
We assume readers’ familiarity with syntax of first order
Horn clause and the definition of terms and atoms as trees.
We follow the terminology of [4].

A first order Horn clause (Horn clause, in short) K has
the form

∀x1 . . . xm A1 ∧ . . . ∧An ⊃ A (m,n ≥ 0)

where A and variants thereof denote first order atoms. We
denote the atom A by head K and we denote the set
{A1, . . . , An} by body K. A logic program is a finite set
of Horn clauses.

Given a logic program P on signature Σ, we define the
following sets. The Herbrand universe, denoted H, is the
set of all finite ground terms on Σ. The Herbrand base,
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denoted B, is the set of all finite ground atoms on Σ. A
Herbrand interpretation is any subset of B. The complete
Herbrand universe, denoted H′, is the set of all finite and
infinite ground terms on Σ. The complete Herbrand base,
denoted B′, is the set of all finite and infinite ground atoms
on Σ. A complete Herbrand interpretation is any subset of
B′.

Given a Horn clause F , its ground instance on H is de-
noted bF c, and its ground instance on H′ is denoted bF c′.
Given a set S, its power set is denoted Pow(S). There
are two immediate consequence operators with respect to
a program P , which are T : Pow (B) 7→ Pow (B) and
T ′ : Pow (B′) 7→ Pow (B′), defined respectively as:

T (I) = {t ∈ B | F ∈ P, head bF c = t, body bF c ⊆ I }
T ′(J) = {s ∈ B′ | F ∈ P, head bF c′ = s, body bF c′ ⊆ J }

Note that 〈Pow(B),⊆〉 and 〈Pow(B′),⊆〉 are complete
lattices. It is also known that T and T ′ are increasing.
Then, based on Knaster-Tarski fixed point theorem, each
operator has a greatest fixed point (denoted gfp(T ) and
gfp(T ′) respectively), which we take as coinductive models
for a logic program P , as follows.

M = gfp(T ) =
⋃
{I | I = T (I)} =

⋃
{I | I ⊆ T (I)}

M′ = gfp(T ′) =
⋃
{I | I = T ′ (I)} =

⋃
{I | I ⊆ T ′ (I)}

We call M the finite-term coinductive model, and M′

the infinite-term coinductive model. Note thatM⊆M′ by
definition, asM gathers all finite ground atoms that either
has a finite proof or has an infinite derivation, while M′

additionally contains all such, but infinite, atoms.
We could verify, regarding Examples 1–4, that results by

infinite SLD-derivations and by loop detection (whenever
applicable) are true with respect to coinductive models. Re-
garding Example 1,

M(P1) =M′(P1) = {r(a)}
Obviously the result r(a), which is from both loop detec-
tion and infinite derivation, is in the models. Regarding
Example 2,

M(P2) = {p(a), p(s(a)), p(s(s(a))), . . .}
M′(P2) =M(P2) ∪ {p(s(s(· · · )))}

where there is the result p(a) by infinite derivation. Regard-
ing Example 3,

M(P3) = ∅ M′(P3) = {p(s(s(· · · )))
We find the result of loop detection and infinite derivation
inM′(P3). Regarding Example 4,

M(P4) = ∅ M′(P4) = {q(t,≥ t) | t ∈ H′(P4)}
where we use ≥ t as a short hand for the infinite
list [t, s(t), s(s(t)), . . .], and note that ≥s(s(· · · )) is
[s(s(· · · )), s(s(· · · )), s(s(· · · )), . . .]. The result q(0,≥0)
by infinite SLD-derivation is in this model. Note that
M(P3) andM(P4) are empty, since with respect to P3 and
P4, no finite atom has a finite proof or an infinite derivation
whatsoever.

3 Conclusion and discussion

We work with the finite- and infinite-term coinductive mod-
els when studying coinductive Horn clauses. A coinductive
reasoning scheme (such as infinite SLD-derivation and loop
detection, and our current proof-theoretic study) for Horn
clauses is sound if all statements provable by the scheme
are true with respect to coinductive models.

Infinite SLD-derivations given in Examples 2 and 4, cor-
responding to programs P2 and P4 respectively, are not sub-
ject to loop detection. However, there still exist goals for
these two programs, such that the goals give rise to infinite
SLD-derivations to which loop detection is applicable. For
instance, providing goal p(X) for P2, we have an infinite
SLD-derivation p(X)− p(s(X))− p(s(s(X)))− · · · , and
loop detection produces infinite dataX = s(s(· · · )) by uni-
fying p(s(X)) and p(X), and the result p(s(s(· · · ))) is in
M′(P2); providing goal q(X,L) for P4, we have an infinite
SLD-derivation q(X,L)−q(s(X), L1)−q(s(s(X)), L2)−
· · · from which loop detection produces infinite data X =
s(s(· · · )) and L = ≥s(s(· · · )) by unifying q(X,L) with
q(s(X), L1), and the result q(s(s(· · · )),≥s(s(· · · ))) is in
M′(P4). Given a program, we define a Gupta goal as a
goal that gives rise to an infinite SLD-derivation to which
loop detection is applicable. We can see that for all four
programs from Examples 1–4, there exist a Gupta goal. An
interesting question to ask is, Can we find a program, for
which every non-terminating goal is not a Gupta goal ? So
far we did not find such a program.

The two decisive steps in a coinductive soundness proof
is the construction of a post-fixed point candidate, and then
the validation of the candidate. The paper [1] presents in-
structive techniques involved in automating the first step.
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Abstract: Most existing knowledge graph refinement approaches either focus on adding missing knowledge
to the graphs, i.e., completion, or on identifying wrong information in the graphs, i.e. error detection. All of
these approaches do not guarantee the extended knowledge graphs are consistent with the ontological schema
of the input graph. The goal of this paper is to investigate the correctness of knowledge graphs by applying
pattern-based reasoning. Experimental result shows that pattern-based reasoning could detect the problematic
triplets in knowledge graphs.

1 Introduction

Constructing and maintaining large scale good quality
knowledge graphs present many challenges. Most exist-
ing knowledge graph refinement approaches either focus on
adding missing knowledge to the graph, i.e., completion, or
on identifying wrong information in the graph, i.e. error
detection. Paulheim [3] observed, in his recent survey on
knowledge graph refinement, that there exist almost no ap-
proaches which do both completion and error detection at
the same time. The ontological schema presents a unique
opportunity to detect errors. The goal of this paper is to
make use of ontological schema to do pattern based reason-
ing on knowledge graphs.

2 Background

2.1 Knowledge Graph Reasoning

Given a knowledge graph G = (T , A ), as consisting of a
set A (ABox) of interconnected typed entities and their at-
tributes, as well as a set of schema axioms T (TBox) that
defines the vocabulary used in a Knowledge Graph [2]. The
size of T is often much smaller than that of A . There are
some knowledge graph reasoning services that are relevant
to this paper.

• Consistency checking: G is consistent if there exists a
model that satisfies all statements in T and A .

• Classification: this service compute all the subsump-
tions among named types in T .

• Justification: given a reasoning task t over G and its
result r, this service computes the minimal subsets of
G that justify the result r.

3 Inconsistency Detection and Repair

3.1 Why and When to Use Reasoning

Since reasoning can be very costly, we need to balance the
gains and costs of using knowledge graph reasoning ser-

vices. This could help us to decide what kind of knowledge
graph reasoning services we need to run and when.

The benefits of using reasoning services include:

1. Reasoning helps detecting errors and identify invalid
triples in knowledge graphs and repair them, by mak-
ing use of consistency checking and related justifica-
tion services.

2. Reasoning helps to materialize knowledge graphs for
further embedding based completion.

Among the above two items, the first one is more costly
due to the use of justification services, for calculating the
minimal subsets of the input knowledge graph. Essentially,
this means that we will need to run reasoning over (parts
of) Gmany times. In practice, it might be time consuming.
For this, we did a small experiment. We ran consistency
checking and related justification services over the NELL-
995 knowledge graph, which has 154,213 triples. There are
a few inconsistencies. Calculating justifications for all of
them takes more than 1 hour. Thus, in Sec 3.2, we propose
to mainly use pattern based reasoning for error detection
and repair.

3.2 Logical Inconsistency Detection via Pattern Based
Reasoning

The main difference between our proposed pattern based
reasoning and consistency checking with justifications is
that the latter will consider all kinds of justification pat-
terns for any inconsistencies, while the former only con-
siders some patterns of justifications for some inconsisten-
cies. Since some recent study [4] suggests type assertions
are most often more correct in knowledge graphs than rela-
tion assertions, in this paper, we propose to focus on pattern
based reasoning related to relation axioms.

In the Inconsistency Justifications (IJ) patterns listed in
Table 1, since the ABox subsets of the IJ patterns contain
at most two data triples, we need to scan through the data
sub-graph of the input knowledge graph at most twice.

Once an IJ pattern is detected, we can repair it by re-
moving the relation assertions in the pattern. Therefore, IJ
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Table 1: Inconsistency Justification Patterns

ID TBox subset of the Pattern ABox subset of the Pattern
1 Domain(r)=D, D u A v ⊥ (e1, r, e2), (e1, rdf:type, A)
2 Range(r)=R, R u A v ⊥ (e1, r, e2), (e2, rdf:type, A)
3 Asymmetric(r) (e1, r, e2), (e2, r, e1)

patterns not only help us to detect logical inconsistencies
but also help us to repair logical inconsistencies.

4 Example of Inconsistency Justification Patterns in
Knowledge Graphs

We used two knowledged graphs for this research:
(i)NELL-995 [1] which is a knowledge graph/dataset from
carnegie mellon university containing 142,065 triples, (ii)
IBM-HM which is knowledge graph/dataset from IBM
Hardware Maintenance containing 9228 triples.

Every dataset contains triplets in this format: (head
entity; relation; tail entity). For example, in NELL
dataset, we could find the valid triples as follows: (per-
son:molly moore; worksfor; city:washington DC. This
triple is considered as valid because the domain class of
relation worksfor is person and the range class is city.
We could also find inconsistency justification patterns in
NELL such as these two triplets : (river:narew; emptiesIn-
toRiver; river:vistula) and (river:vistula; emptiesIntoRiver;
river:narew). These two patterns are considered as incon-
sistency patterns because the relation emptiesIntoRiver is
asymmetric relations.

5 Effectiveness of Pattern Based Reasoning and Se-
mantic Inconsistency Checking

Experimental setup. To show the effectiveness of the
pattern-based reasoning (in short PBR) and semantic incon-
sistency checking against global checking (in short GC), we
composed two scenarios. We used FACT++ 1.6.5 (run with
Protege) as the GC. Following are the scenarios:

• comparing how many invalid triples (in percentage)
from original graph that can be covered by both ap-
proaches and how long it take to run the process.

Dataset. we used two datasets for this scenario: (i)NELL-
995 which is a dataset from carnegie mellon university con-
taining 142,065 triples and IBM Hardware Maintenance
which is dataset from IBM containing 9228 triples. 1

Results. The result of this scenario can be seen in table
2.

From table 2, we could see that PBR detects most of
the invalid triples and much more efficient than consistency
checking.

1PBR : Pattern-Based Reasoning; CE : Coverage of Errors (in %); RT
: Run Time (in second)

Table 2: Comparison between reasoner and pattern-based
reasoning

Dataset
Reasoner PBR

CE RT CE RT
IBM-HM 100% 4,620 s 100% 296.68 s

NELL 100% 4,811 s 89.47% 119.9 s

6 Conclusion

We prove that pattern-based reasoning can detect problem-
atic triple/inconsistency justification in knowledge graphs.
Not only detecting, but our approach also could help in re-
pairing the logical inconsistencies of the graphs. We are
still improving the scalability our approach to handle big-
ger knowledge graphs.
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Abstract: Only restricted versions of fairness are expressible in the well-known branching temporal logics
ECTL and ECTL+, while the full expressiveness of branching-time logic in CTL? makes this logic extremely
challenging for the application of the tableau technique. Tree-shaped one-pass tableaux are well suited for the
automation and are amenable for the implementation. We present here a sound and complete method of tree-
style one-pass tableau for a sub-logic of CTL? which is more expressive than the logic ECTL+allowing the
formulation of some fairness constraints with ‘until’ operator. The provided example follows by an algorithm
for constructing a systematic tableau that enables to prove completeness.

1 Introduction

For the specification of the reactive and distributed sys-
tems, or, most recently, autonomous systems, where the
modelling of the possibilities ‘branching’ into the future is
essential, the branching-time logics (BTL) give us an ap-
propriate framework. The most used class of formalisms
are ‘CTL’ (Computation Tree Logic) type logics: CTL it-
self, ECTL (Extended CTL) [2] that was defined to enable
simple fairness constraints but not their Boolean combi-
nations and ECTL+ ([3]) which further extends ECTL al-
lowing Boolean combinations of ECTL fairness constraints
(but not permitting their nesting). The literature on fairness
constraints, even in linear-time setting, lacks the analysis of
their formulation with a ‘stronger’ temporal operator - U
(‘until’) such as �(AU B) or AU �B. Here we bridge

Lamport Notation / Formulae expressible
CTL-type name here but not above

B(U ,◦) / CTL

B(U ,◦,�♦)/ ECTL E(�♦q)
B+(U ,◦,�♦) / ECTL+ E(�♦q ∧ �♦r)
B+(U ,◦, U �) A((pU �q) ∧ (sU �¬q))
B?(U ,◦) / CTL? A♦(◦p ∧ E◦¬p)

Figure 1: BTL classification.

this gap, providing an analysis of such complex fairness
constraints with U (also allowing the nesting of temporal
operators) in the branching-time setting weaker than CTL?.
Thus, we consider the logic that extends ECTL+ with the
modalities �U and U �. While the addition of the former
does not increase the ECTL+ expressiveness1, AU (�B)
cannot be expressed in the ECTL+ language. The fairness
constraint A(pU �q) can be read as ‘q is true along all paths
of the computation except possibly their finite initial inter-
val, where p is true’.

In Figure 1 we fit our logic into the hierarchy of
branching-time logics: ‘B’ is used for ‘Branching’, fol-
lowed by the set of only allowed modalities as parame-

1�(AU B) can be expressed in ECTL+ by �(A ∨B) ∧ �♦B.

ters; B+ indicates admissible Boolean combinations of the
modalities and B? reflects ‘no restrictions’ in either con-
catenations of the modalities or Boolean combinations be-
tween them. We present a tree-style one-pass tableau for
the logic B+(U ,◦, U �) continuing the analogous devel-
opments in linear-time case [4].
B+(U ,◦, U �) language is defined with linear-time

temporal operators � (always), ◦ (next time), and U (un-
til), and path quantifiers - A (on all future paths) and E (on
some future path). The state (σ) and path (π) formulae are
defined below (state formulae are wff).
σ ::= L | σ1 ∧ σ2 | σ1 ∨ σ2 | Aπ | Eπ
π ::= π1 ∧ π2 | π1 ∨ π2 | ◦σ | σ U σ | σ U (�σ) | �σ

| �(σ U σ)

2 The tableau method

While our tableaux are AND-OR trees with nodes labelled
by sets of state formulae, the only rule which introduces
AND-nodes is the next-state rule:

Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm

AΦ1, . . . ,AΦn,EΨ1 & . . . & AΦ1, . . . ,AΦn,EΨm

Figure 2: NEXT-STATE RULE. (Σ is a (possibly empty) set
of literals; Φi,Ψi are non-empty sets of formulae.)

The next-state rule labels a branch that splits into m
branches, at the node labelled by the premise of this rule.
The conclusion of this rule uses the & symbol to reflect to
generation of m AND-successor nodes.

Σ,E(�(σ1 U σ2) ∧Π)

Σ,E((σ1 U σ2) ∧ ◦�(σ1 U σ2) ∧Π)

Figure 3: α-RULE (E�U ). ( Σ is a (possibly empty) set of
state-formulae and Π is a (possibly empty) conjunction of
path-formulae.)

We also apply α- and β-rules: an α-rule expands a
branch at the node labelled by its premise, with a node la-
belled by the conclusion; a β-rule splits a branch by two or
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Σ,A((�σ) ∨Π)

Σ, σ,A((◦�σ) ∨Π) | Σ,AΠ

Figure 4: β-RULE (A�σ). ( Σ, σ is a set of state-formulae
and Π is a (possibly empty) disjunction of path-formulae.)

three OR-nodes labelled by the formulae in its conclusion
(separated by |).

We handle inputs in a new, branching-time, setting in
‘analytic" way, extending similar construction for linear-
time logic [4]. This extension is possible due to the defini-
tion of the ‘context’ in which eventualities are to be fulfilled
in this new setting. Our β+-rules are characteristic (and
crucial!) for our construction. They tackle difficult cases
of formulae in B+(U ,◦, U �). The β+-rules, similarly to
β-rules, split a branch into two or three branches; these are
the only rules that utilise ‘context’ to force the soonest sat-
isfaction of the eventualities. The context is given by the
sets of state (Σ) and path (Π) formulae. While, the outer-
context was already used in the linear-time tableaux [4], for
branching-time, the new concept of the ‘inner-context’ is
introduced. Figure 5 shows a β+ rule that handles a dis-
junction of formulae, including U in the scope of the A
quantifier.

Σ,A((σ U σ′) ∨Π)

Σ, σ′ | Σ, σ′,A(◦((σ ∧ (¬Σ ∨ ϕΠ))U σ′) ∨Π) | Σ,AΠ

Figure 5: β+-RULE (AU σ)+. ( Σ, σ, σ′ is a set of state-
formulae, Π is a (possibly empty) disjunction of path-
formulae, and ϕΠ is the state-formula introduced by Def-
inition 1.)

Definition 1 Let Π be a disjunction of path-formulae of the
three forms �σ, σ U �σ′ and �(σ U σ′) where σ and σ′ are
state-formulae. The formula ϕΠ to be the following dis-
junction of state-formulae:

∨

�σ∈Π

σ ∨
∨

σ U �σ′∈Π

σ′ ∨
∨

�(σ U σ′)∈Π

E(TU σ′).

3 Example

Our example of an open tableau illustrates the use of the
inner context (see Figure 6). This tableaux is constructed
by a systematic algorithm that keeps (along a branch) ex-
actly one –if there is some– marked eventuality forcing its
fulfilment. In Fig. 6, the semicolon inside the A-quantifier
stands for disjunction, the marked eventuality is in black-
boxes and (Q◦) is the next-state rule. Note that Π consists
of a path-formula �p, so ϕΠ is just p. Since the marked
eventuality is TU ¬p and the outer-context Σ is empty, the
subformula σ ∧ (¬Σ ∨ ϕΠ) in the conclusion of the rule in
Fig. 5 is just p. It is notable that this inner-context p en-
ables the central branch to loop, given a model of the initial

formula that –in this branch– does not force the eventuality,
but satisfies the other disjunct in the A-quantifier: �p.

