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Outline

‣ ‘Application’: We formalise Gärdenfors’ conceptual spaces, 
including fuzzy concepts and fuzzy conceptual processes, 
for AI and cognitive science. 


‣ ‘Category theory’: We introduce a new Markov category via 
the category            of convex spaces and log-concave 
channels.

LCon



Conceptual Spaces



Conceptual Spaces
Framework for human and artificial 
cognition due to Gärdenfors. 

Concepts described geometrically, as 
regions of the space.

Cognitive spaces composed of domains 
e.g. colours, sounds … 

Concepts =  convex subsets

‘yellow’
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Images: (Bolt et al, 2016). 



Bolt, Coecke, Genovese, Lewis, Marsden and Piedeleu, Interacting 
Conceptual Spaces (2016): formalisation via the compact category                              

               of convex relations.             


Related work

See also: Vincent Wang. Concept Functionals (SEMSPACE 2019). 


ConvRel

N = ⊗

colour            
 taste




Convex Spaces

A convex space     is an algebra for the finite distribution monad:

which is also a measurable space, with σ-algebra of measurable subsets

n

∑
i=1

pixi ∈ X (xi ∈ X, ∑
i

pi = 1)

ΣX ⊆ ℙ(X) .

A crisp concept of     is a measurable subset             which is convex: C ⊆ X

X

x1, …, xn ∈ C ⟹ ∑ pixi ∈ C .

X



``

‣ Normed space               , with Borel σ-algebra. 
‣              with Borel or Lebesgue σ-algebras.

‣ Any convex measurable subset     of a convex space.

Examples of Convex Spaces

(X,∥ − ∥)

X = ℝn

C

‣ Join semi-lattice     with                              L px + (1 − p)y := x ∨ y, ΣL = ℙ(L) .

‣ The product of convex spaces                         with                       X ⊗ Y = X × Y

∑ pi(xi, yi) = (∑ pixi, ∑ piyi) .



Fuzzy Concepts



Crisp vs Fuzzy

So far concepts were ‘crisp’:            or         

C : X → [0,1]

“extent to which    is an instance of    .” x C

x ∈ C x ∉ C .

Evidence suggests ‘real’ concepts should be 
fuzzy, given as maps:

Fuzziness also helps learning via gradient 
descent in neural networks. 

C(x) :=



Quasi-Concavity

Criterion
Fuzzy concepts                         should be quasi-concave: 

C(px + (1 − p)y) ≥ min{C(x), C(y)} ( ∀x, y ∈ X, p ∈ [0,1])

Quasi-concavity is not compositional: (x, y) ↦ C(x)D(y)
need not be quasi-concave, even if         are.

!

e . g . C(x) = (1 − x)/2,D(y) = (y2 + 1)/2 on [0,1] .

C, D

C : X → [0,1]

Equivalently, each set                                      is convex. Ct := {x ∈ X ∣ C(x) ≥ t}

A natural condition is the following. 



Log-Concavity
Luckily, there is a class of ‘nice’ quasi-concave maps.

A function                 is log-concave (LC) if  

f(px + (1 − p)y) ≥ f(x)p f(y)1−p ( ∀x, y ∈ X, p ∈ [0,1])

f : X → ℝ

• well-studied in statistics and economics; 


• well-behaved (e.g. under products, marginals, convolutions);


• a functional analogue of convex subsets (Klartag and Milman, 2005). 

Equivalently,              is concave. log ∘ f

LC functions and their associated measures are: 

Geometry of log-concave functions and measures (Klartag and Milman, 2005).

Log-concavity and strong log-concavity: a review. (Saumard, Wellner 2014). 



where          ,      is Hausdorff distance. 

A fuzzy concept on a convex space      is a measurable log-concave 
map 

• Statistical functions on     , e.g. densities of 
normal, exponential, logistic… distributions.

• For any crisp             the ‘fuzzification’                   

• Measurable affine maps:                       

• Any crisp concept            , via its indicator 

Fuzzy Concepts

C = 1M .M ⊆ X

C(Σpixi) = ΣpiC(xi) .

C(x) = e− 1
2σ2 dH(x,P)2

P ⊆ ℝn

ℝn

σ ≥ 0

C : X → [0,1] .
X

Examples

dH



Theorem 
                                              forms the largest choice of a set          of 
quasi-concave maps                  on each convex space      such that:   

log-concave maps

•                                               


•              contains all affine maps.

Log-Concavity is Canonical

Quasi-concave + compositional           Log-concave⟹

(x, y) ↦ C(x)D(y) ∈ C(X ⊗ Y )

C(X) := {
X → [0,1] X

} C(X)

That is, for any such choice, every function in every           is log-concave.  C(X)

∀C ∈ C(X ), D ∈ C(Y );

C([0,1])



Fuzzy Processes



A probabilistic channel, or Markov kernel,                 is a map sending 
each            to a sub-probability measure                                                                                       

f(x, − ) : ΣY → [0,1]

f : X → Y
x ∈ X

Convex spaces and channels form a symmetric monoidal category            

Categorical Probability
Categorical probability gives a standard notion of fuzzy map between spaces.

over    , in a ‘measurable’ way. Y

Prob .

Abstractly, the Kleisli category of the (sub-)Giry Monad.

X

x

Y
f

‘Distribution’
f(x, − )



ProbThe Category
of probabilistic channels

Effects

‘Distributions’: sub-prob measures

= ∫X
Cdω

Measurable    

States

Morphisms

Scalars Probabilities

Probabilistic channels

e.g. 

