ZH-calculus: completeness and extensions

Miriam Backens Aleks Kissinger

Hector Miller-Bakewell

John van de Wetering

Sal Wolffs

 ${\sf University} \,\, {\sf of} \,\, {\sf Birmingham}$

Oxford University

Radboud/Oxford

Radboud University Nijmegen

ACT2021 — July 15th

An alternative title from x.writefull.com/title-generator

 \leftarrow \rightarrow C \bullet x.writefull.com/title-generator/index.html

A ZH-Calculus, an Alternative GUI for Quantum Information

ABSTRACT

There are various gate sets used for describing quantum computation. A particularly popular one consists of Clifford gates and arbitrary single-qubit phase gates. Computations in this gate set can be elegantly described by the \emph{ZX-calculus}, a graphical language for a class of string diagrams describing linear maps between qubits. The ZX-calculus has proven useful in a variety of areas of quantum information, but is less suitable for reasoning about operations outside its natural gate set such as multi-linear Boolean operations like the Toffoli gate. In this paper we study the \emph{ZH-calculus}, an alternative graphical language of string diagrams that does allow straightforward encoding of Toffoli gates and other more complicated Boolean logic circuits. We find a set of simple rewrite rules for this calculus and show it is complete with respect to matrices over \$\mathbb{mathbb} Z[\frac{1}{\text{fract2}}\], which correspond to the approximately universal Toffoli+Hadamard gateset. Furthermore, we construct an extended version of the ZH-calculus that is complete with respect to matrices over any ring \$R\$ where \$1+1\$ is not a zero-divisor.

- ► ZX-calculus is universal language for quantum computing
- ► Great for Clifford+Phases gate set, not so great for Toffoli

- ZX-calculus is universal language for quantum computing
- ► Great for Clifford+Phases gate set, not so great for Toffoli
- ZH-calculus introduced to be great for Toffoli's
- Original ZH [QPL'18] complete for universal fragment

- ZX-calculus is universal language for quantum computing
- ► Great for Clifford+Phases gate set, not so great for Toffoli
- ZH-calculus introduced to be great for Toffoli's
- Original ZH [QPL'18] complete for universal fragment

In this work:

- We find subset of rules complete for Toffoli+Hadamard
- We find original set of rules complete for (almost) any ring

- ZX-calculus is universal language for quantum computing
- Great for Clifford+Phases gate set, not so great for Toffoli
- ZH-calculus introduced to be great for Toffoli's
- Original ZH [QPL'18] complete for universal fragment

In this work:

- We find subset of rules complete for Toffoli+Hadamard
- We find original set of rules complete for (almost) any ring
- Along the way we find way to encode arithmetic in ZH

First some motivation for the calculus

Boolean maps

A Boolean map is $f: \{0,1\}^n \rightarrow \{0,1\}^m$.

This gives linear map $\hat{f}:\mathbb{C}^{2^n} o \mathbb{C}^{2^m}$ by

$$\hat{f}|x_1\ldots x_n\rangle=|f(x_1\ldots x_n)\rangle$$

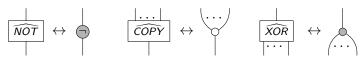
Boolean maps

A Boolean map is $f: \{0,1\}^n \to \{0,1\}^m$.

This gives linear map $\hat{f}: \mathbb{C}^{2^n} \to \mathbb{C}^{2^m}$ by

$$\hat{f}|x_1...x_n\rangle=|f(x_1...x_n)\rangle$$

Examples:



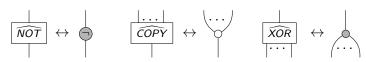
Boolean maps

A Boolean map is $f: \{0,1\}^n \rightarrow \{0,1\}^m$.

This gives linear map $\hat{f}: \mathbb{C}^{2^n} \to \mathbb{C}^{2^m}$ by

$$\hat{f}|x_1...x_n\rangle=|f(x_1...x_n)\rangle$$

Examples:



What about \widehat{AND} ?

Flexsymmetry

COPY, XOR, AND are symmetric wrt swaps on inputs/outputs

Flexsymmetry

COPY, XOR, AND are symmetric wrt swaps on inputs/outputs But COPY and XOR are also **flexsymmetric**:

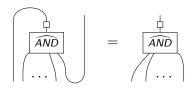
Flexsymmetry

COPY, XOR, AND are symmetric wrt swaps on inputs/outputs But COPY and XOR are also **flexsymmetric**:

Not true for AND:

Can we make AND flexsymmetric?