Figure 6: Open Tableau
4 Conclusion

We presented a tree-style one pass tableaux method for
a new logic in the family of BTL – B+(U ,◦, U �) –
which extends the expressiveness of ECTL+ fairness by
a new class of fairness constraints utilising the U opera-
tor. The full details and the correctness proof are given in
[1]. The tableaux rules that invoke the inner-context, en-
abled us to handle a particularly difficult class of formu-
lae: A-disjunctive formulae with eventualities. The proof
of correctness of β+-rules is based on identifying relevant
state-formulae inside specific path-modalities. This opens
the prospect to study more expressive logics (eg CTL?)
by identifying subformulae that do not affect the ‘context’
which allows to simplify given structures. The presented
technique, being the extension of a similar one for the
linear-time setting, is amenable for implementation. In the
refinement and implementation of our new algorithm we
will rely on similar techniques used in the implementation
of its linear-time analogue.
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Leo-III: A Theorem Prover for Classical and Non-Classical Logics
Alexander Steen

Institute of Computer Science, Freie Universität Berlin, Arnimallee 7, 14195 Berlin,
a.steen@fu-berlin.de

Abstract: The automated theorem prover Leo-III for classical higher-order logic with Henkin semantics and
choice is presented. Leo-III is based on extensional higher-order paramodulation and accepts every common
TPTP dialect (FOF, TFF, THF), including their recent extensions to rank-1 polymorphism (TF1, TH1). In
addition, the prover natively supports reasoning in almost every normal higher-order modal logic.

1 Introduction

Leo-III is an automated theorem prover (ATP) for classi-
cal higher-order logic (HOL) with Henkin semantics and
choice that is implemented in Scala.1 It is the successor
of the well-known LEO-II prover [3], whose development
significantly influenced the build-up of the TPTP THF in-
frastructure. Leo-III collaborates with external theorem
provers, in particular, with first-order (FO) ATPs.

Leo-III supports all common TPTP dialects (CNF, FOF,
TFF, THF) as well as the polymorphic variants TF1 and
TH1. The prover returns results according to the stan-
dardized SZS ontology and additionally produces a TSTP-
compatible (refutation) proof certificate, if a proof could be
found. Furthermore, Leo-III natively supports reasoning for
almost every normal HO modal logic. These hybrid logic
competencies make Leo-III, up to the author’s knowledge,
the most widely applicable ATP available to date.

The presentation of Leo-III is partly adopted from a re-
cent system description [5] which also contains extensive
evaluation results on various benchmark sets.

HOL. HOL as addressed here has been proposed by
Church, and further studied by Henkin, Andrews and oth-
ers [1]. It provides lambda-notation, as an elegant and use-
ful means to denote unnamed functions, predicates and sets
(by their characteristic functions). In the remainder a notion
of HOL with Henkin semantics and choice is assumed.

2 Calculus

Leo-III extends a complete, paramodulation based calcu-
lus for HOL with practically motivated, heuristic inference
rules. They are grouped as follows:

Clause normalization. Leo-III employs definitional
clausification to reduce the number of generated
clauses. Moreover, miniscoping is employed prior
to clausification. The remaining rules are straight-
forward.

Primary inferences. The primary inference rules of Leo-
III are paramodulation, equality factoring and prim-
itive substitution. The first two introduce unification

1Leo-III is freely available (BSD license) at http://github.com/
leoprover/Leo-III.

constraints that are encoded as negative literals. Note
that these rules are unordered and produce numerous
redundant clauses. Leo-III uses several heuristics to
restrict the number of inferences, including a HO term
ordering. While these restrictions sacrifice complete-
ness in general, recent evaluations confirm practical-
ity of this approach [5]; complete search may be re-
tained though. Primitive substitution instantiates free
variables at top-level with approximations of predicate
formulas using so-called general bindings.

Unification. Unification in Leo-III uses a variant of
Huet’s pre-unification rules. Negative equality liter-
als are interpreted as unification constraints and are at-
tempted to be solved eagerly by unification. In con-
trast to LEO-II, Leo-III uses pattern unification when-
ever possible. In order to ensure termination, the pre-
unification search is limited to a configurable depth.

Extensionality rules. Dedicated extensionality rules are
used in order to eliminate the need for extensionality
axioms in the search space. The rules are similar to
those of LEO-II [3].

Clause contraction. Additionally to standard simplifica-
tion routines, Leo-III implements are variety of (equa-
tional) simplification procedures, including subsump-
tion, destructive equality resolution, heuristic rewrit-
ing and contextual unit cutting (simplify-reflect).

Defined Equalities. Leo-III scans for common definitions
of equality predicates and heuristically instantiates (or
replaces) them with primitive equality.

Choice. Leo-III is designed for HOL with choice. Special-
ized rules instantiate choice predicates for subterms
that represent choice operator applications and remove
uninstantiated choice axiom schemes.

Function synthesis. If plain unification fails for a set
of unification constraints, Leo-III may try to synthe-
size function specifications using dedicated choice in-
stances that simulate suitable if-then-else terms. In
general, this rule tremendously increases the search
space. However, it also enables Leo-III to solve some
hard problems (with TPTP rating 1.0). Also, Leo-III
supports improved reasoning with injective functions
by postulating the existence of left-inverses.
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Heuristic instantiation. Prior to clause normalization,
Leo-III might instantiate universally quantified vari-
ables. This include exhaustive instantiation of finite
types as well as partial instantiation for otherwise in-
teresting types.

3 External Cooperation

In the tradition of the cooperative nature of the LEO prover
family, Leo-III collaborates during proof search with exter-
nal reasoning systems, in particular, with first-order ATPs
such as E, iProver and Vampire as well as SMT solvers
like CVC4. Unlike LEO-II, which translated proof obli-
gations into untyped first-order languages, Leo-III, by de-
fault, translates its higher-order clauses to (polymorphic or
monomorphic) many-sorted first-order formulas.

Leo-III accumulates higher-order clauses during proof
search and repeatedly invokes all cooperating systems on
the generated proof obligations. For that purpose, various
translation mechanisms from HOL to different variants of
first-order logic are implemented. If any external (first-
order) reasoning system finds the submitted proof obliga-
tion to be unsatisfiable, the original HOL problem is un-
satisfiable as well and a proof for the original conjecture is
found.

4 Polymorphic HOL Reasoning

Leo-III supports reasoning in first- and higher-order logic
with rank-1 polymorphism. The support for polymorphism
has been strongly influenced by the recent development of
the TH1 format for representing problems in rank-1 poly-
morphic HOL.

Central to the polymorphic adaption of Leo-III’s calcu-
lus is the notion of type unification. Intuitively, whenever
calculus rules requires two premises to have the same type,
in the polymorphic adaption it suffices that the two terms’
types are unifiable. For a concrete inference, the type uni-
fication is then applied first to the clauses; followed by the
standard inference rule itself.

External cooperation for polymorphically typed HO
clauses is already subsumed by the existing translation
framework.

5 Modal Logic Reasoning

Modal logics have many relevant applications in computer
science, artificial intelligence, mathematics and computa-
tional linguistics. They also play an important role in many
areas of philosophy, including ontology, ethics, philosophy
of mind and philosophy of science. Many challenging ap-
plications, as recently explored in metaphysics, require FO
or HO modal logics (HOMLs). The development of ATPs
for these logics, however, is still in its infancy.

Leo-III is addressing this gap. In addition to its role as
a classical reasoner, it is the first ATP that natively sup-
ports a very wide range of normal HOMLs. To achieve
this, Leo-III internally implements the shallow semantical

embeddings approach [2, 4]. The key idea in this approach
is to provide and exploit faithful mappings for HOML input
problems to HOL.

Leo-III supports (but is not limited to) FO and HO ex-
tensions of the well known modal logic cube. When tak-
ing the different parameter combinations into account (con-
stant/cumulative/varying domain semantics, rigid/non-rigid
constants, local/global consequence relation, etc.) this
amounts to more than 120 supported HOMLs [4, §2.2]. The
exact number of supported logics is in fact much higher,
since Leo-III also supports multi-modal logics.

6 Summary and Outlook

Leo-III is a state-of-the-art higher-order reasoning system
offering many relevant features and capabilities. Due to its
wide range of natively supported classical and non-classical
logics, which includes polymorphic HO logic and numer-
ous FO and HO modal logics, the system has many topical
applications in computer science, AI, maths and philoso-
phy. Additionally, an evaluation on heterogeneous bench-
mark sets shows that Leo-III is also one of the most effec-
tive HO ATP systems to date [5]. Leo-III complies with
existing TPTP/TSTP standards, gives detailed proof certifi-
cates and it plays a pivotal role in the ongoing extension of
the TPTP library and infrastructure to support modal logic
reasoning.
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The ELFE Prover
Verifying mathematical proofs of undergraduate students

Maximilian Doré
LMU Munich, m.dore@campus.lmu.de

Abstract: ELFE is an interactive system for teaching basic proof methods in discrete mathematics. The user
inputs a mathematical text written in fair English which is converted to a special data-structure of first-order
formulas. Certain proof obligations implied by this intermediate representation are checked by automated
theorem provers which try to either prove the obligations or find countermodels if an obligation is wrong.
ELFE is implemented in HASKELL and can be accessed via a reactive web interface or from the command
line. Background libraries for sets, relations and functions have been developed.

1 Introduction

Teaching mathematics in university is still a mostly anal-
ogous endeavour. Immediate feedback would greatly in-
crease the learning curve – it is often difficult to see when
a proof is complete or what steps are missing. Such feed-
back could be provided by machines. And indeed, many
attempts have been made to formalize mathematics. Most
prominently, the interactive theorem provers ISABELLE and
COQ are advanced systems. However, mathematical begin-
ners are overwhelmed by the capabilities of such systems
since using them requires a deep understanding of work-
ings of automated theorem provers (ATP).

The goal of this work is to provide users with a sys-
tem that gives feedback on proofs entered in a fairly natu-
ral Mathematical language. Thereby the users are detached
from the technicalities of ATPs. Archetype for our tool was
the SYSTEM FOR AUTOMATED DEDUCTION [3], however,
we have developed our own input language and internal
proof representation.

Include functions.

Let A,B,C be set.

Let f: A→ B.
Let g: B→ C.

Lemma: g◦f is injective implies f is injective.
Proof:

Assume g◦f is injective.
Assume x ∈ A and x’ ∈ A and (f{x}) = (f{x’}).
Then ((g◦f){x}) = ((g◦f){x’}).
Hence x = x’.
Hence f is injective.

qed.

Figure 1: Exemplary ELFE text

Consider the exemplary proof in Figure 1 which is in fact
a valid ELFE text. After including a background library and
introducing specific sets A, B and C and functions f and g, a
lemma is proposed that if the composition of f and g is injec-
tive, so the firstly applied f must be injective. This lemma
is proven by the reasoning that if f maps two elements x
and x’ to the same element, the composition of f and g must

map them to the same elements. Since this composition is
injective, it follows that x and x’ are the same elements and
f is thus injective. Note that (g◦f){x} denotes the function
application of g◦f which is put in brackets to specify the
precedence of the symbols.

The ELFE system is implemented in HASKELL and can
be accessed through a web interface or a command-line in-
terface (CLI) as shown in Figure 2. After the text is entered
via one of its interfaces, it will be transformed into a repre-
sentation in first-order logic, which is introduced in Section
2. Keywords like Then and Hence have special meanings
in an ELFE proof and are used to structure a mathematical
proof. This structure is captured in an intermediate proof
representation which is introduced in Section 3. The inter-
nal representation implies certain proof obligations which
are checked by ATPs.

CLI

Web server

Parser Verifier ATP

Figure 2: Architecture of the ELFE system

The prover will be presented at CSEDU 2018, a preprint
of the conference proceeding can be found in [1]. A full de-
scription of the system can be found in [2]. An instance of
the system is available online1, as well as its source code2.

2 ELFE language

First-order logic is used to encode mathematical statements.
Most transformations are straightforward from ELFE to
first-order logic, e.g., P implies f is injective is transformed
to P → injective(f). In order to make an ELFE text more
legible, additional commands introduce meta-language fea-
tures: The command Include can be used to include the

1https://elfe-prover.org
2https://github.com/maxdore/elfe
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axioms of a background theory, The command Notation is
used to introduce syntactic sugars. The command Let binds
a predicate symbol to a variable, effectively assigning a type
to a symbol.

3 Statement Sequences

In order to capture the structure of a proof, we propose so-
called statement sequences. Intuitively, a statement holds a
first-order formula with an identifier and a proof. A proof
can consist of other statements in order to represent com-
plex proof objects.

Definition 1. Statement sequences.
A statement S is a tuple ID × GOAL × PROOF where

• ID is an unique alphanumeric string

• GOAL is a formula in first-order logic

• PROOF
ASSUMED | BYCONTEXT |
BYSUBCONTEXT Id1, ..., Idn |
BYSEQUENCE S1, ..., Sn | BYSPLIT S1, ..., Sn

A statement sequence is a finite list of statements S1, ..., Sn.

Consider the example in Figure 3. The statements Sfun
and Sinj are definitions and thus do not to be checked.
Their PROOF is therefore ASSUMED. The statement S
holds the lemma of our text. In order to verify its valid-
ness, we have to construct a more complex proof object.
The complete explanation of this can be found in [1]. To
give an overview of the other types of PROOF: A proof BY-
SEQUENCE and BYSPLIT makes it possible to nest more
complex derivation sequences. A statement annotated with
BYCONTEXT will be checked by the background provers.
BYSUBCONTEXT is a special case of this proof type which
allows for restricting the context of the statement.

∀set(A), set(B), f.function(f,A,B) ↔ ∀x ∈ A.∃y ∈ B.
relapp(f, x, y) ∧ (∀y′ ∈ B.y = y′ ∨ ¬relapp(f, x, y′))

ASSUMED

Sfun

∀set(A), set(B), function(f,A,B).
injective(f) ↔ ∀x ∈ A, x′ ∈ A, y ∈ B.

relapp(f, x, y) ∧ relapp(f, x′, y) → x = x′

ASSUMED

Sinj

∀set(A), set(B), set(C),
function(f,A,B), function(g,B,C).

injective(composition(g, f)) → injective(f)

S

Figure 3: Exemplary statement sequence

3.1 Proved Statements

Since we want to verify that a text is sound, we need to
introduce a soundness criteria for statements. Axioms of

a text are considered correct, but the lemma needs a more
subtle criteria. First we will define which axioms are con-
sidered relevant to a statement. Intuitively, the context
of a statement in a statement sequence are all statements
"above" it.

Definition 2. Context of a statement
Let S1, ...Sn be a statement sequence. The context of a
statement Sk is inductively defined as

• Γ(EMPTY) = ∅,

• Γ(Sk) = {S1.GOAL, ..., Sk−1.GOAL}
∪ Γ(Sk.PARENT).

For example, in Figure 3, the context of statement S con-
sists of the respective goals of Sfun and Sinj (as well as
other definitions of the background library which are omit-
ted here). With that, we can define an appropriate sound-
ness criteria for statements.

Definition 3. Proved statement.
Let S be a statement with S.GOAL = φ.
We call S proved iff Γ(S) � φ.

In other words, a statement is considered proved if it al-
ready followed from the theory created by its context. The
statements Sfun and Sinj in Figure 3 are not proved since
they build up the axioms of our theory. The statement S
however should follow from these axioms, i.e., should be
a proved statement. In order to show that S is proved, we
will inductively create a more complex proof object such
that correctness of the proof object implies that S followed
from its context.

That the proof object can be constructed does not neces-
sarily imply the correctness of the text. Instead, the proof
object contains proof obligations which need to be checked
by ATPs. To give an idea of what a proof obligation can
look like: In our proof in Figure 1, we proved injectivity of
f by taking two elements of the domain which are mapped
to the same element in the codomain, and then showing that
these elements must be equal. That this construction indeed
implies injectivity is checked by the background provers.
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Proving security properties of CHERI-MIPS
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Abstract: CHERI-MIPS is an instruction set architecture that provides hardware support for secure encapsu-
lation and fine-grained memory protection. The guarantees it intends to offer are described in high-level prose,
which makes it difficult to understand what they precisely are, whether they are true, and whether they indeed
provide memory protection. We describe ongoing work on proposing formal definitions of these guarantees
and proving that they are true.

1 THIS VERSION IS FOR METADATA EXTRAC-
TION ONLY
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Higher-order Reasoning Vampire Style
Ahmed Bhayat Giles Reger
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Abstract: Higher-order logic (HOL) is utilised in numerous domains from program verification to the for-
malisation of mathematics. However, automated reasoning in the higher-order domain lags behind first-order
automation. Many higher-order automated provers translate portions of HOL problems to first-order logic
(FOL) and pass them to FOL provers. However, FOL provers are not optimised for dealing with these trans-
lations. We extend the Vampire automated theorem prover with special inference rules to facilitate efficient
reasoning with translated HOL problems. We present these inferences and explore preliminary results on their
experimental performance compared to translations using axioms and to an automated HOL prover.

1 Introduction

Most automated theorem provers for higher-order logic
(HOL) utilise a first-order (FO) theorem prover to discharge
some of the proof burden [2]. However, this can lead to
inefficiencies in practice due to FO provers not being opti-
mised for the often unwieldy translations. The goal of this
work is to extend the Vampire theorem prover [7] to reason
directly with higher-order problems. The general approach
is to perform the translation to FOL directly whilst intro-
ducing additional rules that are ‘translation-aware’. This is
based on our previous experience where introducing special
inference rules was more effective than relying on intro-
duced axioms. For example, the so-called FOOL paramod-
ulation rule greatly improved Vampire’s performance on a
superset of many-sorted FOL [5]. Even when the introduc-
tion of rules results in the incompleteness, outcomes can
be superior to those achieved via a complete axiomatisation
[6]. Consider the following classic translation of a HOL
problem utilising the venerable Turner combinators [8].

axiom: add = λxy.+ x y

translation: add = B + I

conjecture: ∀x.add x 0 = x

To reason about this problem a FO prover would either have
to be provided with axioms for the combinators or utilise
special inference rules. In the first case, the superposition-
resolution calculus could combine axioms to form new
function definitions. In theory, this process can be hugely
explosive as the combinators can combine to form any com-
putable function. For the above example, a set of rewrite
rules for the B and I combinators, combined with simple
arithmetic reasoning easily leads to a proof. Thus, the use
of special inference rules appears to be an elegant solution
to combinatorial explosion at the cost of completeness. We
do not discuss the syntax and semantics of HOL and FOL
and the possible translations from HOL to FOL. Details of
these can be found elsewhere [1, 4].

2 Background

Vampire is a saturation-based theorem prover for many-
sorted first order logic. Proof search consists of two main

parts: (i) translation into clausal form, and (ii) saturation
with respect to the resolution and superposition calculus
(which is complete for FOL). Proof search is refutational
e.g. the conjecture is negated and is established if a contra-
diction is derived. To enable Vampire to reason about HOL
problems, we extend the parser to deal with λ-expressions
and application. Translation into clausal form is then ex-
tended to translated higher-order features into FOL. This
is broadly in line with the approach of Meng and Paulson
[8]; Turner combinators are utilised to eliminate λs and a
two place app function is introduced to avoid partial ap-
plication. However, note that we are translating to many-
sorted FOL rather than unsorted FOL. For each combina-
tor present in the translation, the relevant (sorted) axiom
is added. Doing so only for combinators that occur in the
translation, leads to a more compact output at the expense
of completeness. Further, as logical connectives can be
utilised in a curried fashion in HOL, these are translated
to FOL constants and relevant axioms are added.

3 Special Inference Rules

An alternative to axiomatising combinators and logical
constants is to reason about them natively, similar to
how paramodulation avoids the axiomatisation of equality.
Three sets of inference rules have been added to Vampire
to deal with combinators and HOL constants. Below is an
explanation and example of each set.