C : X → [0,1]

ω : ΣX → [0,1]

x ↦ f(x, − )state of Y

:: (x, M) ↦ ∫y∈Y
g(y, M)df(x, y) X ⊗ Y = X × Y I = { ⋆ }



Theorem

Log-Concave Channels

f(x +p y, A +p B) ≥ f(x, A)p f(y, B)1−p

We call a channel                 log-concave (or a conceptual channel) when 

A +p B := {pa + (1 − p)b ∣ a ∈ A, b ∈ B} .for crisp         , where 

We now generalise fuzzy concepts to conceptual channels. 

x +p y := px + (1 − p)y,

f : X → Y

Log-concave channels form a symmetric monoidal subcategory
LCon ↪ Prob .

Our main result:

A, B



The Proof 
The proof that               is a well-defined category is non-trivial, requiring an 
extension of the Prékopa-Leindler inequality.

Let     be a convex space with σ-finite measures and measurable                       s.t.  
Proposition

μ(pA + (1 − p)B) ≥ ν(A)pω(B)1−p

f, g, h : X → ℝ

f(px + (1 − p)y) ≥ g(x)ph(y)1−p .

X

Then (∫X
fdμ) ≥ (∫X

gdν)
p

(∫X
hdω)

1−p

.

PL is when X = ℝn, μ = ν = ω the Lebesgue measure.

LCon



is Canonical 
Assume     is well-behaved: each set 

{(pa + (1 − p)b, p) ∣ a ∈ A, b ∈ B, p ∈ [0,1]} ⊆ Y ⊗ [0,1]

Y

is measurable when         are crisp concepts (conjecture: normed spaces are).
A, B

Proposition 
A channel                is log-concave iff  f : X → Y

is again a fuzzy concept, whenever     is.C

It suffices to take               and     crisp.Z = [0,1] C

LCon ! Work in progress



          
⟹

Prob

effects quasi-concave 

Subcategory of Subcategory of 
LCon+ 

Theorem 

} ⊆ C(X, I) ⊆ {{ }Crisp concepts Quasi-concave maps

and                  contains all affine maps.C([0,1], I)

Let     be a sub-SMC of           of well-behaved spaces such thatC Prob

Then there are monoidal embeddings 

C ↪ LCon ↪ Prob .

∀X ∈ obC

is Canonical LCon

So, up to measurability considerations:

! Work in progress



The Category             LCon



The Category LCon
Summary so far: we propose the category            of log-concave 
channels                  between convex spaces as our category of ‘fuzzy 
conceptual processes’.  

LCon
f : X → Y

Let’s meet some examples (typically in      ).

A morphism           is a fuzzy map which preserves fuzzy concepts:

↦

ℝn



Morphisms in LCon
‣ Effects are fuzzy concepts     C : X → [0,1] .

‣ States are sub-prob measures which are log-concave:

ω(A +p B) ≥ ω(A)pω(B)1−p

Log-concave measures on      include: 

‣ Point measures


‣ Uniform measures over convex regions;


‣ Gaussian, logistic, extreme value, Laplace…distributions;


‣ Lebesgue measure (Brunn-Minkowski inequality).

δx;

ℝn



Morphisms in LCon
‣ Scalars            are probabilities, with = ∫X

Cdω .

‣ Any affine map                  forms a morphism via f : X → Y x ↦ δf(x) .

‣ Copy-delete maps, inherited from Prob :

        ‘Update’ maps ‘Concept 
combinations’ 

⟹

Marginals



‣ For example, Gaussian noise     added to a linear map    :

Morphisms in LCon
‣ Convolutions of l.c. channels into        are again l.c.:ℝn

fν

This gives the subcategory of ‘Gaussian probability’ (Fritz 2019): 

Gauss ↪ LCon

f ⋆ g :=

         ‘sum of the random variables               ’ f(x), g(x) .x ↦

:: (x, A) ↦ ν(A − f(x))



Toy Conceptual 
Reasoning



Toy Conceptual Reasoning
Following (Bolt et al.) we define a simple ‘food space’

F = C ⊗ T

colour taste

Can ‘learn’ a crisp concept from crisp exemplars: 

where                 etc.

convex closure 

Yellow ⊆ C

⊗

⋁ =



Toy Conceptual Reasoning
We can ‘fuzzify’ any of these crisp concepts e.g. 

:: x ↦ e− 1
2σ2 dH(x,Banana)2

and combine them using copy/update maps: 

yellow
sweet

bitter

green yellow
sweet

bitter

green yellow
sweet

bitter

green



Toy Conceptual Reasoning
A simple ‘metaphor’ channel: 

This transforms colour concepts to taste concepts.

= uniform Lebesgue measure

:: t ↦
1

λ(C) ∫C
yellow(c)banana(c, t)dc

Future: Explore more sophisticated conceptual ‘reasoning’ channels.



Outlook



Outlook

• More broadly, an interesting new Markov/copy-delete category.

LCon

• Categorical view generalises known results LC measures, e.g. closure under 

Products Marginals Convolutions

Future work: 

• Proposed            as a model of ‘fuzzy reasoning in conceptual spaces’.

‣ Categorical properties of           LCon .

‣ Applications of fuzzy concepts in AI and NLP.

‣ More sophisticated channel examples e.g. ‘reasoning’,  ‘metaphor’.

Thanks!