Can we make AND flexsymmetric? Yes, there exists a linear map such that:



Namely:

Can we make AND flexsymmetric? Yes, there exists a linear map such that:

$$= \widehat{AND}$$

$$= \widehat{AND}$$

$$:= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Can we make AND flexsymmetric? Yes, there exists a linear map such that:

$$= \widehat{AND}$$

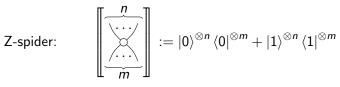
$$= \widehat{AND}$$

$$:= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Namely:

$$:= \frac{1}{2} \widehat{\widehat{AND}}$$

ZH-calculus generators



$$|0\rangle^{\otimes n} \langle 0|^{\otimes m} + |1\rangle^{\otimes n} \langle 1|^{\otimes n}$$

ZH-calculus generators

where the sum is over all $i_1,\ldots,i_m,j_1,\ldots,j_n\in\{0,1\}.$

ZH-calculus generators

where the sum is over all $i_1, \ldots, i_m, j_1, \ldots, j_n \in \{0, 1\}$.

$$\llbracket \mathbf{\hat{a}} \rrbracket := \frac{1}{2}$$

$$[\![\ | \]\!] := |0\rangle\langle 0| + |1\rangle\langle 1|$$

$$\llbracket \smile
bracket := \ket{00} + \ket{11}$$

Universality

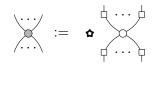
Composing these generators we can represent any $2^n \times 2^m$ matrix with entries in $\mathbb{Z}[\frac{1}{2}]$.

Universality

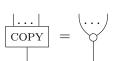
Composing these generators we can represent any $2^n \times 2^m$ matrix with entries in $\mathbb{Z}[\frac{1}{2}]$.

By Amy et al. (arxiv:1908.06076) this corresponds to circuits generated by Toffoli and $H \otimes H$.

Derived generators

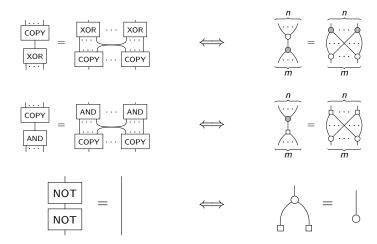


Boolean interpretation



Boolean rules #1

Boolean rules #2

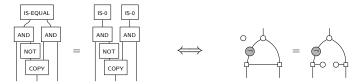


The final rule

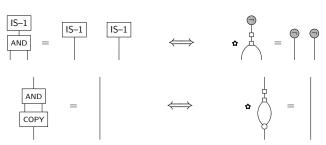
Need one more rule:

The final rule

Need one more rule:



Or equivalently, a pair of rules:



The rules

$$(zs) \qquad \begin{array}{c} \overbrace{\cdots} \\ \overbrace{\cdots} \\ m \end{array} \qquad (id) \qquad \begin{array}{c} = \\ \\ = \\ \end{array}$$

$$(hs) \qquad \begin{array}{c} \overbrace{\cdots} \\ m \end{array} \qquad (hh) \qquad \begin{array}{c} \overbrace{\cdots} \\ = \\ \end{array}$$

$$(ba_1) \qquad \begin{array}{c} \overbrace{\cdots} \\ m \end{array} \qquad (ba_2) \qquad \begin{array}{c} \overbrace{\cdots} \\ m \end{array} \qquad \begin{array}{c} \\$$

Completeness

Theorem

These 8 rules are complete for matrices over $\mathbb{Z}[\frac{1}{2}]$.

Completeness

Theorem

These 8 rules are complete for matrices over $\mathbb{Z}[\frac{1}{2}]$.

Proof

Reduce each diagram to unique normal form.

Completeness

Theorem

These 8 rules are complete for matrices over $\mathbb{Z}[\frac{1}{2}]$.

Proof

Reduce each diagram to unique normal form.

So essentially all of quantum computing boils down to those 8 rules.