1. Rules to rewrite connective constants to their FO coun-
terparts when they are fully applied and at the top level
e.g. (where vEQ represents logical equivalence):

app(app(vEQ, t1), t2) = $true ∨ C
t1 = t2 ∨ C

2. Rules to rewrite combinators when they are fully ap-
plied e.g. (for the B combinator):

C[app(app(app(B, t1), t2), t3)]

C[app(t1, app(t2, t3))]

3. Rules to rewrite a fully applied connective constant to
true or false (known as short-circuit evaluation) e.g.:

C[app(app(vOR, t1), t2)]
where t1 = $true or t2 = $true

C[$true]

19



Table 1: Experimental Results on Higher-Order portion of TPTP Library

Solver Number Proved Unsat or Thm Unique Average CPU Time(s)Total in < 30s
Satallax 3.2 2070 1901 593 13.5
vamp default 1229 1222 2 0.9
vamp const off 1500 1432 190 5.8
vamp comb off 1308 1264 14 4.1
vamp short circ elim off 1206 1206 0 0.9

4 Preliminary Experimental Results

We evaluate a preliminary implementation of the above
translation and inference rules on HOL problems taken
from the TPTP library [9]. We select 3077 relevant prob-
lems - we focus solely on theorems as our approach is in-
complete. We ran Vampire and Satallax 3.2 [3] each for 300
seconds. Vampire is run in portfolio mode extended with
new options. We compare four configurations of Vampire:
default includes all three sets of special inference rules;
const off turns off rules for connectives; comb off
turns off rules for combinators; short circ elim off
turns of shortcut elimination rules. Table 1 presents our pre-
liminary results. We report the number of problems that Sa-
tallax uniquely solves and for each variant we give the num-
ber of problems it can solve uniquely with respect to other
variants. Vampire solves 6 problems that Satallax could not.
We see that the special inference rule for connectives is sig-
nificantly less effective than adding the axioms. This can
be attributed to the rules being restricted to connectives at
the top-level (in this sense it is the ‘least complete’ of the
rules). Even for combinators the special inference rules had
a net negative effect, albeit smaller. However, it is inter-
esting to note that the inference rule does solve problems
faster (when it solves them at all). These results show that
the shortcut elimination rule is always useful.

5 Current and Future Work

The above results demonstrate the trade-off between the
completeness of an approach and the effect this has on the
efficiency of proof search. It is not (yet) clear that spe-
cial inference rules cannot be utilised positively in general,
but our initial experiments show that a straightforward im-
plementation did not yield the performance boost we had
hoped for. One explanation would be that the combinator
explosion we are trying to avoid does not occur often in
practice for those problems we can solve at all. This may be
an effect of our translation being from HOL to many-sorted
FOL (not unsorted FOL as in other work). In this case, ei-
ther polymorphism or an infinite set of combinator axioms
is required to be complete even with the axiom translation.
Without either of these it is feasible that the search space
is restricted enough to not hobble the prover whilst being
expansive enough to outperform the non-axiom approach.

Clearly there is still some work to be done to compete
with automated HOL provers such as Satallax. So far, we
do little to handle what might be called ‘true’ higher-order

reasoning and the gap may reflect the need for such reason-
ing. In light of this, the challenge is to integrate aspects of
higher-order reasoning into Vampire (e.g. limited HO uni-
fication) without excessively harming its efficiency.

In the short term, further experimentation is to be carried
out on the most effective way to combine axioms and infer-
ence rules. In the longer term, the aim is to embed sufficient
higher-order reasoning into Vampire to make it effective on
a broad range of problems. A proposed first step to this is
to embed a λ-calculus within the prover. Other ideas under
consideration are using the η-long form of HO terms to re-
move partial application and thereby avoid the usage of the
app function and to utilise HO unification pragmatically on
‘promising’ clauses.
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[7] Laura Kovács and Andrei Voronkov. First-order theorem
proving and Vampire. In Natasha Sharygina and Helmut
Veith, editors, CAV 2013, volume 8044 of Lecture Notes in
Computer Science, pages 1–35, 2013.

[8] Jia Meng and Lawrence C. Paulson. Translating higher-order
clauses to first-order clauses. Journal of Automated Reason-
ing, 40(1):35–60, 2008.

[9] G. Sutcliffe. The TPTP Problem Library and Associated In-
frastructure. From CNF to TH0, TPTP v6.4.0. Journal of Au-
tomated Reasoning, 59(4):483–502, 2017.

20



Extending the KSP Prover to More Expressive Modal Logics
Fabio Papacchini1 Cláudia Nalon2 Ullrich Hustadt1 Clare Dixon1

1 Department of Computer Science, University of Liverpool, {name.surname}@liverpool.ac.uk
2 Departament of Computer Science, University of Brası́lia, nalon@unb.br

Abstract: The abstract discusses how to extend the resolution-based KSP prover for multi-modal logic Kn to
reflexive, serial, symmetric, or transitive logics. Extensions are based on reductions to Kn.

1 Introduction

A modal-layered resolution calculus for the multi-modal
logic Kn is proposed in [3]. The calculus is sound and
complete, and its main feature is to reduce the number of re-
quired inferences by labelling clauses with the modal level
(a notion closely related to modal depth) of their occur-
rences. This labelling of clauses is performed when com-
puting a normal form called Separated Normal Form with
Modal Levels, SNFml. While the original calculus is a de-
cision procedure for both global and local satisfiability, this
abstract focuses only on the latter as it is when the main
feature of the calculus is utilised fully. Clauses in SNFml
are in one of the following forms.

• Literal clause ml :
∨r
b=1 lb

• Positive a-clause ml : l′ ⇒ �a l
• Negative a-clause ml : l′ ⇒ ♦a l

where ml ∈ N and l, l′, lb are literals. Figure 1 shows
the rules of the calculus with σ being a unification of la-
bels defined as σ({ml}) = ml, and undefined otherwise.
The resolution-based prover KSP implements the modal-
layered resolution calculus, and [2, 4] show that it often
outperforms other state-of-the-art provers.

When extending the calculus to cover more expressive
modal logics, two possible approaches come immediately
to mind: (1) adding appropriate rules to handle the new
features required by the logic under consideration, (2) re-
ducing the logic under consideration to Kn. The former so-
lution is common in many decision procedures for families
of modal logics (e.g., [5]). A similar approach is possible
also for the modal-layered resolution calculus, but it is non-
trivial without requiring the use of global reasoning. This
is because information relating newly introduced symbols
with clauses occurring at different levels would need to be
maintained in order to preserve completeness, a task made
easy by allowing global reasoning. As our focus is on local
reasoning, this abstract discusses extensions of the calculus
by means of reductions of reflexive, serial, symmetric, or
transitive extensions of the multi-modal logic Kn to Kn.

2 Reduction Functions

Relationships between extensions of Kn to Kn have al-
ready been subject of extensive studies, especially for those

extensions where the complexity of the satisfiability prob-
lem is known to remain in PSPACE. A thorough study of
such relationships is presented in [1] where both global and
local reductions are investigated. Complexity preserving
reductions for reflexivity, seriality, symmetry, and transitiv-
ity are based on the following functions, where sf(ϕ) rep-
resents the set of subformulae of ϕ, ϕ is assumed to be in
negation normal form (NNF), and a is, respectively, reflex-
ive, serial, symmetric, or transitive.

XT(ϕ) = {�a ϕ′ → ϕ′ | �a ϕ′ ∈ sf(ϕ)}
XD(ϕ) = {♦a > | �a ϕ′ ∈ sf(ϕ)}
XB(ϕ) = {¬ϕ′ → �a ♦a ¬ϕ′ | �a ϕ′ ∈ sf(ϕ)}
X4(ϕ) = {�a ϕ′ → �a �a ϕ′ | �a ϕ′ ∈ sf(ϕ)}

Those functions, and their composition if the extended lan-
guage has more than one of the frame properties, are all
global reductions to Kn. Local reductions are built upon
such functions. The general idea behind local reductions is
very simple as they are obtained by repeating the formulae
computed by the global reduction functions at all possible
levels. This is achieved by repeating each formula by in-
creasing the number of box modalities in front of it as many
times as necessary. While such an approach is theoretically
sound and it is guaranteed of not increasing the over all
complexity, it is not practical. Our aim is to improve the
local reductions by allowing the labels in SNFml to be sets
of modal levels.

3 New SNFml Translation

Without introducing new notation, thereafter we refer to
the normalisation presented in this section as SNFml. The
SNFml of a formula ϕ is a set Sϕ of clauses each of which
has an associated set Sml of modal levels with Sml ⊆ N.
For presentation purposes clauses in Sϕ are represented
as Sml : ϕ′ where Sml is the set of modal levels asso-
ciated with ϕ′, and we refer to Sϕ as a set of labelled
clauses. This implies that if Sml : ϕ′, S′

ml : ϕ′ ∈ Sϕ,
then Sml = S′

ml. Let S and S′ be two sets of labelled
clauses, the union of such sets is defined as S ∪ S′ =
{Sml ∪ S′

ml : ϕ | Sml : ϕ ∈ S and S′
ml : ϕ ∈ S′} with

Sml = ∅ (resp., S′
ml = ∅) if ϕ is not a labelled clause in

S (resp., S′). For a set Sml of modal levels, we define the
two functions succ(Sml) = {ml + 1 | ml ∈ Sml}, and
pred(Sml) = {ml − 1 | ml ∈ Sml and ml 6= 0}. Clauses
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[LRES]
ml : D ∨ l
ml′ : D′ ∨ ¬l

σ({ml,ml′}) : D ∨D′
[MRES]

ml : l1 ⇒ �a l
ml′ : l2 ⇒ ♦a ¬l

σ({ml,ml′}) : ¬l1 ∨ ¬l2
[GEN2]

ml1 : l′1 ⇒ �a l1
ml2 : l′2 ⇒ �a ¬l1
ml3 : l′3 ⇒ ♦a l2

σ({ml1,ml2,ml3}) : ¬l′1 ∨ ¬l′2 ∨ ¬l′3

[GEN1]

ml1 : l′1 ⇒ �a ¬l1
...

mlm : l′m ⇒ �a ¬lm
mlm+1 : l′ ⇒ ♦a ¬l
mlm+2 : l1 ∨ . . . ∨ lm ∨ l

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′
where ml = σ({ml1, . . . ,mlm+1,mlm+2 − 1})

[GEN3]

ml1 : l′1 ⇒ �a ¬l1
...

mlm : l′m ⇒ �a ¬lm
mlm+1 : l′ ⇒ ♦a l
mlm+2 : l1 ∨ . . . ∨ lm

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′
where ml = σ({ml1, . . . ,mlm+1,mlm+2 − 1})

Figure 1: Rules of the modal-layered resolution calculus.

in SNFml are in the same forms presented in Section 1,
except that the labels are sets Sml ⊆ N.

The transformation of a formula ϕ into SNFml is
achieved by recursively applying rewriting and renaming.
Let ϕ be a Kn formula in NNF and t a propositional sym-
bol not occurring in ϕ, then the translation of ϕ is given by
{{0} : t} ∪ ρ({0} : t⇒ ϕ), where the translation function
ρ is defined as follows (with ϕ and ϕ′ Kn formulae, and t′
a new propositional symbol):

ρ(Sml : t⇒ ϕ ∧ ϕ′)

= ρ(Sml : t⇒ ϕ) ∪ ρ(Sml : t⇒ ϕ′)

ρ(Sml : t⇒ �a ϕ)
= {Sml : t⇒ �a ϕ}, if ϕ is a literal

= {Sml : t⇒ �a t′} ∪ ρ(succ(Sml) : t
′ ⇒ ϕ), otherwise

ρ(Sml : t⇒ ♦a ϕ)
= {Sml : t⇒ ♦a ϕ}, if ϕ is a literal

= {Sml : t⇒ ♦a t′} ∪ ρ(succ(Sml) : t
′ ⇒ ϕ), otherwise

ρ(Sml : t⇒ ϕ ∨ ϕ′)

= {Sml : ¬t ∨ ϕ ∨ ϕ′}, if ϕ′ is a disjunction of literals

= ρ(Sml : t⇒ ϕ ∨ t′) ∪ ρ(Sml : t
′ ⇒ ϕ′), otherwise

The resolution calculus using the new SNFml is as the one
in Figure 1 except that (1) labels are sets (e.g., ml is re-
placed by Sml), (2) σ is defined over a non-empty set S of
sets of labels as σ(S) =

⋂
Sml∈S Sml, (3) inferences are

performed only if σ(S) 6= ∅, and (4) occurrences of ml− 1
are replaced by pred(Sml).

The new SNFml can be used to compute better local re-
ductions than the one proposed in [1], resulting in an in-
crease in space equivalent to the one of global reductions.
The only necessary step is to compute what are the required
levels at which formulae resulting from the global reduction
functions need to hold. Let us consider the case of reflex-
ive frames. Let ϕ be a KTn formula in NNF and XT(ϕ)
defined as above. Formulae in XT(ϕ) are not required to
hold at all modal levels in order to reduce KTn to Kn, but
only at the levels where each �a ϕ′ ∈ sf(ϕ) appears. Let
ST be a set of labelled clauses Sψ : ψ for any ψ ∈ XT(ϕ)
associated with some �a ϕ′ ∈ sf(ϕ), where Sψ is the set

of modal levels of �a ϕ′ in ϕ. The SNFml of ϕ is given by
{{0} : t}∪ρ({0} : t⇒ ϕ)∪⋃Sψ :ψ∈ST

(ρ(Sψ : tψ)∪ρ(Sψ :

tψ ⇒ ψ)).
The computation of the set of levels for serial frames is

analogous to the one of reflexive frames; for symmetric
frames the set of levels is composed of the levels preced-
ing those where �a ϕ′ ∈ sf(ϕ) appears; and for transitive
frames the set of levels is composed of all the levels greater
than or equal to the smallest level of �a ϕ′ in ϕ.

4 Conclusion

The extensions of the KSP prover presented in this abstract
are a work in progress, and we do not know yet what is the
impact on the prover’s performance of moving from single
levels as labels to sets of levels. We believe, however, that
the new transformation can have a positive impact for two
reasons. First, there is no repetition of clauses at different
levels, which can result in a reduction of the number of la-
belled clauses. Second, while with the old transformation
the same inference could be performed more than once at
different levels, the use of sets and the new unification func-
tion allows us to perform it only once. It is part of our future
plans to implement and test the proposed reductions.
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Abstract: Processor instruction set architectures (ISAs) are typically specified using a mixture of prose and
pseudocode. We present ongoing work on expressing such specifications rigorously and automatically trans-
lating them to interactive theorem prover definitions, making them amenable to mechanised proof. Our ISA
descriptions are written in Sail—a custom ISA specification language designed to support idioms from var-
ious processor vendor’s pseudocode, with lightweight dependent typing for bitvectors, targeting a variety of
use cases including sequential and concurrent ISA semantics. From Sail we aim to portably generate usable
theorem prover definitions for multiple provers, including Isabelle, HOL4, and Coq. We are focusing on the
full ARMv8.3-A specification, CHERI-MIPS, and RISC-V, together with fragments of IBM POWER and x86.

1 Introduction

Instruction Set Architectures are extremely complex, with
specifications in manuals containing thousands of pages. In
the last decade, there has been significant progress in mak-
ing ISA specifications amenable to formal reasoning, in-
cluding a model of a substantial fragment of the ARM ISA,
hand-written by Fox in his L3 language [2] and used for for-
mal verification of seL4 [5] and CakeML [9], and the x86
model of Goel et al. [3].

A notable recent industry effort is ARM’s public release
of its full ARM v8-A specification in machine-readable
form, in their internal ASL language [8]. This vendor-
provided ISA specification is attractive because it is sig-
nificantly more detailed, complete, and authoritative than
existing models.

To enable theorem proving using this model, ASL has to
be translated to the prover of choice. We present a transla-
tion to multiple provers, currently Isabelle/HOL and HOL4,
via our Sail ISA specification language [4]. Sail aims to
support many different uses, including connecting ISA se-
mantics to analysis and exploration tools for relaxed mem-
ory models [7]. In ongoing work, we have recently im-
proved several aspects of Sail such as the type system, the
generation of efficient emulator code, and the generation of
portable theorem prover definitions. We are focusing on the
full ARMv8.3-A specification generated from ASL, and are
also using Sail for MIPS, CHERI-MIPS, RISC-V, parts of
IBM POWER and x86, and a simplified ARM fragment.

2 Structure of an ISA specification in Sail

Sail aims to provide a engineer-friendly, vendor-
pseudocode-like language for describing instruction

semantics. It is a straightforward imperative language with
dependent typing for numeric types and bitvector lengths,
checked using Z3, so that ubiquitous bitvector manipu-
lations in ISA specifications can be checked for length
and bounds errors. These lengths can be dynamically
computed, as in the following example from ARMv8-A:

val FPZero : forall 'n , 'n in {16, 32, 64}.
bits(1) → bits( 'n )

function FPZero sign = {
let exponent as 'e =

(if 'n == 16 then 5 else if 'n == 32 then 8
else 11) : {|5, 8, 11|};

F = 'n - exponent - 1;
exp = Zeros(exponent);
frac = Zeros(F);
return sign @ exp @ frac

}

This returns either a 16, 32, or 64-bit floating point value,
depending on the calling context. The exponent length is
dynamically derived from the length of the return bitvec-
tor, and given a type variable 'e for its size. We then create
bitvectors involving 'e and the return length 'n, and the type-
checker can check that they all are of the required length.

A key aim of this typing information is to generate
prover code that does not force the user to constantly
prove side conditions involving bitvector indexing: for non-
dependently-typed provers, we can use our type informa-
tion to monomorphise definitions as needed.

3 ARM v8.3-A in Sail

We have a complete translation of all the 64-bit instruc-
tions in ARM’s publicly available v8.3-A specification [8].
ARM’s specification is written in their own ASL specifica-
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tion language, and we have developed a tool for converting
ASL specifications into Sail automatically. Hand-written
specifications tend to focus on small subsets of the archi-
tecture, while the ASL-derived Sail specification includes
many aspects which are often omitted, such as floating-
point support, vector extensions, and system and hypervisor
modes. ASL has been used extensively for testing within
ARM, giving us confidence that we are accurately mod-
elling the full behaviour allowed by the architecture. Work
on validating our translation remains ongoing.

The Sail ARM v8.3-A specification is about 30 000 lines.
Despite the ASL specification itself being public, much of
the tooling required to easily make use of it is not. By con-
verting it into Sail, we aim to provide open-source tooling
for working with the actual v8.3-A specification. A single
instruction can often call several hundred auxiliary helper
functions, so reasoning about this specification in an inter-
active theorem prover will be challenging, and a great deal
of automation will be needed.

