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A ZH-Calculus, an Alternative GUI for Quantum Information

ABSTRACT

There are various gate sets used for describing quantum computation. A particularly popular one consists of Clifford gates and

arbitrary single-qubit phase gates. Computations in this gate set can be elegantly described by the 'emph{ZX-calculus}. a

graphical language for a class of string diagrams describing linear maps between qubits. The ZX-calculus has proven useful in a

variety of areas of guantum information, but is less suitable for reasoning about operations outside its natural gate set such as
multi-linear Boolean operations like the Toffoli gate. In this paper we study the emph{ZH-calculus}, an alternative graphical
language of string diagrams that does allow straightforward encoding of Toffoli gates and other more complicated Boolean logic
circuits. We find a set of simple rewrite rules for this calculus and show it is complete with respect to matrices over $' mathbb

Z|[\frac12]$, which correspond to the approximately universal Toffoli—Hadamard gateset. Furthermore. we construct an

extended version of the ZH-calculus that is complete with respect to matrices over any ring SR$ where $1+1$ is not a zero-

divisor.
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» ZX-calculus is universal language for quantum computing
» Great for Clifford4+-Phases gate set, not so great for Toffoli
» ZH-calculus introduced to be great for Toffoli's

» Original ZH [QPL'18] complete for universal fragment

In this work:
» We find subset of rules complete for Toffoli+Hadamard
» We find original set of rules complete for (almost) any ring

» Along the way we find way to encode arithmetic in ZH



First some motivation for the calculus
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What about AND?
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Can we make AND flexsymmetric?
Yes, there exists a linear map such that:

Namely:

We define:
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Universality

Composing these generators we can represent any 27 x 2™ matrix
with entries in Z[1].

By Amy et al. (arxiv:1908.06076) this corresponds to circuits
generated by Toffoli and H® H.
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Boolean interpretation

OPY




Boolean rules #1
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Boolean rules #2




The final rule

Need one more rule:
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The rules

» X _ W

(hs) K = o><

(bay) X = .

(id) %
(hh) i
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Completeness

Theorem
These 8 rules are complete for matrices over Z[3].

Proof

Reduce each diagram to unique normal form.

So essentially all of quantum computing boils down to those 8
rules.



Some useful structure

» Labelled H-boxes
> Arithmetic
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We represent state (1,a)” by a labelled H-box:

(T TS, mT S

Extend to higher arity:
o E

Can build higher numbers:

e



Integers

Natural numbers:

Negation:



Arithmetic

Addition: oo =
(a]



Arithmetic

Addition:

Multiplication:
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Arithmetic

Addition:

Multiplication:

Average:
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Arithmetic

Addition:

Multiplication:

Average:

Introduction:
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Let's promote labelled H-boxes to actual generators.

Pick commutative ring R where 2 := 1 4 1 has an inverse %

For any r € R define
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The resulting ZHg-diagrams are universal for matrices over R.



Rules for ZHg
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Completeness for rings

Theorem
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Completeness for rings

Theorem
Let R be a commutative ring where 2 has an inverse.
Then this rule set is complete for matrices over R.

But what if 2 does not have an inverse, e.g. if R = Z7?
Problem, because:

fol =
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For general rings

Don’t have a & . So need other set of generators:

New rules:

New meta-rule:
For any diagrams D; and Dy: oD1 = oDy, = Dy =D,

Note: only sound when 2 is not a zero divisor.



General completeness

Theorem
Let R be a commutative ring R where 2 is not a zero divisor. Then
the rules + meta-rule make ZHr complete for matrices over R.
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Thank you for your attention
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Completeness of the ZH-calculus