Some useful structure

- ► Labelled H-boxes
- ► Arithmetic

Labelled H-boxes

We represent state $(1, a)^T$ by a labelled H-box:

$$\begin{array}{c} \bot := \bot \\ -1 \end{array}, \begin{array}{c} \bot := \bot \\ 0 \end{array}, \begin{array}{c} \bot := \bot \\ \end{array}$$

Labelled H-boxes

We represent state $(1, a)^T$ by a *labelled H-box*:

$$\begin{array}{c} \bot := \bot \\ -1 \end{array}, \begin{array}{c} \bot := \bot \\ 0 \end{array}, \begin{array}{c} \bot := \bot \\ \end{array}$$

Extend to higher arity:

Labelled H-boxes

We represent state $(1, a)^T$ by a labelled H-box:

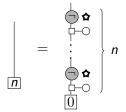
$$\begin{array}{c} \bot := \bot \\ -1 \end{array}, \begin{array}{c} \bot := \bot \\ 0 \end{array}, \begin{array}{c} \bot := \bot \\ \end{array}$$

Extend to higher arity:

Can build higher numbers:

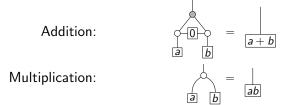
Integers

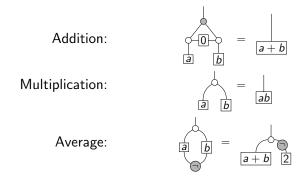
Natural numbers:

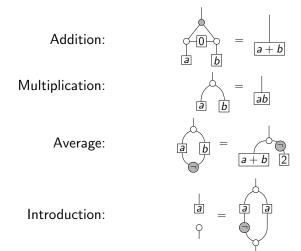


Negation:

$$\begin{vmatrix} & & & & & & & \\ & -n & & & & & \\ \hline \end{pmatrix} := \begin{bmatrix} & & & & \\ & n & & & \\ \hline \end{bmatrix}$$







ZH over arbitrary rings

Let's promote labelled H-boxes to actual generators.

ZH over arbitrary rings

Let's promote labelled H-boxes to actual generators.

Pick commutative ring R where 2:=1+1 has an inverse $\frac{1}{2}$. For any $r\in R$ define

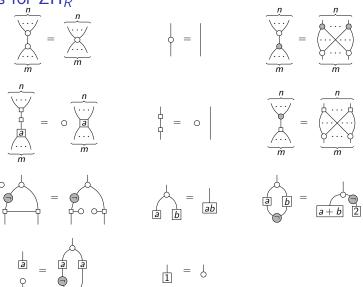
ZH over arbitrary rings

Let's promote labelled H-boxes to actual generators.

Pick commutative ring R where 2:=1+1 has an inverse $\frac{1}{2}$. For any $r\in R$ define

The resulting ZH_R -diagrams are universal for matrices over R.

Rules for ZH_R



For all $a, b \in R$

Completeness for rings

Theorem

Let R be a commutative ring where 2 has an inverse. Then this rule set is complete for matrices over R.

Completeness for rings

Theorem

Let R be a commutative ring where 2 has an inverse. Then this rule set is complete for matrices over R.

But what if 2 does not have an inverse, e.g. if $R = \mathbb{Z}$? Problem, because:

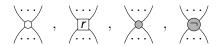
$$\llbracket \mathbf{\hat{a}} \rrbracket := \frac{1}{2}$$

For general rings

Don't have a & . So need other set of generators:

For general rings

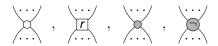
Don't have a **\(\rightarrow \)**. So need other set of generators:



New rules:

For general rings

Don't have a **\(\rightarrow \)**. So need other set of generators:



New rules:

New meta-rule:

For any diagrams D_1 and D_2 : $\bigcirc D_1 = \bigcirc D_2 \implies D_1 = D_2$

Note: only sound when 2 is not a zero divisor.

General completeness

Theorem

Let R be a commutative ring R where 2 is not a zero divisor. Then the rules + meta-rule make ZH_R complete for matrices over R.

Conclusion

- ▶ New small complete axiomatisation of Tof+Had circuits
- Clear relation to Boolean circuits
- Straightforwardly extended to (almost) arbitrary rings

Conclusion

- New small complete axiomatisation of Tof+Had circuits
- Clear relation to Boolean circuits
- Straightforwardly extended to (almost) arbitrary rings

Thank you for your attention

Backens, Kissinger, Miller-Bakewell, vdW, Wolffs 2021, arXiv:2103.06610.

Completeness of the ZH-calculus