4 Generating Theorem Prover Definitions

We generate theorem prover definitions by first translating
Sail specifications to Lem [6], which then provides trans-
lations to Isabelle/HOL and HOL4. In principle, Lem also
supports translation to Coq, but a direct translation from
Sail is likely to produce more idiomatic Coq definitions,
allowing us to preserve Sail’s dependent types for bitvector
lengths. For the translation to Lem, turning these dependent
types into the simpler constant-or-parameter form allowed
by Lem and theorem provers such as Isabelle/HOL is one
of the more intensive transformations we perform. In Lem
our example becomes:

val FPZero : forall ’N . Size ’N =>
integer → mword ty1 → M (mword ’N)

let FPZero (N : integer) sign =
if (eq N 16) then

let (F : integer) = 16 - 5 - 1 in
let (exp : bits ty5) =
Zeros (mk_itself 5 : itself ty5) in

let (frac : bits ty10) =
Zeros (mk_itself F : itself ty10) in

return (bitvector_cast (concat
(concat sign exp : mword ty6)
frac) : mword ’N)

else if (eq N 32) ...
else fail "FPZero: constraints unsatisfied"

An extra argument N has been added corresponding to 'n ,
and an automated dependency analysis has detected that it
needs to be a concrete value, generating a case split. Con-
stant propagation fills in concrete values for lengths. Type-
level information about lengths has been passed to Zeros
by changing integer arguments into the singleton itself
type, giving a function compatible with Lem’s type system.
While this transformation of dependent types would not be
necessary for Coq, a Coq backend would share many of the
other parts of the translation pipeline with Lem, such as the
translation of imperative code into monadic expressions.

In addition to targeting different provers, we aim to sup-
port different use cases. For reasoning in a purely sequen-
tial setting, a state monad can be used. In a concurrent
setting, we need to be more fine-grained. Modern proces-
sors typically execute many instructions simultaneously, re-
ordering their memory and register accesses for increased
performance. We support this by using a free monad of an
effect datatype. A monadic expression evaluates either to a
pure value or to an effect and a continuation (or an excep-
tion without continuation). This gives us the fine-grained
effect information needed to reason about multiple instruc-
tions concurrently; the monad is suitable as an interface to
connect the ISA semantics with a relaxed memory model.
We recover a purely sequential model using a lifting to the
state monad. Isabelle automation for this lifting is provided
by simplification rules relating the primitive operations of
the monads, allowing us to seamlessly reason about the se-
quential behaviour of instructions, e.g. using a Hoare logic.

5 Conclusion

We plan to continue improving both Sail, e.g. by adding a
Coq backend, and the ISA models. The tool and models
are available online [1] under an open-source license. We
plan to put the models to actual use in theorem provers, and
invite other projects to consider using them as well.
Acknowledgements This work was partially supported by EP-
SRC grant EP/K008528/1 (REMS), an ARM iCASE award, EP-
SRC IAA KTF funding, and the CIFV project supported by the
United States Air Force under contract FA8750-18-C-7809.

References
[1] The Sail ISA semantics specification language, 2018. http:

//www.cl.cam.ac.uk/~pes20/sail/.
[2] A. C. J. Fox. Directions in ISA specification. In ITP, 2012.
[3] S. Goel. The x86isa books: Features, usage, and future plans.

In Proc. 14th ACL2 Workshop, 2017.
[4] K. E. Gray, G. Kerneis, D. P. Mulligan, C. Pulte, S. Sarkar,

and P. Sewell. An integrated concurrency and core-ISA archi-
tectural envelope definition, and test oracle, for IBM POWER
multiprocessors. In MICRO, pages 635–646, Dec. 2015.

[5] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Comprehensive for-
mal verification of an OS microkernel. ACM Trans. Comput.
Syst., 32(1):2:1–2:70, 2014.

[6] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell.
Lem: Reusable engineering of real-world semantics. In ICFP,
pages 175–188. ACM, Sept. 2014.

[7] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and
P. Sewell. Simplifying ARM Concurrency: Multicopy-atomic
Axiomatic and Operational Models for ARMv8. In POPL,
Jan. 2018.

[8] A. Reid. Trustworthy specifications of ARM v8-A and v8-M
system level architecture. In FMCAD 2016, pages 161–168,
October 2016.

[9] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and
M. Norrish. A new verified compiler backend for CakeML.
In ICFP, pages 60–73, 2016.

24



Verifying Strong Eventual Consistency for
Conflict-free Replicated Data Types

Victor B. F. Gomes1 Martin Kleppmann1 Dominic P. Mulligan2

Alastair R. Beresford1

1 Computer Laboratory, University of Cambridge, UK,
{victor.gomes, martin.kleppmann, alastair.beresford}@cl.cam.ac.uk
2 Security Research Group, Arm Research, Cambridge, UK, dominic.mulligan@arm.com

Abstract: We develop a modular framework in the Isabelle/HOL interactive proof assistant for verifying the
correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual
consistency guarantees for replicated data. We avoid correctness issues that have dogged previous mechanised
proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all
possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects
the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a
property of order relations, which provides a formal definition of strong eventual consistency.

1 Introduction

A data replication algorithm is executed by a set of nodes
in a distributed system, and ensures that all nodes eventu-
ally obtain an identical copy of some shared state. Imple-
menting a replication algorithm is a challenging task, as any
such algorithm must operate across computer networks that
may arbitrarily delay, drop, or reorder messages, experience
temporary partitions of the nodes, or even suffer node fail-
ure. A number of these replication algorithms exist, each
exploring different trade-offs between the strength of data
consistency guarantees, scalability and performance. They
can be divided into three classes based on the consistency
guarantees that they provide: strong consistency, eventual
consistency, and strong eventual consistency.

Strong eventual consistency (SEC) is a model that strikes
a compromise between strong and eventual consistency [5].
Informally, it guarantees that whenever two nodes have re-
ceived the same set of updates, possibly in a different order,
their view of the shared state is identical, and any conflict-
ing updates are merged automatically. It works in arbitrary
network topologies without assuming a central server and is
robust to unreliable networks and server failures. However,
it suffers from complicated and subtle algorithms. Several
of them, published in peer-reviewed venues, were subse-
quently shown to violate their supposed guarantees. Infor-
mal reasoning has repeatedly produced plausible-looking
but incorrect algorithms, and there have even been exam-
ples of mechanised formal proofs of correctness later being
shown to be flawed [4] due to false assumptions about the
execution environment.

In this work we use the Isabelle/HOL proof assistant to
create a framework for reliably reasoning about the correct-
ness of a particular class of decentralised replication algo-
rithms with SEC, operation-based Conflict-free Replicated
Data Types (CRDT). We do this by formalising not only
the replication algorithms, but also the network in which
they execute, allowing us to prove that the algorithms as-

sumptions hold in all possible network behaviours. We
model the network using the axioms of asynchronous unre-
liable causal broadcast, a well-understood abstraction that
is commonly implemented by network protocols. By keep-
ing modules abstract and implementation-independent, we
construct a reusable library of specifications and theorems.

We use the framework to provide the first mecha-
nised proof of correctness for the Replicated Growable
Array (RGA), the operation-based Observed-Remove Set
(ORSet), and a counter datatype. RGA is an especially sub-
tle algorithm, which makes its formal verification of partic-
ular interest: “. . . the reason why RGA actually works has
been a bit of a mystery” [1]. Whilst the ORSet is supported
as a primitive by the Lasp [3] language for synchronisation-
free programming, with an implemention also exported by
the Akka framework.

2 Abstract Convergence Theorem

SEC requires convergence of all copies of the shared state:
whenever two nodes have received the same set of up-
dates, they must be in the same state. To achieve conver-
gence, operation-based CRDTs algorithms usually require
that concurrent operations commute with each other. Two
operations are concurrent if neither knew about the other at
the time when they were generated. If one operation hap-
pened before another then it is reasonable to assume that all
nodes will apply the operations in that order.

More abstractly, assume a strict partial order of opera-
tions (O,≺) and an interpretation function that takes any
operation a ∈ O to a state transformer JaK : Σ→ Σ. When
a ≺ b we say that operation a happens-before operation
b. We write a ‖ b when the operations are incomparable
and say that they are concurrent. We lift the interpretation
function to a list of operations by composing their interpre-
tations Ja1a2 . . . anK = Ja1K ◦ Ja2K ◦ . . . ◦ JanK. One can
further extend these definitions to fallible operations by us-
ing an option monad and the Kleisli arrow composition.

25



Definition 1 A list ω is said to be consistent if ω is the
empty list or ω = µb for some operation b and list µ where
¬ b ≺ a for all a in µ.

As a result, whenever two operations x and y appear in a
consistent list, and x ≺ y, then x must appear before y in
the list. However, if x ‖ y, the operations can appear in the
list in either order.

Definition 2 A list ω is said to respect commutativity for
concurrent operations if for all a and b in ω, if a ‖ b then
JaK ◦ JbK = JbK ◦ JaK.

Theorem 1 If two consistent lists ω and µ have the same
set of operations and respect commutativity for concurrent
operations then JωK = JµK.

Although this theorem may seem obvious at first
glance—commutativity allows the operation order to be
permuted—it is more subtle than it seems. The difficulty
arises because operations may succeed when applied to
some state, but fail when applied to another state.

3 Axiomatic Asynchronous Network Model

We model a distributed system as an unbounded number
of communicating nodes. Our only assumption about the
communication pattern of nodes is that each node can be
uniquely identified and that the flow of execution at each
node consists of a finite totally ordered sequence of execu-
tion steps (events). Intuitively, a node can be regarded as a
deterministic state machine where each state transition cor-
responds to a broadcast or deliver event. We make no as-
sumptions about the reliability or the ordering of messages.
If one node broadcasts a message, it may be delivered by
other nodes, but we do not state if or when that will happen.
Messages may be arbitrarily delayed, reordered, or even
lost entirely. It is even acceptable for a node to never deliver
any messages besides those it broadcasts itself, modelling a
node that is permanently disconnected from the network.

In this setting, one can identify a happens-before rela-
tion, which captures the causal dependencies between op-
erations. It can be defined in terms of sending and receiving
messages on a network. Using vector clocks, this relation
can be forced to form a strict partial order.

Theorem 2 Every list of operations produced by an asyn-
chronous casual network is consistent.

4 Correctness of CRDTs

The convergence proofs for all of our CRDT implementa-
tions follow the same structure. First we define the type
of local state at each node, and the types of operations that
may be invoked to modify the state. When one node in-
vokes an operation, it is broadcast to other nodes using our
network model. An interpretation function is called when-
ever a message containing an operation is delivered to a

node, and it transforms the node’s local state to incorpo-
rate the operation. To prove convergence, we must show
that, subject to certain assumptions, operations commute
with each other. Next, we must prove that those assump-
tions are always satisfied by any concurrent operations in
the network. This guarantees that every consistent list (due
to Theorem 2) respects commutativity for concurrent oper-
ations. When these proof obligations have been met, we ob-
tain convergence for the replicated datatype by Theorem 1.
To obtain SEC, a final property needs to be proved for each
CRDT: progress, i.e. if one node broadcasts a valid opera-
tion, and another node applies that operation, then it must
not become stuck in an error state.

5 Conclusion

Theorem 1 is independent of any particular network model
or replication algorithm. Together with progress theorems,
we assert that it constitutes a general but precise defini-
tion of strong eventual consistency. As shown by our three
CRDT implementation examples, we have not only isolated
reusable lemmas and models of networks, but also a proof
strategy that algorithm designers can use to obtain a conver-
gence theorem for their operation-based CRDT. We further
speculate that our framework is also amenable to formalis-
ing other classes of SEC algorithms: Operational Transfor-
mation algorithms and state-based CRDTs.

Our Isabelle theory files [2] are open source and included
in the Archive of Formal Proofs1, enabling others to build
upon our proof framework.
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Abstract: Sail is a language used to model instruction set architectures. It has an imperative syntax and a
dependent type system. We formalise a core calculus of the language in the Isabelle theorem prover describing
the language syntax, substitution, the type system and operational semantics. A number of classic theorems
such as preservation and progress are then proved. The purpose of this formalisation is to ensure that the full
language is built on sound foundations and to provide a platform for the generation of the implementation of
a type checker and evaluator for the language.

1 Introduction

Sail [1, 2] is a language used to model instruction set ar-
chitectures (ISAs) for CPUs such as ARM, IBM POWER,
MIPS, CHERI, RISC-V, and x86. It is an imperative lan-
guage similar to the vendor pseudocode languages; the se-
mantics of instructions is expressed as imperative code that
makes register and memory accesses. Academic ISA mod-
els are often for small fragments, but full ISAs typically
contain hundreds or thousands of instructions, so Sail mod-
els will be large and complex. In order to tame this com-
plexity, a light-weight dependent type system is used. The
type system provides integer, boolean, bit vector, register,
record and union types. Type level constraints can be spec-
ified that constrain the values for integer indexed types such
as integers or bit vectors. Function constraints can be used
to relate the return value of a functions to values of the
function’s parameters. To ensure tractablility, constraints
are limited to those that are solvable by an external SMT
solver, Z3.

It is important to ensure that the Sail language and type
system is itself sound and so formalising the language is
of benefit. MiniSail is a small subset of Sail intended to
capture key aspects of the language making it amenable to
formalisation. This paper describes the work in progress to
formalise MiniSail in Isabelle.

2 Syntax, Wellformedness and Substitution

Figure 1 shows the grammar of MiniSail. We use let normal
form so that complex expressions are unpacked into nested
let statements. This exposes the types of the subexpres-
sions of complex terms.

The nonterminal τ represents a constrained type (also
known as a refinement or liquid type [3]), z ranges over
values, b over base types and φ over constraints. For exam-
ple, the type {z : int|0 ≤ z∧z ≤ 32} is the type of integers
between 0 and 32 inclusive.

The language grammar is mapped directly into nomi-
nal datatypes in Isabelle with binding specifications for the
let and case statements, function definition and liquid
types. A context, Γ is an ordered list of (x, b, φ) tuples.
Program variables (i.e. those introduced in let and function
bindings) can be used in types. A set of inductive predicates

value, v ::= x | n | T | F | inl v | inr v
expr, e ::= v | v + v | v ≤ v | f v
stmt, s ::= let x = e in s |

if v then s else s |
case v of inl x1 → s | inr x2 → s |

fundef, fd ::= fun f (x : b[φ] ) : τ = s
prog, p ::= fd1 ; .. ; fdn ; s

base, b ::= int | bool | b+ b
φ ::= T | F | e = e | e ≤ e | φ ∧ φ |

φ ∨ φ | ¬φ
τ ::= {z : b| φ }

Figure 1: MiniSail Grammar

defines wellformedness with respect to a context ensuring
that variables appear in a context before they can be used.

3 Validity, Subtyping and Typing

SMT solver logic is modelled using an inductive predicate
where we define an inductive rule for each property that we
expect the solver to have. For example, that Γ |= φ =⇒ φ
and basic facts about + and ≤ operators. The subtyping
judgement, Γ ` τ1 ≤ τ2, is key and allows a smaller
type to be used where a larger type is expected. Subtyp-
ing holds when the base types match and the constraint of
the smaller type implies the constaint of the larger; the latter
being checked by the SMT solver logic.

The type system of MiniSail is defined using bidirec-
tional typing: we have the type synthesis judgement Γ `
e ⇒ τ and the type checking judgement Γ ` s ⇐ τ .
We define a type checking nominal inductive predicate for
statements and both synthesis and checking nominal induc-
tive predicates for values and expressions. Sum types are
an interesting case: the type of a sum value cannot be in-
ferred unless there is a type annotation. For example, with
inl v we can infer the value of the left side of the sum type
from v, but we have no information that will give us the
right side of the sum type. So we need a type checking
judgement for values and expressions and provide a place
in the syntax where the programmer can include a type an-
notation. The usual solution is to include in the grammar

27



Γ ` v1 ⇒ {z1 : int|φ1}
Γ ` v2 ⇒ {z2 : int|φ2}

Γ ` v1 + v2 ⇒ {z3 : int|z3 = v1 + v2}

f : (z1 : b[φ1]) : τ
Γ ` v ⇒ {z2 : b|φ2}

Γ |= φ2[z1 ::= v] =⇒ φ1[z1 ::= v]

Γ ` f v ⇒ τ [z1 ::= v]

Figure 2: Typing Rules

general type annotations on values and expressions. We in-
stead introduce annotations only where it is required - in
let and case statements. We need an hereditary substi-
tution operation for the operational semantics that picks up
the type of a term and drops it into the type annotation of
the let or case statement. A small sample of the typing
rules is given in Figure 2.

4 Substitution Lemmas and Operational Semantics

With the type system in place, we are in the process of
proving in Isabelle a set of lemmas relating the type of
term and the type of that term with a value substituted
in. A simplified example is: If Γ ` v ⇒ {z : b|φ} and
(x, b, φ)#Γ ` s⇐ τ then Γ ` s[x ::= v]⇐ τ .

Single step reduction is defined by an inductive predicate.
Next, we will prove that if a statement has a type, then the
result of reduction has the same type. This is proved using
the substitution lemmas. We will also prove the progress
lemma: a well typed statement is either a value or has a
reduction step.

5 Experience

This work has guided Sail development leading to the sim-
plification of the handling of constraints and removal of uni-
fication on numeric expressions in types.

Paper formalisations of languages have an underly-
ing convention that terms are worked with up to alpha-
equivalence and that, if necessary, renaming of bound vari-
ables can occur implicitly. Mechanical formalisations in
a theorem prover need to make this convention explicit to
the prover. Nominal Isabelle provides the framework for
making this easier than encoding the convention explic-
itly. This makes a nominal formalisation closer to a paper
formalisation than a conventional mechanical formalisation
however some supporting lemmas are needed and, when
defining functions that operate over nominal datatypes, a
number of proofs need to be provided. These proofs are
sometimes tricky to prove and result in a lot of proof code
that looks to to be the same modulo the structure of the
binding. However with an intuitive understanding of how
Nominal Isabelle works, it is relatively easy to see the ap-
proach needed and how to prove lemmas. Looking at prior

work and borrowing lemmas has been helpful and sledge-
hammer as usual is a great assistant. As equality between
nominal terms is alpha-equivalence, care is needed when
unpacking a term with a binder. For example, if we have
{z : b|φ} = {z′ : b′|φ′} then it doesn’t hold that φ = φ′ but
it is true that swapping any fresh variable with z in φ and z′

in φ′ does give equality.

6 Questions and Further Work

Alongside this work, we have developed AST datatypes and
inductive rules for typing and reduction that do not use the
Nominal package and do not include proofs. From this,
the code generation facilities of Isabelle have been used to
build an implementation of this language for a larger sub-
set of Sail. The question arises as to whether it is possible
to generate code from nominal datatypes, functions and in-
ductive relations. If this is not possible, then one approach
is to hand craft an implementation as ‘vanilla’ functions
in Isabelle and then prove this implementation matches the
nominal-formalisation.

Ott [4] provides a unified way of specifying the syntax
and semantics of a language. A specification can then be
exported to LaTex, Ocaml, Coq and Isabelle. With Isabelle,
the output is ‘vanilla’ datatypes for the AST, functions for
substitition and free-variables, and inductive predicates for
the rules. An extension to Ott would be for the export to tar-
get Nominal Isabelle where the datatypes would be nominal
ones and the substitition functions defined in the nominal
style. Furthermore, supporting lemmas could be automati-
cally generated and this will also reduce the boilerplate.
Acknowledgements This work was partially supported by
EPSRC grant EP/K008528/1 (REMS).
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Abstract: In recent years there have been tremendous improvements in interactive theorem proving. Nev-
ertheless, it is hardly used during development of even critical, well funded software projects. One reason is
the intrinsic difficulty of formal proofs. However, with advancements in automation and user interfaces this
reason becomes less and less important. In my opinion, nowadays preconceptions are a more severe hindrance.
As soon as terms like logic, proof or formal specification are used, even very clever, highly skilled software
engineers tend to think of some kind of black magic: way to complicated for mere mortals and while huge
gains are luring, you need to sell your soul to get them. Another reason why interactive theorem proving is
not commonly used is – in my experience – that often a large initial investment is needed and progress and
benefits are hard to measure.
I believe formal methods and in particular interactive theorem proving are vital to deal with the ever increasing
complexity of hard- and software. However, before they get more widely used, the issues discussed above need
addressing in my opinion. Therefore I started developing a tool called Advanced Documentation and Testing
Tool (ADATT). Superficially it looks like yet another functional style programming language accompanied
with a compiler and other development tools. Specifications written with ADATT can be exported to common
theorem provers for reasoning. Moreover they can be exported to common programming languages for execu-
tion. In contrast to similar tools like Lem it is also possible to write partial specifications. Users can start with
completely informal documentation in natural language, which ADATT can use to produce production quality
documents. Step by step more formal content can be added. To support common development workflows,
there should be an immediate return of invested effort and progress should be easily measurable. A special
focus is on using partial specifications for advanced testing.
In this abstract, I will present the ideas behind ADATT. The development is still in a very early stage. There
is no working prototype yet. However, I hope by presenting the ideas at an early stage it is possible to start
discussions and perhaps find collaborators.

1 Motivation

I’m an interactive theorem prover guy. I have been working
with HOL 4, Isabelle/HOL and Coq. I mainly used them to
improve trust in real-world systems. Thereby I always fol-
lowed a rather pragmatic approach. My goal was to find
bugs and increase the trustworthiness of systems. Espe-
cially when reasoning about real-world systems, there is a
non-trivial gap between the real system and the model of
the system one can reason about. To gain trust into the real
system, one needs to show that the model somehow corre-
sponds to the real system (e. g. via careful code review or
conformance testing) and additionally show some interest-
ing properties of the model.

I have been working on this kind of verification projects
both in academia and industry. Most recently, I worked in
industry and tried to harden a microhypervisor using the
Coq proof assistant [1]. In my experience, most problems
are found while building a formal model of the computer
system. This is due to the fact that building a formal model
usually involves a detailed review of the existing system
and requires the clarification of ambiguous and missing in-
formation. In addition, many bugs are found while proving
simple properties about isolated parts the model, as this re-
veals simple implementation mistakes. Proving deep prop-
erties tends to reveal comparably few bugs. These are usu-

ally bugs in the design of the whole system.
This means that building a formal model is a very worth-

while activity in itself for hunting bugs. However, once you
have a formal model – especially if it is executable – it can
be easily used for powerful testing, documentation and au-
tomated formal methods. Even better, I believe that no for-
mal methods experts are needed to develop basic formal
models. If you present formal specifications as high level
programs, domain experts are in my experience willing to
read and even write formal specifications. This is especially
true, if writing such a formal specification has an immediate
benefit.

If the development of formal models can partly be done
by domain experts while developing and testing a system,
the costs for using interactive theorem proving can be low-
ered. The communication between domain and formal
method experts is simplified and the (partial) formal model
is a very good basis for formal method experts to extend and
reason about. For enabling this vision of having domain ex-
perts develop (partial) formal models, good tool support is
essential.

2 Lem

The best tool I know for the purposes stated above is
Lem [2]. “Lem is a lightweight tool for writing, managing,
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and publishing large scale semantic definitions”1. It has the
look and feel of a functional programming language. Large
subsets of Lem specifications can be translated to OCaml
as well as definitions for HOL 4, Isabelle/HOL and Coq.

Even before working on Lem, I was fascinated on how
much effect the form of presentation of formal methods
can have. Programmers are trained to write down precise
definitions (that’s what a computer program is after all).
However, if you ask them to write down a specification,
the average programmer refuses. It was a revelation to me
to see how VeriFast manages to get programmers to specify
loops by disguising loop-invariants as programs. This in-
sight grew deeper, while working for Peter Sewell on Lem.

I’m a strong believer in the ideas of Lem. It is vital to
bring domain experts and formal verification experts closer
together. Moreover, providing an environment that looks
like a programming language and supports the normal tools
of a programming language is a good choice. It is im-
portant to be able to produce human-readable output, exe-
cutable code and formal specifications from the same input.
Even using a functional instead of an imperative language
is (while not familiar to many domain experts) a very sen-
sible compromise, since it is comparably straightforward to
translate to logic. However Lem does not go far enough
in my opinion. Lem is a good tool, if you want to write
a complete executable formal specification. It is, however,
not suitable to write partial specifications or informal docu-
mentation. Moreover, Lem has limited capabilities for test-
ing and measuring progress.

3 ADATT

For these reasons I started developing a tool called Ad-
vanced Documentation and Testing Tool (ADATT). It is in-
spired by Lem, but has a different focus. Similar to Lem,
ADATT allows writing executable specifications that re-
semble functional programs and can be translated to inter-
active theorem provers. However, as the name suggests,
ADATT focuses on documentation and testing and consid-
ers interactive theorem proving as an extra.

Domain experts should be able to use ADATT to write
natural language documentation without any formal con-
tent. This should not be much more cumbersome than us-
ing other tools. One should be able to produce production-
quality documents. Formal content can be added step by
step. There should be an immediate benefit for adding for-
mal content. If one – for example – formally declares a
function or type, the spelling of it should be checked in the
documentation. If you add a type signature, typechecking
could take place in the natural language definition.

It is vital that ADATT can deal with partial specifica-
tions. Partially is supported in multiple ways. Even just
declaring a function together with a type signature is a par-
tial specification. You can then add single test cases. These
test cases should be easily executable against a real imple-
mentation. ADATT aims to provide good support for con-

1citation from http://www.cl.cam.ac.uk/˜pes20/lem

formance testing by e. g. providing special code generation.
ADATT will support code contracts as well as families of
executable tests. There is a separate syntactic construct for
adding non-executable properties of the function. These
cannot be used for testing and are instead intended to be
checked by interactive theorem proving. One or more of
such non-executable properties can be used as an axiomatic
specification for theorem prover backends.

Ideally, however, we would like to end up with exe-
cutable specifications. I can well imagine that different
parts of the specifications are written by different people
in different files. A programmer might start with natural
language documentation, a function declaration and a few
simple test cases. A test engineer might then add code con-
tracts, some more tests and perhaps even a non-executable
property. Finally, a formal methods expert might provide
an executable specification and add non-executable proper-
ties. Different formal method experts might then use theo-
rem provers of their choice to reason about the model, while
ADATT keeps track of progress and links developments in
various provers.

It is vital to provide some easy measurements of progress
in order to integrate ADATT with existing software devel-
opment processes. This means providing good reports and
statistics. (How many functions are declared / specified /
executable? Which tests were run when? ...) More inter-
estingly, however, ADATT should be able to measure code-
coverage.

4 Conclusion

ADATT is still in its very early stages. There is not even a
prototype yet. There is a lot of work still ahead. This is in
particular true, since ADATT needs a good user-interface,
i. e. integration in commonly used IDEs. However, impor-
tant design decision have already been made and implemen-
tation is well underway. Therefore, I would already value
some comments.
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Abstract: This paper is a result of the analysis of the efficiency of natural deduction proof search and the
major weaknesses affecting it. We introduce new analytic strategies based on a new concept ”Auxiliary Truth
Set”. We present a combined proof search algorithm for classical propositional logic where a crucially new
step is the guidance of the searching procedure by Auxiliary Truth Sets and establish the correctness. We
describe the implementation of this new search technique and exemplify its advantages considering the strong
version of the Pigeon Hole Principle.

1 Introduction

The natural deduction (ND) proof search we optimise in
this paper, was initially formulated for classical setting [2]
and then extended to a number of logics – propositional
linear-time temporal logic PLTL [1, 3], paracomplete [6]
and paraconsistent [5]. Our recent work on the complexity
of the method [4] and the implementation of the technique
have shown that the method should be tuned to make proofs
more efficient. In particular, we were interested in improv-
ing the performance of the algorithm on the class of for-
mulae corresponding to the famous pigeon hole principle
(PhP) which is often considered as an important ‘testing’
step for theorem provers. In this work we introduce new
analytic strategies based on a new concept which we call
”Auxiliary Truth Set (ATS)”. We present a combined proof
search algorithm for classical propositional logic where the
searching procedure is guided by the ATS and establish the
correctness. This technique has been implemented exem-
plifying its advantages on the strong version of the Pigeon
Hole Principle.

2 Natural Deduction System

Figure 1 shows elimination (el) and introduction (in) rules.

Elimination Rules:

∧el1
A ∧B
A

∧ el2
A ∧B
B

¬el
¬¬A
A

⇒el
A⇒ B A

B
∨el

A ∨B ¬A(¬B)

B(A)
Introduction Rules:

∨in1

A

A ∨B ∨ in2

B

A ∨B

∧in
A B

A ∧B ⇒in
[C] B

C ⇒ B
¬in

[C] B ¬B
¬C

Figure 1: ND Rules

If the conclusion of⇒in or ¬in is at step n, then [C], where

C is the most recent alive assumption, means that C is dis-
charged and all formulae from C up to n are discarded.

An ND-derivation or inference of a formula B from a
(possibly empty) set of assumptions Γ is a finite sequence of
formulae A1, . . . , An = B such that every Ai (1 6 i 6 n)
is either an initial assumption or a conclusion of one of the
rules applied to some preceding formulae. If a set of initial
assumptions Γ is empty then B is a theorem.

3 New Proof Search Algorithm

The proof search algorithm is represented as a sequence of
algo-steps Γ ` G, where Γ is an ordered set of formulae
in the proof and G is a stack of goals. The stack control
mechanism is based on the LIFO principle. The proof com-
mences with the initial task, of deriving goal g0 from some
given set of formulae Γ = F1, F2, . . . , Fm (1 ≤ m), abbre-
viated as F1, F2, . . . , Fm ` g0 (if Γ = 0, we have a task
of proving g0 as a theorem). Γ can be classified into the
following six subsets:
Γinit (initial assumptions in Γ), discarded formulae F disc,
formulae F el - premises of the elimination rules, formu-
lae F src that generated new goals, auxiliary assumptions
F assmp, all other formulae F poten = F\(F disc ∪ F in ∪
F el ∪ F src), where F el ∩ F assmp 6= ∅.
A goal gi ∈ G, is reached iff

• if gi 6= ⊥ then gi is reached iff ∃fi ∈ Γ such that
fi = gi and fi 6∈ F disc

• if gi = ⊥ then gi is reached iff ∃fk, fl such that
{fk, fl} ⊂ Γ and fl = ¬fk and fk 6∈ F disc and
fl 6∈ F disc

If the current goal gc is reached then it is deleted from
G and the immediately preceding goal becomes our new
current goal.

The heuristics are classified depending on the main logi-
cal connective of the goal.

(i) ‘implication’: If gc = A⇒ B then F assmp is updated
with A and G is updated with gc = B.
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(ii) ‘conjunction’: If gc = A∧B then we set up goal gc =
A (unless it has been already reached) and A needs to
be reached before gc = B in the same fashion.

(iii) ‘negation’: If gc = p (¬p) (for some literal p) then
F asspm is updated with ¬p (p) and G is updated with
⊥.

(iv) ‘disjunction’: If gc = A ∨ B then G is updated with
gc = A to be reached by the heuristics unless the
‘negation’ strategy is required. If A is not reachable
then all formulae and goals introduced since gc = A,
are deleted and gc = B and the same process applies
as for gc = A. If gc = B is not reached, then, after all
deletions, F asspm is updated by ¬(A ∨ B), and G is
updated by gc = ⊥. For the efficiency, we also add an

auxiliary rule ∨elaux
¬(A ∨B)

¬A ∧ ¬B
(v) First, we introduce the notion of the ‘proof potential’,

which is φ = ((F assmp\F el) ∩ (F assmp\F disc)) ∪
F poten ‘Auxiliary Truth Set (ATS)’ applies when the
potential of the proof φ 6= ∅, the current goal, gc = ⊥
has been generated by the last assumption, fn, and
none of the rules or other heuristics is applicable. Now
we split the set Γ into two sets: Γ2 = {fn} and
Γ1 = Γ\Γ2 and set up the new goal called ‘ATS-
goal’=¬(

∧n
i=1 fi), where fi ∈ Γ1\F disc. In other

words, we set up the goal as the negation of conjunc-
tions of all non-discarded formulae in the proof be-
fore fn, which we now call ‘ATS-assumption’. It is
shown that a proof of ‘ATS-goal’ from fn is necessary
and sufficient condition for the presence of a contra-
diction in Γ1\F disc. Now we generate all sets of truth
values that make ‘ATS-goal’ true. Then we check if
there is a variable in ‘ATS-goal’ which does not occur
in ‘ATS-assumption’ and if there is one we check if
this variable is ‘significant’ for the ‘ATS-goal’. This
is the process of establishing if this variable takes
both values - true and false - under the fixed values
of variables of the ‘ATS-assumption’, in which case
we eliminate this variable from the consideration. Al-
ternatively, we conclude that ‘ATS-goal’ does not fol-
low from the ‘ATS-assumption’ and terminate proof
by claiming that the desired proof from the initial set
of assumptions cannot be found. Now let φ = φ1∪φ2,
where φ2 = fn and φ1 ∪ φ2 = ∅. Now we build ATS
for ATS-assumption. For each of the groups of for-
mulae from φ2 with common variables we build their
truth sets. If a group does not have a variable common
with the ATS-goal then we do not consider it. Simi-
larly, we check if a group that has variables common
with the ATS-goal does not contain a variable not oc-
curring in ATS-goal and delete this group if this is not
true. Comparing ATS for ATS-assumption and ATS-
goal, we check if every truth set of ATS-assumption
contains at least one element of the truth set of ATS-
goal. If we find a combination that violates this then

we terminate the proof as we found the evaluation un-
der which the formula given for the proof is false.

4 Experimental results: Pigeon Hole Principle under
the new proof search.

To illustrate how the proposed proof search works we
present here its performance on the Pigeon Hole Principle
comparing with the original proof search for ND [2] and
with Buss’s proofs for this important for theorem provers
class of testing formulae. Note that Buss’s results are given
for the DPLL with clause learning [7].

 
ND ND with ATS 

DPLL with clause 

learning 

PHP2 93 27 - 

PHP3 740 60 5 

PHP4 7883 115 - 

PHP5 110509 198 - 

PHP6 1914985 315 129 

PHP7 - 472 - 

PHP8 - 675 769 

PHP10 - 1243 - 

PHP12 - 2067 20000 
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Instantiation for Theory Reasoning in Vampire
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Abstract: Reasoning with theories and quantifiers in first-order logic is very hard. Over the past 3 years
we have extended the Vampire theorem prover with various techniques for reasoning with problems mixing
arithmetic, quantifiers, and uninterpreted functions. In this most recent work we introduce a new method for
instantiation that makes use of SMT solvers to find simplifying instances of clauses and a new approach to
unification that enables the application of this rule.

1 Introduction

We are interested in extending automated theorem provers
for first-order logic to reason effectively with problems con-
taining non-trivial quantification and theories such as arith-
metic or datatypes. Such problems arise naturally in, for
example, program analysis where quantifiers are required
to axiomatise features such as dynamic memory, and arith-
metic is central to most real-world programs.

Our work is in the context of the Vampire theorem prover
[1]. This is an automated theorem prover (ATP) that is
saturation-based and implements the superposition and res-
olution calculus. In saturation-based theorem provers the
approach is to first transform the input problem into clausal
form and then saturate the set of clauses with respect to an
inference system. Vampire is also a refutational prover; its
first step is always to negate the goal, which means that it
aims to derive a contradiction. In pure first-order logic this
approach can be refutationally complete. This breaks down
in the presence of theories such as arithmetic.

Over the past 3 years we have been exploring different
approaches for theory reasoning within Vampire. This has
included using an SMT solver to guide proof search [2]
and heuristics to control the use of theory axioms such as
x + y = y + x [3]. This work considers the problem of
instantiation (for theories) in this context.

2 Background

We consider a many-sorted first-order logic over the signa-
ture Σ = (Ξ,Ω). The set Ω contains predicate and function
symbols with argument and return values in the set of sorts
Ξ (which contains the sort B of truth values). A term is
a constant c, a variable x or an application f(t1, . . . , tn)
of the n-ary function symbol f to the terms t1 to tn. We
assume terms are well-sorted. A function symbol p with
return sort B is called a predicate symbol. Its application
p(t1, . . . , tn) is called an atom. We assume the presence
of an equality predicate for each sort. A literal is either an
atom A or a negated atom ¬A. We abbreviate ¬(c 's d) as
c 6's d. A subterm s of t at position p is written as t[s]p.

A clause is a multiset of literals which is interpreted as
a disjunction L1 ∨ . . . ∨ Ln. A substitution θ = {x1 7→
t1, . . . xn 7→ tn} maps variables to terms; applying θ to
a term simultaneously replaces the variables by the corre-

sponding terms. A unifier θ of two terms s and t is a substi-
tution such that (s ' t)θ is valid; a most general unifier of
s and t is a unifier that is not an instance of any other unifier
of those terms up to renaming of variables.

A theory defines a class of interpretations. All interpre-
tations in a theory T agree on the assignment for a set of
theory symbols. A symbol that does not have a fixed inter-
pretation is called a non-theory symbol.

A literal is a theory literal if its predicate symbol is a the-
ory symbol. The equality's predicate of a sort s is a theory
symbol if the sort s is interpreted by a theory. A pure literal
contains only theory symbols or only non-theory symbols.
A clause is fully abstracted if it only contains pure literals
and partially abstracted if non-theory symbols no not ap-
pear inside applications of theory symbols. A non-variable
term t is a theory term (non-theory term) if its top function
symbol is a theory symbol (non-theory symbol).

Given a clauseL[t]∨C, whereL is a theory literal and t is
a non-theory literal or vice versa, we can separate them by
introducing a fresh variable x for t to obtain L[x]∨C∨x 6'
t. Repeating this process leads to an abstracted clause.

2.1 Does Vampire Need Instantiation?

To see why Vampire can benefit from instantiation, consider
the first-order clause

14x 6' x2 + 49 ∨ p(x) (1)

for which there is a single integer value for x that makes
the first literal false with respect to the underlying theory of
arithmetic, namely x = 7. However, if we apply standard
superposition rules to the original clause and a sufficiently
rich axiomatisation of arithmetic, we will most likely end
up with a very large number of logical consequences and
never generate p(7), or run out of space before generating it.
Indeed, Vampire cannot find a refutation of 14x 6' x2 + 49
in reasonable time using our previous approaches [2, 3].

3 What Kind of Instances Do We Want?

Since there are possibly infinitely many instantiations, we
only want to create instances with an immediate benefit.
The inference rule we consider is of the form

P ∨D
Dθ

theory instance
(2)
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where P contains only pure theory literals and Pθ is unsat-
isfiable in the given theory. As P contains only pure theory
literals we can use a SMT solver to find a model of ¬P and
use this to generate θ. In the case of clause 1 above, we pick
P = 14x ' x2 + 49 to extract {x 7→ 7} from the model
generated by the SMT solver. From this we can conclude
p(7). If the SMT solver finds ¬P to be unsatisfiable then
P is a tautology and P ∨D can instead by removed. Note
that we assume that the theory is complete. The result of
this approach is that we produce instances that are shorter.

4 Instantiation in a Saturation-Based Theorem Prover

For clauses containing inequalities, we would prefer to ap-
ply the equality resolution rule

s 6' t ∨ C
Cθ

θ = mgu(s, t), equality resolution

instead of instantiation. For the clause x 6' 1 + y ∨ p(x, y),
equality resolution leads to p(y + 1, y) which is more gen-
eral than p(1, 0) obtained from instantiating with {x 7→
0, y 7→ 0}. Moreover, abstraction and instantiation may
work against each other. If we consider the clause p(1, 5),
it will be abstracted to x 6' 1 ∨ y 6' 5 ∨ p(x, y). But the
substitution {x 7→ 1, y 7→ 5} makes ¬(x 6' 1 ∨ y 6' 5)
valid. If we use it to instantiate p(x, y), we re-obtain the
original clause p(1, 5).

To prevent these effects, we introduce a further restric-
tion on P . A literal L is trivial in clause C if

• L is of the form x 6' t and x does not occur in t
• L is a pure theory literal
• every occurrence of x in C is either x 6' t, in a literal

that is not pure or another literal trivial in C

The inference rule (2) then has the restrictions that
• P contains only pure literals
• P contains no literals trivial in P ∨D
• ¬Pθ is valid in T
Note that there is no requirement on P to be maximal.

The more literals P has, the more precise the instantiation
becomes. This comes at the risk of over-specialising, even
after the removal of trivial literals.

5 Extending Unification to Help

So far we have left out the role of abstraction. In princi-
ple, the rule (2) works on any clause. However, abstracted
clauses have more pure theory literals to apply the rule to.
For example, the clauses

r(14y) and ¬r(x2 + 49) ∨ p(x)

permit neither the application of resolution nor of theory
instantiation. But their abstracted form

r(u) ∨ u 6' 14y and ¬r(v) ∨ v 6' x2 + 49 ∨ p(x)

can be resolved to u 6' 14x ∨ u 6' x2 + 49 ∨ p(x) which
becomes p(7) after theory instantiation.

However, fully abstracting every clause has a devastat-
ing impact on proof search because it significantly increases
the clause length. If we only apply theory instantiation after
such a resolution step, we can modify the unification proce-
dure to generate an abstraction on the fly. Unification with
abstraction, written mguabs(s, t), returns a pair (θ,D), if
possible, where D is a disjunction of inequalities and θ is a
substitution making (D∨s ' t)θ valid in a theory T . If we
can show that D are unsatisfiable then we have performed
unification modulo T . By happy coincidence, the theory
instantiation rule can handle such theory constraints.

Unification with abstraction should not be applied to ea-
gerly as it, in the limit, it can be used to make any two terms
unify. For example, we would like to prevent abstraction in
the case of resolving r(1) with r(2) because the generated
constraint 1 ' 2 can never be true. In general, mguabswill
never produce constraints that can not be equal in the un-
derlying theory. We have also experimented with heuristics
that decide for which subterms abstractions are generated.

The calculus can be adapted to use unification with ab-
straction instead of the traditional one. The resolution rule
then becomes

A ∨ C1 ¬A′ ∨ C2

(D ∨ C1 ∨ C2)θ
reswA

where (θ,D) = mguabs(A,A′). The factoring, superposi-
tion and equality resolution rules can be similarly adapted.

6 Summary

We have implemented a new approach to reasoning with
theories and quantifiers in a saturation-based theorem
prover. This approach utilises an SMT solver to find useful
instances and extends unification to produce clauses that are
likely to have useful instances. We have implemented these
approaches in Vampire[4], our experiments indicate that
unification with abstraction is beneficial for some cases.
Acknowledgements. We describe work published by the
first author, Martin Suda, and Andrei Voronkov [4].
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Abstract: Ontologies can present a conceptual view of a relational database. This ontology-based data access
(OBDA) can allow a client to query enterprise ontologies directly. The problem of rewriting and optimisation
of such queries against ontologies is insufficiently studied in database research. In this paper, we discuss using
uniform interpolation to forget some symbols, especially role symbols, to rewrite instance queries against
ontologies. In particular, when there is no nesting in an ontology, our forgetting algorithm is guaranteed to
terminate in a polynomial time. We introduce Ackermann’s lemma-based algorithm to preserve semantic
equivalence during query rewriting. We further extend our approach to linear Datalog± rules (existential rules
with equality) and also the guarded fragment of first-order logic. These two languages can be regarded as
generalisations of description logics, which provide bases of ontology languages.

1 Introduction

An ontology is a form of graph-based database manage-
ment system, and it allows automated processing and rea-
soning. In the ontology-based data access (OBDA), an on-
tology is used as a conceptual layer of relational databases,
allowing clients to manage and query data more directly.
Such querying is called the ontology-based query answer-
ing (OBQA). It is now an insufficiently studied problem in
database research.

In OBDA, an instance query q is answered against a
database D with an ontology Σ such that D ∪ Σ |= q. An
instance query is a unary atomic query such as A(x). In this
setting, Description Logics (DLs) are used as an ontology
language. However, the best known decidable fragments of
DLs are 2EXPTIME-complete, which makes querying very
hard. Most OBQA systems are based on a lightweight DLs,
such as DL-Lite [5] and EL [2] families. These DLs are de-
signed to guarantee decidability and polynomial time data
complexity for the query answering. DLs only allow unary
and binary relations, Calı̀ [3] argues that the Datalog± lan-
guage, which have multi-ary and unary relations, is a strong
tool for query answering. In Datalog±, guarded Datalog±

and its subclass linear Datalog± show good decidability
results [4]. Having lightweight DLs and linear Datalog±

ontologies, researchers focus on rewriting and optimising
queries to make querying more effective. In [5], authors
proposed the perfect reformulation algorithm to do rewrit-
ing. [7] gives a polynomial rewriting approach for linear
Datalog±.

Since DLs ALCOI (ALC with nominals and inverse
roles) can be seen as a fragment of first-order logic, its
translation in first-order logic is generalised as the Guarded
Fragment (GF) [1]. The guards in GF correspond to role
symbols in DLs. Moreover, GF is also a superclass of the
linear Datalog± that follows GF format.

In this paper, we use a forgetting algorithm to rewrite
queries while preserving semantic equivalence, and we are

interested in a new different class from previous ones, GF
without nested formulas, to forget guard symbols. In partic-
ular, when guards do not occur in non-guard positions, the
data complexity and combined complexity of our algorithm
is tractable.

2 Forgetting and GF

Forgetting is a non-standard reasoning procedure to remove
the forgetting signatures from original formulas, and keep
the remaining formulas semantically equivalent to the origi-
nal formulas. In other words, the result formulas are equiva-
lent to the original formulas up to the forgetting signatures.
This work is motivated by [11] and [10] that extends the
forgetting algorithm to first-order logic.

GF is robustly decidable [8], but it does not have the
Craig Interpolation Property, thus the Uniform Interpola-
tion property (a.k.a the forgetting property) [9]. That means
forgetting some predicates in GF does not guarantee that
the result still belongs to GF. Recent research use the model
theory to show that the forgetting signature can only be non-
guard predicates and it fails to forget guards.

In this paper, we show that by introducing ∃-guard,
guards can be forgotten without losing semantic equiva-
lence.

3 Forgetting Guards in GF

We define a guarded formula without any nested formulas
as a flat guarded formula. In particular, for flat guarded for-
mulas with equality and constants, we concern forgetting
guards when there is no guard occurring at a non-guard po-
sition in other formulas. The input is a set of formulas N
combined by formulas mentioned above, and the forgetting
signatures are a set of guards G in N . Our algorithm has 4
major steps:

1. Normalisation In this step, every input formula in N
is formalised as a formula without any free variables.
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We add universal quantifications to free variables in
N , and then transform these formulas into their nega-
tion normal forms N1.

2. Structural Transformation In this step, each formula
in N1 is transformed into its clausal form. We intro-
duce new predicates, also known as definers, to do
structural transformation. During structural transfor-
mation, each formula in N1 is transformed differently
depending on the root of its formula tree. For some
formulas in N1 that contain constants and equalities,
we use the term abstraction rule and the equality elim-
ination rule as follows.

N ∪ {C(x̄, ā)}
N ∪ {C(x̄, ȳ)... ∨ yn ∕≈ an}

where ȳ is disjoint with x̄.

C ∨ x ∕≈ a

C ∨Qi(x),¬Qi(a)

where Qi is a fresh predicate.

We also introduce some special definers ≈-guard eqG
and ∃-guard eG. An eqG is used to define equali-
ties such as x ∕≈ a, and an eG is used as a guard
for existential quantified unguarded clause such as
∃xy(A(x) ∧ B(y)). An eG is used to transform it
into ∃xy(eG(x, y) ∧ A(x) ∧ B(y)). After structural
transformation, the clausal form of formulas in N1 is
ground or is positive conjunction of atoms or contains
a negative literal that has all variables in this clause.
We call the set of result clauses N2.

3. Forgetting Guards In this step, the set of guard sym-
bols G in the forgetting signatures are eliminated. We
use Ackermann’s Lemma to eliminate guards one at a
time. The set of result formulas are called N3.

4. Eliminating Definers In this step, the aim is to elim-
inate definer symbols introduced in step 2. Acker-
mann’s Lemma is also used to eliminate these defin-
ers.

Given flat guarded formulas, possibly with equality and
constants, and assuming there is no guard occurring at a
non-guard position in other formulas. We can claim that:

Claim 3.1 This forgetting algorithm is sound, terminating
and forgetting complete.

Claim 3.2 The complexity of our algorithm is polynomial.

4 Conclusion and Ongoing Work

In this paper, we show that we can forget guards in flat GF
in a polynomial time without losing semantic equivalence.
Because we consider instance queries in this paper, this ap-
proach can be used as a query rewriting algorithm to forget
guards in Datalog± that follows GF format, and to forget
roles in ALCOI. In future, we will focus on forgetting
a non-guard predicates in GF and apply our algorithm to
other possible applications like abduction reasoning [6].
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Abstract: Abductive reasoning computes hypotheses to explain new observations, making use of background
knowledge. Here, knowledge is represented using description logic (DL) ontologies and forgetting is used to
compute consistent, semantically minimal hypotheses in a given signature of abducibles. This paper gives a
brief overview of a method for abduction in DLs that uses forgetting. Building on this, the notion of iterative
abduction is then proposed and outlined, as this will form the basis for future research in integrating abduction
and induction in DLs.

1 Introduction

Abduction was identified as a form of reasoning by C.S.
Peirce [7]. The aim of abductive reasoning is to gener-
ate hypotheses for new observations, making use of back-
ground knowledge. Here, knowledge is represented as a de-
scription logic (DL) ontology and the computed hypotheses
are restricted to those satisfying the following conditions:

Definition 1: Abduction in Ontologies. Let O be an on-
tology, SA a set of abducibles, and ψ a set of axioms such
that O 6|=⊥, O, ψ 6|=⊥ and O 6|= ψ. The abduction prob-
lem is to find a set of axioms H, consisting only of symbols
in SA, such that: (i) O,H 6|=⊥, (ii) O,H |= ψ and (iii)
There is no other hypothesis H′ such that sig(H′) ⊆ SA,
O,H′ |= ψ andH |= H′, and O,H′ 6≡ O,H

This restricts hypotheses to those containing only ab-
ducible symbols that are (i) consistent with the background
knowledge O, (ii) explain the observation ψ when added
to O and (iii) make the fewest assumptions necessary to ex-
plain ψ, i.e. are semantically minimal. Such restrictions
are needed to reduce the search space of hypotheses and to
ensure that hypotheses are informative.

DL ontologies consist of a TBox containing information
about general entities known as concepts and an ABox con-
taining information regarding specific constants called indi-
viduals. As a result, the abduction problem is divided into
two tasks: TBox abduction, where the hypothesis and ob-
servation take the form of TBox axioms, and ABox abduc-
tion, where both take the form of ABox (ground) assertions.

2 Forgetting for Abduction

A method for performing both TBox and ABox abduction
using forgetting, also known as uniform interpolation or
second-order quantifier elimination [6, 2], has been devel-
oped [1]. Forgetting eliminates symbols from an ontology,
while preserving all entailments of the original ontology
representable in the restricted signature. The result is a new
ontology, known as a uniform interpolant.

Framing abduction in terms of forgetting requires the
use of contrapositive reasoning as follows: O,H |= ψ iff
O,¬ψ |= ¬H, where O is an ontology, ψ is an observation
andH is a hypothesis.

Figure 1: Main steps of the proposed abduction method.

Forgetting is used to compute a uniform interpolant V of
an ontology O together with the negation of an observation
ψ, i.e. V = (O,¬ψ)−F . Since uniform interpolants are sets
of entailments of the input, in this case (O,¬ψ), the role of
forgetting is to compute the set of entailments ¬H required
for contrapositive reasoning. By negating the uniform in-
terpolant V a candidate hypothesis is obtained, where the
abducible symbols SA are defined by SA = sig(O, ψ) \ F :
the complement of the forgetting signature F .

However, to satisfy the consistency requirement in Defi-
nition 1(i), it is first necessary to apply postprocessing to V .
This postprocessing removes all axioms that follow solely
from the original ontology O, as these do not contribute to
an explanation of ψ and will be inconsistent when negated
under contrapositive reasoning. The result is the reduced
uniform interpolant V∗, containing only those axioms ob-
tained as the conclusions of inferences between the back-
ground knowledge inO and the observation to be explained
ψ. In small theories this can be done by performing entail-
ment checks on each of the axioms β ∈ V: if O |= β, then
remove β from V . However, in the setting of large DL on-
tologies this is too computationally expensive to provide a
feasible solution. Thus, the current method utilises annota-
tions, which are concepts disjunctively appended to axioms
in ψ. This annotation is retained in the results of any infer-
ences with axioms in ψ. The set V∗ is extracted by deleting
all non-annotated axioms in V , by checking the signature of
these axioms for the presence of the annotation concept [1].

As uniform interpolants are the strongest necessary en-
tailments [5] of the input, in this case (O,¬ψ), negating V∗
results in the weakest sufficient or semantically minimal hy-
potheses satisfying Definition 1, since strongest necessary
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and weakest sufficient conditions are dual notions [5].

3 Iterative Abduction

The aim of ongoing research is to extend the above abduc-
tion framework to enable the iterative computation of sets
of increasingly stronger hypotheses for a given observation:
which will be referred to as iterative abduction.

This can be seen as a form of tree search over the space of
possible, semantically minimal hypotheses. Starting with
(O,¬ψ), the first step is to compute a set of uniform in-
terpolants: one for each unique forgetting signature F con-
taining a single concept from sigc(ψ). This results in the
set of strongest possible uniform interpolants V l, i.e. those
that preserve the most entailments of (O,¬ψ), where l de-
notes the current depth of the tree. By repeating the steps in
Figure 1, a corresponding set of weakest, semantically min-
imal hypotheses Hl is obtained. Each pair {V li ,Hli} can be
seen as a node of the tree, where 1 ≤ i ≤ N l and N l is the
number of nodes at depth l.

This procedure is repeated for every node. In each case,
forgetting is applied to the uniform interpolant V li for each
signatureF containing only one concept in sigc(Hli). Once
this has been applied to each pair {V li ,Hli}, the result is a
new set of pairs {V l+1

j ,Hl+1
j } where 1 ≤ j ≤ N l+1.

Termination of this procedure could be decided in mul-
tiple ways. For small examples, it is feasible to continue
computing hypotheses along each branch until no stronger
hypotheses remain. For large ontologies it is likely that this
would not be practical. Instead, the procedure could be
performed step-by-step until the user is satisfied with the
informativeness of the hypothesis obtained. Alternatively,
induction could be used to judge each hypothesis with re-
spect to a set of examples: stronger hypotheses could be
computed until a certain threshold is reached with respect
to the proportion of examples entailed by the hypothesis.

The following small example illustrates this notion.

Example 1: Let O = {A v ∃r.C,B v ∃r.C,C v D}
and ψ = D(a∗). Computing the uniform interpolant using
F={D} results in V={A v ∃r.C,B v ∃r.C,¬C(a∗)}.
By applying the steps described in Section 2, the hypothesis
H = C(a∗) is obtained. Next, computing the uniform inter-
polant of V using a second forgetting signature F2 = {C}
gives V2 = {¬A(a∗),¬B(a∗)}. Applying the same steps
again gives a new hypothesis H2 = (A t B)(a∗). This
is stronger than H, and is also the result that would be ob-
tained by computing the uniform interpolant of (O,¬ψ) us-
ing a forgetting signature F = {D,C} in one step.

4 Outlook and Future Work

The abduction method described in Section 2 has been im-
plemented using the forgetting tool LETHE [3], and can
perform TBox [4] and ABox abduction in the DL ALC
over complex, non-Horn axioms excluding role assertions.
Experimental results over a corpus of real-world ontolo-
gies indicate that this method is practical: for example tak-

ing an average of 412.34 and 46.44 seconds for TBox and
ABox abduction respectively for an ontology containing
over 111,000 axioms, for forgetting signature of size 1.

However, the existing abduction method has several lim-
itations. These include the inability to specify role symbols
as non-abducibles and a lack of support for multiple indi-
viduals, including role assertions, in both observations and
hypotheses. To overcome these limitations, possibilities in-
clude extending the tool LETHE to include skolemization
to introduce new individuals outside the signature of the
background ontology O, or utilising other forgetting tools
such as FAME [9] which supports nominals. Improving the
expressibility of the current abduction system will naturally
extend to the iterative abduction approach proposed in this
paper, in particular allowing the computation of stronger
hypotheses involving for example role assertions.

Other future work includes the identification and evalu-
ation of suitable methods of inductive learning to be inte-
grated with abduction via the iterative approach. Prelimi-
nary starting points for this investigation may include work
in abductive logic programming [8] or statistical relational
AI. The aim is then to evaluate the practical utility of this
approach on a real-world case study.
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Abstract: We propose Equivariant ZFA with Choice as a foundation for nominal techniques that is stronger
than ZFC and weaker than FM, and why this may be particularly helpful in the context of automated reasoning.

1 Introduction

Nominal techniques assume a set a, b, c, . . . ∈ A of atoms;
elements that can be compared for equality but which have
few if any other properties. This deceptively simple founda-
tional assumption has many applications—nominal abstract
syntax (syntax-with-binding) [9, 11]; as implemented in Is-
abelle [12]; an open consistency problem [6]; duality re-
sults [5, 8]; generalised finiteness for automata and regular
languages [10, 1]; rewriting with binding [3]; and more.

So what is a foundation for nominal techniques?
Where this question is addressed in the nominal liter-

ature, the answer given is Fraenkel-Mostowski set theory
(FM). In this position paper I will somewhat provocatively
outline why this may have been a mistake, or at least a sub-
optimal choice. I will propose Equivariant ZFA set theory
with Choice (EZFAC) instead, and suggest why EZFAC
may be especially suited to applications in automated rea-
soning and implementation. One standout point is that FM
is inconsistent with the Axiom of Choice, whereas EZFA
plus Choice (EZFAC) is consistent.

An expanded discussion of EZFAC is in [7].

2 Equivariant ZFA with Choice

DEFINITION 2.1. The language of EZFAC is the language
of sets with atoms—first-order logic with a binary predicate
∈, and a single constant symbol A for the set of atoms.1

Axioms are in Figure 1; notation is defined below.

REMARK 2.2. Axioms (AtmEmp) to (Choice) are stan-
dard ZFAC (ZF with atoms and Choice). In rule (Choice),
pset∗ is the nonempty powerset operator, since we cannot
choose an element of the empty set.

REMARK 2.3. ZF and ZFA are equally expressive: a model
of ZFA embeds in one of ZF,2 and vice-versa, and a predi-
cate in ZFA can be translated (quite easily) to one in ZF.

Yet if the translation from ZFA to ZF leads to a quadratic
increase in proof-size, or if ZFA is an environment which
naturally lets us express native ZFA concepts;3 then the gain
from ZFA can be useful, as we will consider.

DEFINITION 2.4. A permutation π is a bijection on A. De-
fine a permutation action π·a by: π·a = π(a) if a ∈ A

1An Equivariant Higher-Order Logic with Atoms and Choice would
be equally feasible. I discuss sets rather than simple types only for conve-
nience.

2. . . by modelling atoms as N, or pset(N), and so forth.
3. . . meaning concepts that are hard to address in full generality in ZF,

where we do not have atoms, but easy to see in ZFA, where we do.

(AtmEmp) t ∈ s⇒ s 6∈ A
(EmptySet) t 6∈ ∅
(Ext) s, s′ 6∈ A⇒ (∀b.(b ∈ s⇔ b ∈ s′))⇒ s = s′

(Pair) t ∈ {s, s′} ⇔ (t = s ∨ t = s′)
(Union) t ∈ ⋃

s⇔ ∃a.(t ∈ a ∧ a ∈ s)
(Pow) t ∈ pset(s)⇔ t ⊆ s
(Ind) (∀a.(∀b∈a.φ[a:=b])⇒ φ)⇒ ∀a.φ fv(φ) = {a}
(Inf) ∃c.∅ ∈ c ∧ ∀a.a ∈ c⇒ a∪{a} ∈ c
(AtmInf) ¬(A⊆fin A)
(Replace) ∃b.∀a.a ∈ b⇔ ∃a′.a′ ∈ u ∧ a = F (a′)
(Choice) ∅ 6= (pset∗(s)→ s) pset∗ nonempty powerset
(Equivar) ∀a∈Perm.(φ⇔ a··φ).

Figure 1: Axioms of EZFAC

and π·a = {π·b | b ∈ a} if a 6∈ A.
Then given a predicate φ in the language of set theory

with atoms, define π··φ to be that predicate obtained by re-
placing every free variable a with π·a.4

REMARK 2.5. (Equivar) asserts that validity is preserved
by permuting atoms in all parameters of a predicate. Thus:
atoms are distinguishable, but interchangable.

For instance if we have proved φ(a, b, c) for atoms
a, b, c ∈ A then taking π = (a c) we have φ(c, b, a) and tak-
ing π = (a a′)(b b′)(c c′) we have φ(a′, b′, c′). We do not
have φ(a, b, a); this may still hold, but not by (Equivar)
because no permutation takes (a, b, c) to (a, b, a).

This gives atoms a dual nature. Individually atoms point
to themselves,5 but collectively atoms have the flavour of
variables ranging permutatively over A.6

REMARK 2.6. Equivariance is a native ZFA concept.
If our intuitions are ZF-shaped, then equivariance seems
counterintuitive: “We can’t just permute elements. Sup-
pose atoms are numbers: then are you claiming 1 < 2 if
and only if 2 < 1?”. ZFA makes clear what is going on:
the premise “Suppose atoms are numbers” makes no sense,
because atoms are not numbers!

3 Equivariance, choice, and freshness

π acts bijectively . . .

LEMMA 3.1. Suppose M is a model of ZFA(C). Then M �
π·y ∈ π·x if and only if M � y ∈ x.

4Our syntax has just one constant A. If we want more constants, we
must define π··φ sensibly. More on this in the full paper [7].

5In the Isabelle implementation of FM in my PhD thesis [4] this was
literally so: I used Quine atoms such that a = {a}. This removes the
condition a, b 6∈ A in (Ext), at a cost of some extremely mild non-
wellfoundedness.

6To see this made precise see Subsection 2.6 and Lemma 4.17 of [2].
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. . . so a model of ZFA or ZFAC already satisfies
(Equivar) [4, Theorem 8.1.10]:

THEOREM 3.2. If M is a model of ZFA(C) then M is also a
model of EZFA(C).

Proof. We prove M � φ ⇔ π··φ by induction on φ. The
case of t ∈ s is Lemma 3.1. The cases of ∀a.φ and A use
the fact that π is bijective. Other cases are no harder.

REMARK 3.3. Why do we need (Equivar)? While The-
orem 3.2 shows how instances (Equivar) can be derived
in ZFA, in practice the cost of proving them from first prin-
ciples à la Theorem 3.2 scales with the complexity of the
predicate φ. Instances of Theorem 3.2 can quadratically
dominate development effort in a theorem-prover.7 This is
the problem of α-equivalence, come back to bite us. In con-
trast, axiom (Equivar) costs constant effort: namely, the
cost of invoking the axiom.8 In this sense, equivariance is a
natural axiom.

REMARK 3.4. Choice compatible with equivariance.
Surely arbitrary choices are inherently non-equivariant?
Not if they are made inside M. Consider some choice-
function f ∈ pset∗(x) → x. By Theorem 3.2 we imme-
diately obtain π·f ∈ pset∗(π·x) → π·x. In words: if f
is a choice function for x in M then by equivariance π·f
is a choice function for π·x in M. We just permute atoms
pointwise in the choice functions.

So the following are consistent with EZFA and derivable
in EZFAC: “There exists a total ordering on A”; “Every set
can be well-ordered (even if the set mention atoms)”.

REMARK 3.5. FM set theory has a finite support prop-
erty that for every x there exists A ⊆fin A such that if
∀a∈A.π(a) = a then π·x = x.

I argue that it is better to present freshness as a well-
behavedness property in the larger EZFA(C) universe. This
is for several reasons:
1. Presenting (Fresh) as a well-behavedness property in-
stead of an axiom eliminates the ‘But FM is inconsistent
with Choice’ objection to nominal techniques. Anything
we can do in FM, we can do in EZFAC by imposing finite
support. Choice functions need not have finite support, but
(unlike is the case for FM) they still exist in the same EZ-
FAC universe.
2. We sometimes specifically want non-supported ele-
ments; for example two recent papers [5, 8] are concerned
with sets that have a notion of nominal support, but whose
elements do not.
3. Support is not a hereditary property; e.g. ‘the set of all
well-orderings of atoms’ is supported by ∅, but no well-
ordering of A has finite support; or put another way, the

7This happened in the Isabelle/FM implementation in my thesis [4],
and it was crippling. After my PhD I initiated a mark 2 development with
an (Equivar) axiom-scheme (actually an Isabelle Oracle).

8The modern nominal Isabelle implementation uses automated tactics
to prove Theorem 3.2 for certain classes of φ, specialised to an application
to nominal inductive datatypes. Nominal Isabelle is good at what it does,
but it is not (and never claimed to be) a universal nominal foundation.

FM universe is a proper subclass of the universe of finitely-
supported elements.
4. Even if the reader’s next paper uses FM sets, it may be
helpful for exposition to observe the natural embedding of
the FM universe inside the EZFAC universe. Of course this
embedding is obvious, but only once it is pointed out.

4 Conclusions

Nominal techniques have developed considerably since the
original work [9] yet their foundations have not been crit-
ically revisited. Authors and implementors have generally
used FM or ZF(C), if foundations are explicitly considered.
Yet there is a sense in which FM is too strong, and ZF(C)
is too weak. Though these theories are all biinterpretable,
that is not enough. We need foundations and implemen-
tations that allow us express ourselves precisely, naturally,
and without annoying, even crippling, proof-obligations to
do with renamings.

In this respect EZFAC seems to have advantages. We
have Choice, invoking equivariance has constant cost—and
just the clear statement of EZFAC itself will I hope be con-
ceptually useful.
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Abstract: Bounded Rigid E-Unification (BREU) is a unification method which has been used with sequent-
style theorem proving. In comparison to more ordinary unification methods in this context, BREU works
over finite domains of substitutions, thus reducing the complexity of the unification procedure. Earlier work
introduced a sequent calculus which was shown to be sound and complete. Here, a tableau calculus is explored
which works with pseudo-clauses. The connection restriction is added and investigations is made into effects
on performance, as well as implications for completeness.

1 Introduction

When finding proofs using sequent/tableau calculus rea-
soning with rigid variables (“free” variables), one of the
hardest steps is to find a substitution such that each branch
of the proof tree is closed. Usually, a form of Simulta-
neous Rigid E-Unification (SREU) is required, where all
branches are closed at the same time. However, the SREU-
problem was famously found to be undecidable [3] and
there is no decision procedure to be incorporated in a theo-
rem prover. Several approaches to avoid using SREU exists,
e.g., paramodulation. A modification to SREU has been
proposed, Bounded Rigid E-Unification, which limits the
domains of each free variable to a finite domain. In [2], it
was shown that even though the substitutions were limited,
a sound and complete proof calculus could nonetheless be
constructed. In [1] efficient methods of solving the BREU-
problem was described and a solver, ePrincess, using these
in conjunction with a sequent proof calculus was shown to
be potentially competitive.

Here the previous work is extended and a tableau cal-
culus, based on BREU, is introduced using the connection
restriction. Since this calculus does not use regular unifica-
tion, previous results regarding the introduction of the con-
nection restriction do not necessarily carry over, e.g., con-
nection tableau using BREU is shown to be incomplete..

2 Bounded Rigid E-Unification

One method of handling universal quantifiers in tableaux
proof search is by introducing so called “free variables”.
Already in the middle of the previous century this idea
was introduced by Prawitz [5] (who called them “dummy
variables”). Free variables acts as placeholders which are
later to be substituted by terms such that a valid (closed)
proof is obtained. When dealing with first-order logic with-
out equality, one can perform syntactic unification to find
substitutions such that complementary literals are unified.
However, if equality literals are also in the tree, then unifi-
cation modulo equality needs to be performed.

Traditionally, one would perform several unification
problems in parallel, one E-unification for each branch of
the proof tree which is to be closed. This is what is known

as Simultaneous Rigid E-Unification (where the variables
are rigid, i.e., they must be replaced by the same term in all
branches). SREU was famously shown to be undecidable in
the general case [3]. Therefore a modified version of SREU
was introduced which limits the possible substitutions of a
free variables, by only allowing it to be substituted terms
appearing “above” in the proof tree. This was claimed to be
sufficient for a complete and sound proof calculus already
by Kanger [4] and also proved in [2].

A sequent calculus was described in [2] which uses
BREU for closing proof trees and was shown to be sound
and complete. Its performance was also shown in [1] to
have potential.

3 Connection Tableaux

In this work a tableau calculus which utilizes BREU is in-
vestigated. Many restrictions of the search space is possible
for tableau methods. One popular, and empirically success-
ful, such restriction is by using connection tableaux. Con-
nection tableaux are proof tableaux with the connection re-
striction, which can be formulated in a tableaux calculus as
only allowing proof expansion steps where one branch is
immediately closed.

There is much research within the connection tableau
field and it is here applied to a tableau calculus with BREU.
Some of the properties of connection tableaux using regular
unification translates over to the bounded case (e.g., sound-
ness) while other do not. For example, regular connection
tableaux are complete, i.e., even though only a proof search
is made over connection tableaux; there is always at least
one such tableaux if the original formula is indeed valid.
This is not the case for this “bounded” tableaux.

Example Consider the the following two clauses:

{∀x.P (x, g(x)),∀y, z.¬P (f(y), z)}

There are only two possible connection tableaux:
P (X, g(X))

¬P (f(Y ), Z)

¬P (f(Y ), Z)

P (X, g(X))

(a) (b)
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The substitution to close the left (a) tableau is σa =
{X 7→ f(Y ), Z 7→ g(X)}. However, the therm f(Y ) only
occurs after X has been introduced to the tableau and thus
X 7→ f(Y ) will not be found by a BREU procedure. For
the right (b) tableau, it is the same case with Z 7→ g(X).

This and other properties are investigated to see if any re-
laxations can be made to still have completeness, or if it is
possible to find heuristics for when the connection restric-
tion is useful and when not.

4 Pseudo-Clausal Tableaux

Traditionally, when working with connection tableaux,
clausal tableaux is used. That is, the starting formula is
given on CNF and there is one expansion rule which con-
sists of taking one conjunct and appending each literal as
a new branch to a leaf, in such a way that at least one of
the new branches are immediately closed. This means that
each node will have multiple children, except when it has
been expanded by a unit clause.

However, when using BREU in conjunction with the
connection restriction, Pseudo-Clausal Tableaux is used in-
stead. Briefly, a pseudo-literal is a conjunction of n literals,
where n−1 of the literals are equational literals and one lit-
eral is a predicate or equational literal. A pseudo-clause is a
disjunction of pseudo-literals, possibly with a leading quan-
tifier prefix. Finally, a formula is on pseudo-clausal normal
form (PCNF) if it is a conjunction of pseudo-clauses. In
tableau expansion steps, each pseudo-literal is treated as a
single literal. This allows us to rewrite equations to a nor-
mal form without explosion of proof size.

Example Consider the set of clauses:

{∀x(¬R(x) ∨ ¬Q(x)), R(f(c), f(d)) ∨Q(f(c))}

It is represented by the following set of pseudo-clauses:

{∀x(¬R(x) ∨ ¬Q(x)),

∃b1, b2(f(c) ≈ b1 ∧ f(d) ≈ b2 ∧R(b1, b2))∨
(f(c) ≈ b1 ∧Q(b1))}

If the first and then the second clause would be used in a
tableau expansion step, the results would look as follows:

¬R(X1) ¬Q(X1)

f(c) ≈ b′1
f(d) ≈ b′2
R(b′1, b

′
2)

f(c) ≈ b′1
Q(b′3)

...

5 Proof Search

One important aspect of proof search over (pseudo-)clausal
tableaux is how to enumerate all the possible proofs, i.e.,
both how to apply the next rule but also when to backtrack.

Usually, for the latter some kind of bound is employed, stat-
ing how deep the search procedure goes before going back
and consider other choices. This bound is then iteratively
increased in some manner, thus the search space is system-
atically explored. It is not clear how this is to be imple-
mented when using bounded unification, since when the
unification is restricted, there might be a requirement for
longer branches in some certain scenarios, and perhaps this
can be exploited when setting the bounds.

6 Other Improvements

There are other interesting improvements to add to the
tableau calculus. Normally, a call to a unification procedure
yields either a substitution or returns that no substitution
exists. An interesting extension is to also return auxiliary
information found during the unification procedure.

6.1 Propagating Unit Clauses

In the lazy method for solving BREU described in [1],
blocking clauses are generated to prohibit the generation
of candidate solution in a lazy manner. These blocking
clauses will also hold for certain branches of the current
proof tree. Especially unit clauses are of interest since those
corresponds to literals which can be appended to branches
in the proof tree and facilitate the proof search.

7 Conclusions

In this work new tableau based calculus utilizing BREU is
introduced. It is seen to be incomplete but there are pos-
sibilities for interesting improvements. This is a work in
progress and no interesting experimental data exists yet.
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[2] P Backeman and P Rümmer. Theorem proving with
bounded rigid e-unification. In Automated Deduction -
CADE-25. Springer International Publishing, 2015.

[3] Anatoli Degtyarev and Andrei Voronkov. Simultaneous
rigid E-Unification is undecidable. In CSL, 1995.

[4] S. Kanger. A simplified proof method for elementary
logic. In Automation of Reasoning 1: Classical Papers
on Computational Logic 1957-1966. Springer, Berlin,
Heidelberg, 1983. Originally appeared in 1963.

[5] Dag Prawtiz. An improved proof procedure. Theoria,
26(2), 1960.

42



Designing a proof calculus for the
application of learned search heuristics
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Abstract: Machine learning techniques may prove capable of efficiently guiding search for proofs of human
theorems. Many modern automated theorem provers (e.g. E [10], SPASS [13], iProver [4], Vampire [5]) make
use of proof calculi such as saturation or instance generation which, while efficient, are a bad fit for current
machine-learning technology. We propose the use of a type-theoretic calculus for a future theorem prover
which attempts to leverage machine-learning techniques.

1 Problems inherent to state-of-the-art calculi

Machine-learning techniques have been most successful in
applications where a human operator finds a task easy or
intuitive, but algorithms are inefficient or ad-hoc — see re-
cent progress on image classification [6], sentiment anal-
ysis [9], and board games [11]. Proof search could also
fall into this category: while modern provers are feats of
engineering and efficiency, they may still choke on prob-
lems which an intelligent agent (i.e. a mathematician) could
solve easily by intuition, and the field as a whole is domi-
nated by approaches and heuristics which aim to solve a
few new problems. However, integrating learned heuris-
tics to directly guide proof search into these provers is non-
trivial. Consider the archetypal saturation-based prover for
first-order logic. We identify several challenges facing an
intrepid machine-learning practitioner when implementing
such a feature.

• Efficiency: modern provers on modern hardware
process thousands or millions of (possibly inter-
dependent) search steps per second, and as such are
extremely sensitive to latency. It would be impracti-
cal to add even a few milliseconds of processor time
to each step.

• Size of the input space: saturation-based provers may
at times generate sufficient clauses to fill the entire
memory of a machine. Such a dataset could not be
processed by a heuristic in reasonable time.

• Size of the output space: in a saturation step, a
clause is selected for resolution with other clauses in
an algorithm such as DISCOUNT [1] or OTTER [7].
Current machine-learning techniques work most effi-
ciently with a smaller, fixed output space.

• Heuristic performance: while human provers can gain
intuition for human-readable proofs, the artificial pro-
cesses of negation elimination, skolemisation, clausi-
fication and subsequent resolution steps can make the
next step unclear. There is therefore no reason to ex-
pect a machine to do any better.

We assert that these problems are inherent to most (if not

all) of the various calculi employed by modern systems,
with the possible exception of tableaux-based provers.

2 Desired properties of a new calculus

With this in mind, a freshly-designed calculus would ide-
ally satisfy the following requirements (in increasing order
of importance) in order to be more suitable for machine-
learning methods.

1. The calculus should maintain as much of the human
intuition behind the (sub-)goal as possible (e.g. the
structure of the goal) to allow learning to take place.

2. The calculus should admit proofs of hard problems in a
reasonable number of steps. Otherwise, the inevitable
performance impact of running the heuristic will mean
that a proof is not found quickly.

3. At a given step in proof search, the calculus should
have a small input state to consider, and a finite num-
ber of next steps which is as small as possible.

4. The calculus should have terms which are amenable to
representation in machine-learning algorithms. Repre-
sentations such as fixed-size real-valued vectors, char-
acter sequences, or graphs have all been used for other
tasks with differing degrees of success.

5. A calculus should come with an associated method to
quantify, in some way, which of the possible next di-
rections is preferable. This might involve a way of
scoring “progress” toward a proof, or a means of fil-
tering for relevant premises.

3 Proposal for a calculus that is steerable using ma-
chine learning

There is a well-known [12] isomorphism between type the-
ories and logic. In particular, a logical proposition may be
seen as a type, with proof search then the problem of finding
a term which has that type (term synthesis). For example,
the simply-typed λ-calculus is sufficient to show the princi-
ple of modus ponens

P =⇒ (P =⇒ Q) =⇒ Q
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with the term

λx : (P ).λf : (P → Q). (f x)

A classical first-order logic can be produced in the type
theory by generalising the function arrow→ to a dependent
product, as in the LF system [3] and adding an operator
for classical contradiction. To produce an iterative system
for finding proofs one can introduce “holes” (as found in
e.g. Agda [8]) to the calculus to represent sub-goals. Proof
terms can then be produced iteratively by filling holes in
the term such that they satisfy the target type at all times.
Search is complete when the term has no holes remaining:

Term Type
? ?
λx : (P ).? P → ?
λx : (P ).λf : (P → Q).? P → (P → Q)→ ?
λx : (P ).λf : (P → Q). (? ?) P → (P → Q)→ ?
λx : (P ).λf : (P → Q). (f ?) P → (P → Q)→ Q
λx : (P ).λf : (P → Q). (f x) P → (P → Q)→ Q

Using such a type theory as a logical calculus has several
of the properties presented earlier, without many disadvan-
tages. Experience in the interactive theorem-proving com-
munity suggest that dependent type theories work reason-
ably well for human users, as seen with large developments
in Agda, and hence satisfy requirements 1 and 2. Addition-
ally, types act as a form of restriction, and also direction to
an extent: only some variables can be used to fill a hole,
since otherwise the term would be ill-typed. This partially
satisfies requirements 3 and 5.

Unfortunately, there is no evidence to suggest that this
technique improves on other calculi in solving the problem
of representation (i.e. requirement 4). However, it does
reduce the complexity of terms by cutting the number of
logical connectives. It may also be possible to view types
as a directed graph, with function arrows as edges — we
leave this as future work.

4 Possible implementation techniques

Several type-based ITP systems already contain automation
for small theorems, such as the Agsy term search imple-
mentation provided with Agda [8]. These algorithms could
be extended or directed with a learned heuristic. Another
promising direction involves a tree-search technique used
by AlphaGo [11] (and more recently LeanCOP [2]), which
balances exploration and exploitation: Monte-Carlo Tree
Search. MCTS is particularly appealing as it is both highly
parallel and resumable.

5 Summary

We identify problems with state-of-the-art proof calculi in
the context of machine guidance, establish a set of de-
sired requirements for a replacement calculus, and propose
a type-theoretic calculus for this rôle. Our next step will

be to implement a proof-of-example solver for this calculus
(this is already in-progress) and use this to explore various
machine learning methods for steering proof search.
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Abstract: This extend abstract briefly introduces our recent research work, i.e., a novel sound and complete contradiction
separation (CS) based dynamic multi-clause synergized automated deduction theory, targeted for dynamic and multiple
(two or more) clauses handling in a synergized way, while binary resolution is its special case. It includes some basic
concepts, the key idea illustration, and a summary about what we have achieved based on this new theory in terms of
implementation and experimental studies.

1 Introduction

Resolution [1] has played a key role in automated reasoning for
over five decades. Our recent work aims at addressing the follow-
ing questions: although the simple and elegant binary resolution
has been successful, has it been too restrictive? Instead of treat-
ing a contradiction as a complementary pair based on two clauses,
can we extend it into a contradiction consisting of more than two
clauses? Accordingly, can we make a flexible and dynamic selec-
tion of the number of clauses involved in each deduction to get
better efficiency and capability?

Based on some existing work in the literature plus our previous
research work on resolution-based automated deduction based on
many-valued logic [2], we recently proposed a CS based dynamic
multi-clause synergized automated deduction [3, 4], with the aim
at addressing the above questions and achieving the following dis-
tinctive features: 1) multi-clause deduction: multiple clauses from
a clause set are involved in each deduction process; 2) dynamic
and flexible deduction: the number of clauses involved in the CS
in each deduction process is dynamic and flexible; 3) synergized d-
eduction: joint handling of multiple clauses and achieving the syn-
ergized effects of all the clauses on the deduction result; 4) guided
deduction: the guided search path to reduce the search space; 5)
robust deduction: deleting or adding some literals in the clause set
will not affect the contradiction and the deduction results; 6) par-
alleled deduction: each clause involved in the contradiction has
the equal status and the ordering of each clause appearing in the
clause set will not affect if the clause set is a contradiction or not.
The sections below give some brief introduction about this theory.

2 CS Based Deduction in Propositional Logic

Definition 2.1 (Contradiction) Let F = {C1, · · · , Cm} be a
clause set. If ∀(p1, · · · , pm) ∈

∏m

i=1
Ci (the set of all ordered

tuples (p1, · · · , pm) such that pi ∈ Ci), there exists at least one
complementary pair among {p1, · · · , pm}, then F =

∧m

i=1
Ci is

called a standard contradiction (in short, SC). If
∧m

i=1
Ci is un-

satisfiable, then F =
∧m

i=1
Ci is called a quasi-contradiction (in

short, QC). In propositional logic, these two concepts are equiva-
lent, but not in the first-order logic case.

Definition 2.2 (CS rule) Assume a clause set F =
{C1, · · · , Cm}. The following inference rule that produces a new
clause from F is called a contradiction separation rule, in short,
a CS rule: For each Ci(i = 1, · · · , m), separate it into two sub-

clauses C−
i and C+

i such that: 1) Ci = C−
i

∨
C+

i , where C−
i

and C+
i have no common literals; 2) C+

i can be an empty clause
itself, but C−

i cannot be an empty clause; 3)
∧m

i=1
C−

i is a s-
tandard contradiction. The resulting clause

∨
C+

i , denoted as
Cm = (C1, C2, · · · , Cm), is called a contradiction separation
clause (CSC) of C1, · · · , Cm, and

∧m

i=1
C−

i is called a separated
contradiction (SC).

Remark 2.1 binary resolution rule is actually a special case of
the CS rule when only two clauses are involved in the CS process.

Definition 2.2 Suppose a clause set F = {C1, · · · , Cm} in
propositional logic. Φ1, · · · , Φt is called a a CS based dynamic
deduction sequence from F to a clause Φt, denoted as D, if (1)
Φi ∈ F , i = 1, · · · , t; or (2) there exist r1, r2, · · · , rki < i,
Φi = Cki(Φr1 , · · · , Φrki

).
Remark 2.2 the ki in (2) varies with the deduction process, this

reflects “dynamic deduction”.
Example 2.1 Suppose a clause set F = {C1, C2, · · · , C13}

in propositional logic with: C1 :∼ p4 ∨ p6, C2 : p6∨ ∼ p7,
C3 :∼ p6 ∨ p7, C4 :∼ p6∨ ∼ p7, C5 : p1 ∨ p2 ∨ p3,
C6 : p1 ∨ p2∨ ∼ p3, C7 :∼ p1 ∨ p2 ∨ p3, C8 :∼ p1∨ ∼
p2 ∨ p3, C9 :∼ p1∨ ∼ p2∨ ∼ p3, C10 : p4∨ ∼ p5 ∨ p7,
C11 : p1∨ ∼ p2 ∨ p3 ∨ p4, C12 : p1∨ ∼ p2∨ ∼ p3 ∨ p5,
C13 :∼ p1 ∨ p2∨ ∼ p3 ∨ p6. Using the CS rule for the claus-
es C5, C6, C7, C8, C9, C11, C12, C13, we obtain a CSC involv-
ing 8 clauses: C14 = C8(C5, C6, C7, C8, C9, C11, C12, C13) =
p4 ∨ p5 ∨ p6. Furthermore, using the CS rule for 3 claus-
es C1, C10 and C14, we obtain another CSC involving 3 claus-
es: C15 = C3(C1, C10, C14) = p6 ∨ p7. Finally, we have
C16 = C4(C2, C3, C4, C15) = ∅. This process illustrates a CS
based dynamic deduction from F to an empty clause ∅ using 3
steps of CS deduction.

More examples can be found in [4], and it has also been proved
in [4] that the CS-Based Dynamic Deduction in Propositional
Logic is sound and complete.

3 CS Based Dynamic Deduction in First-Order Logic

Definition 3.1 (S-CS Rule) Suppose a clause set F =
{C1, · · · , Cm} in first-order logic. Without loss of generali-
ty, assume that there does not exist the same variables among
C1, · · · , Cm (if the same variables appear, there exists a rename
substitution which makes them different). The following infer-
ence rule that produces a new clause from F is called a standard
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contradiction separation rule, in short, an S-CS rule:
For each Ci(i = 1, · · · , m), firstly apply a substitution σi

to Ci ( σi could be an empty substitution but not necessary the
most general unifier), denoted as Cσi

i ; then separate Cσi
i into t-

wo sub-clauses C
σ−

i
i and C

σ+
i

i such that i) Cσi
i = C

σ−
i

i ∨ C
σ+

i
i ,

where C
σ−

i
i and C

σ+
i

i have no common literals; ii) C
σ+

i
i can be

an empty clause itself, but C
σ−

i
i cannot be an empty clause; iii)

∧m

i=1
C

σ−
i

i is a standard contradiction, that is ∀(x1, · · · , xm) ∈
∏m

i=1
C

σ−
i

i , there exists at least one complementary pair among

{x1, · · · , xm}. The resulting clause
∨m

i=1
C

σ+
i

i , denoted as
Csσ

m (C1, · · · , Cm) (here “s” means “standard”, σ =
∪m

i=1
σi,

σi is a substitution to Ci, i = 1, · · · , m), is called a standard
contradiction separation clause (S-CSC) of C1, · · · , Cm, and
∧m

i=1
C

σ−
i

i is called a separated standard contradiction (S-SC).
The CS based dynamic deduction in first-order logic is defined

similarly. It has been proved in [4] that the CS-Based Dynamic
Deduction in first-order Logic is also sound and complete.

4 Graphical Illustration of the Key Ideas

This section provides a graphical illustration on the essential fea-
tures of the CS-based dynamic deduction, as well as the essential
difference from binary resolution deduction (Figs 1 and 2). We
use the funnel as an intuitive figure to show the automated deduc-
tion process from the input clause set. The one coming out from
the exit of the funnel is the final output.

Fig. 1 actually also illustrates some insights why the pre-
processing and simplification steps are essential in the binary res-
olution deduction, even take the majority of the steps and time;
and also why lots of work have been focused on splitting and sim-
plifying the clause set into the simpler ones just because the exit
is too narrow. Fig. 2 illustrates the dynamic and flexible nature
of the CS-based dynamic deduction, which reflects the reflects
non-determinism, essentially opens multiple paths by which the
outcome may be discovered.

Figure 1: The graphical funnel view of binary resolution deduc-
tion

5 Summary of Work Done Based on the CS theory

This established theory is just a first step towards an effective CS-
based theorem prover, which will need specific algorithms and
strategies (including indexing techniques) making the “right” s-
ingle CS step including the “suitable selection” of the number of
clauses to be involved in each deduction process. Although it is
challenging, the authors team has done a lot of work already in

Figure 2: The graphical funnel view of CS-based dynamic de-
duction

this direction along with some SAT solvers and first-order auto-
mated deduction systems based on the CS deduction, e.g., [5].
So far, over 2.2 billion SAT problems has been solved, the max-
imal scale includes 2.5 million clauses, and 3.13 trillion literals.
In addition, over 250,000 problems from TPTP [6] and Mizar [7]
database have been proved. MC-SCS does not include the super-
position calculus yet, have then coupled with other provers, such
as Prover 9, E prover and Vampire. So far, 130 Rating-1 prob-
lems and 14 unknown problems from TPTP have been proved by
extending E/Prover9/Vampire) based on the CS based automated
deduction. Currently we are working on extensive and deeper ex-
perimental studies and comparative analysis with the state of art
based on the benchmark problem; new and better CS-based search
algorithms and strategies, forward and backward deduction, com-
plexity analysis as well as the real application etc.
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Abstract: We present the results obtained from experimenting with our implementation of the abstraction-
refinement framework for reasoning with large theories. Particularly the results obtained from the over-
approximation process.

1 Introduction

Efficient reasoning with large theories is one of the main
challenges in automated theorem proving (ATP). This prob-
lem arises because of the enormous number of superflu-
ous premises in the theories and usually a few of them are
needed to prove a conjecture. Therefore it is desirable to
select the most relevant axioms when proving a conjecture.

Currently, we are working on defining and formalising a
framework based on abstraction-refinement [2, 1, 5, 8] for
reasoning with large theories. Our approach encompasses
two approximations: the under and over approximations
[4]. We present in this abstract our current results of im-
plementing the over-approximation part. We experimented
with different over-approximating abstractions, which have
been defined in the framework.

2 Over-Approximation

2.1 Preliminaries

Let us consider a set of formulas F which we call a con-
crete domain and a set of formulas F̂ which we will call an
abstract domain.

An abstraction function is a mapping α : F 7→ F̂ . When
there is no ambiguity we will call an abstraction function
just an abstraction of F . The identity function is an ab-
straction which will be called the identity abstraction αid.

A concretisation function for α is a mapping γ : F̂ 7→ 2F

such that F ∈ γ(α(F )) for all F ∈ F .
An abstraction α is called over-approximation abstrac-

tion (wrt. refutation) if for every F ∈ F , F |= ⊥ implies
α(F ) |= ⊥. We can compose abstractions as mappings.
In particular, if α1 : F 7→ F1 and α2 : F1 7→ F2 then
α1α2 is an abstraction of F . The composition of over-
approximating abstractions is an over-approximating ab-
straction. In further sections, we will define several atomic
abstractions which can be composed to obtain a large range
of combined abstractions.

We define an ordering on abstractions v called abstrac-
tion refinement ordering as follows: α v α′ if for all
F ∈ F , α(F ) |= ⊥ implies α′(F ) |= ⊥. We have that
all over-approximating abstractions are above the identity
abstraction wrt. the abstraction refinement ordering.

Weakening abstraction refinement of an over-
approximating abstraction α is an abstraction α′ which

is below α and above the identity abstraction wrt. to the
abstraction refinement ordering, i.e, αid v α′ v α.

An over-approximation abstraction-refinement process
is a possibly infinite sequence of weakening abstraction re-
finements α0, . . . , αn, . . . such that αid v · · · v αn v
· · · v α0.

2.2 Over-Approximation Procedure

We consider a theory A which is a collection of axioms
which we call concrete axioms and a set of formulas Âs

called abstract axioms. We will assume that the negation of
the conjecture is included in A, so proving the conjecture
corresponds to proving unsatisfiability of A.

The over-approximating procedure starts with the fol-
lowing steps: it takes a set of concrete axioms A and then
applies an over-approximating abstraction function αs to
A, in order to obtain their abstract representation Âs, Âs =
αs(A); we assume that reasoning with abstract axioms sim-
plifies the reasoning process. The over-approximating pro-
cedure uses an ATP to try to prove that Âs is unsatisfiable.
First, if ATP shows satisfiability of Âs then we can con-
clude that A is satisfiable, i.e., the conjecture is disproved.
On the other hand, if the ATP proves the unsatisfiability
of Âs, then the procedure extracts and concretises the unsat
core Âsuc from Âs, Auc = γs(Â

s
uc). Next, the procedure

tries to prove the unsatisfiability of Auc. If Auc is unsat-
isfiable, the process stops as this proves unsatisfiability of
A. Otherwise, if Auc is shown to be satisfiable, the set of
axioms A is abstracted using a new abstraction α′

s obtained
by weakening abstraction refinement of αs. The procedure
is repeated utilising the refined set of abstract axioms. This
loop finishes when the conjecture is proved or disproved or
the time limit of the whole procedure is reached.

In the next sections, we present several concrete over-
approximating abstractions and their refinements.

2.3 Subsumption-Based Abstraction

The subsumption-based abstraction works by partitioning
the set of concrete axioms based on joint literals occur-
rences and then it assigns an abstract clause that represents
each partition. This abstract clause subsumes all clauses in
the collection. The refinement process of this abstraction
subpartitions one of the previous collections by selecting
a new joint literal occurrence. Then the process adds this
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Table 1: Were subs stands for subsumption-based, sig for grouping signature, arg-fil for argument filter, FP for grouping functions and predicates,
SC for grouping Skolem functors and constants, and SS for argument filter restricted to Skolem and split symbols in iProver.

Depth Tolerance Abstractions Signature Arg-filter Until SAT Solutions

1 1.0 subs, sig, arg-fil FP SS false 957
1 1.0 subs, sig, arg-fil SC default false 38
2 1.0 subs default true 27
1 1.0 subs, sig, arg-fil FP default true 11
1 1.0 subs, sig, arg-fil FP default false 8
2 1.0 subs default false 2
1 1.0 subs, sig, arg-fil SC default true 1

Total 1044

Table 2: CASC-26 LTB comparison (solutions out of 1500 problems)
Vampire LTB-4.0 Vampire LTB-4.2 MaLARea iProver-v2.7 iProver LTB-2.6 E LTB

1156 1144 1131 1070 777 683

literal to the abstract clause. Thus, each subpartition is rep-
resented by an abstract clause which extends the previous
abstract clause.

2.4 Argument Filter Abstraction

The argument filter abstraction is based on removing cer-
tain arguments in the signature symbols and its refinement
consists on restoring arguments of abstract symbols occur-
ring in the abstract proof. This abstraction can be used
to abstract variable dependencies by restricting it to the
split predicates, which represents variable dependencies be-
tween different subclauses. In the same way, we can tar-
get formula definitions introduced during clausification and
Skolem functions.

2.5 Grouping Signature Abstraction

The grouping signature abstraction abstracts the signature
by grouping symbols of the same type and then for each
group it assigns an abstract symbol. The refinement pro-
cess of this abstraction concretises the abstract symbols
which are present in the abstract proof. Our current im-
plementation can group symbols in two different ways: i)
one is based on grouping Skolem functors and constants, ii)
the other one is based on grouping functions and grouping
predicates with matching arities.

3 Experiments

We implemented the above over-approximating abstrac-
tions with their refinements and integrated them into
iProver v2.7. These over-approximations are combined
with SInE algorithm [3], which is currently used as an
under-approximation.

We evaluated our implementation on the standard bench-
mark for first-order theorems provers: the TPTP library [7]
with the set of problems from the LTB category in CASC-
26 [6]. All experiments described in this section were
performed using a cluster of computers with the follow-
ing characteristics: Linux v3.13, cpu 3.1GHz and memory
125GB. We used a time limit of 240s for each attempt to
solve a problem.

We experimented with different strategies, which encom-
pass: the over-approximating abstractions defined above,
their combinations, parameters for SInE algorithm (depth
and tolerance) and iProver option to refine the abstraction
function until the abstract unsat core becomes satisfiable.
The total number obtained of solutions was 1070 out of
1500. In table 1, we show the number of solutions obtained
from the most effective strategies which in total solved 1044
problems. In this table, the column ’Solutions’ shows the
number of solutions found by certain strategy but excluding
the problems solved by the previous strategies.

4 Conclusion

In table 2, we compared the results from CASC-26 and our
current implementation with iProver v2.7. From these re-
sults, we can conclude that our proposed approach for rea-
soning with large theories considerably improves the per-
formance of iProver, getting close to the top systems Vam-
pire and MaLARea.
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