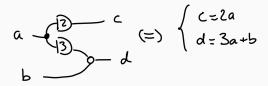

Practical Diagrammatic Electrical Circuit Theory

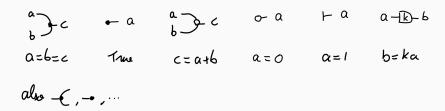
Guillaume Boisseau and Paweł Sobociński July 16, 2021

Applied applied category theory

We already know we can analyze electrical circuits using diagrams.



Q: is this practical? A: yes!

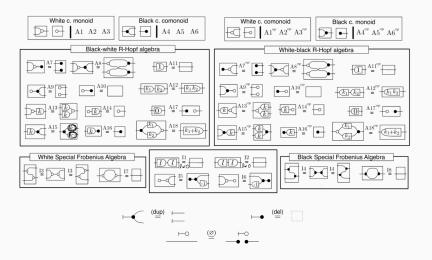

Graphical Linear Algebra

Background: Graphical Linear Algebra

Idea: we write affine equations using diagrams.

GLA: building blocks

3


GLA: composing

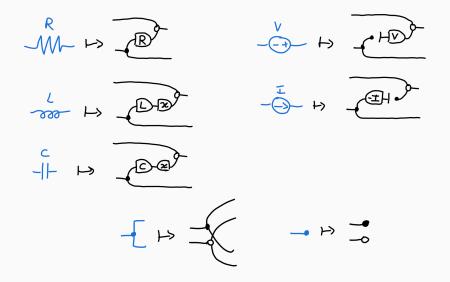
Composition works by identifying connected variables.

$$a - 3 - c$$
 $b - d$
 d
 d
 $e = b$
 $e = b$
 $e = b$
 $e = b$
 $f(a) = a - 3b$
 $f(a) = b$
 $f(a) = a - 3b$
 $f(a) = a - 3b$
 $f(a) = b$
 $f(a) = a - 3b$
 $f(a) = a -$

4

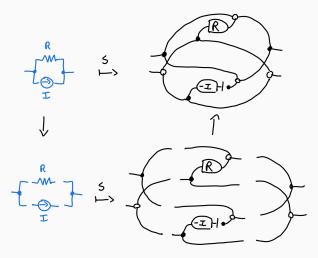
GLA: reasoning

We can prove any equivalence.

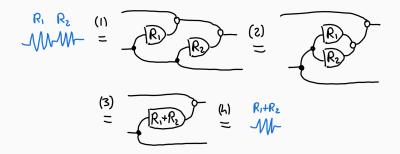

Electrical circuits

Electrical circuits

Ohm's law:


Diagrammatically:

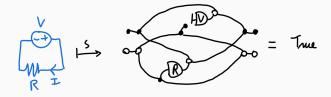
Electrical circuits: building blocks



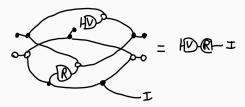
Electrical circuits: composition


The behavior of a circuit is made by plugging together the behavior of its elements.

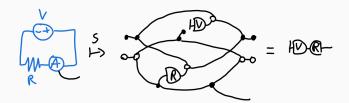
Impedance boxes

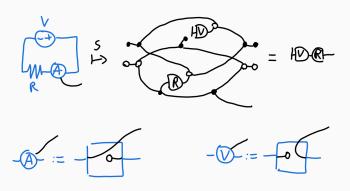


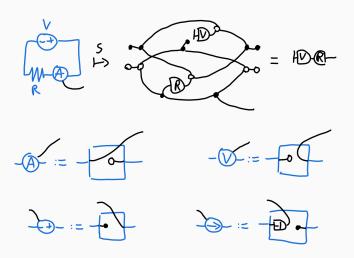
Impedance boxes



This generalizes complex impedance.


Problem: a closed circuit has a trivial equation

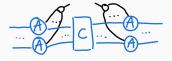

If only we could tap a wire


Solution: add a measuring element

Solution: add a measuring element

Solution: add a measuring element

Let's prove some theorems!

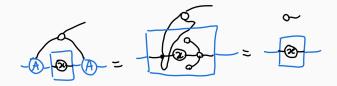

Conservation of currents

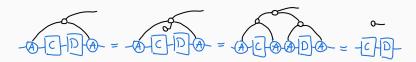
Currents entering a circuit ${\it C}$ must sum to zero.

Conservation of currents

Currents entering a circuit ${\it C}$ must sum to zero.

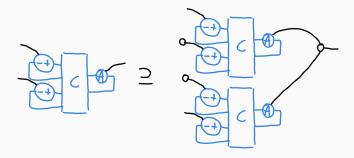
Conservation of currents


Currents entering a circuit C must sum to zero.


Conservation of currents: proof

Proof: by induction.

Base case:



Inductive case:

Superposition theorem

The behavior of a circuit is linear in its sources.

Conclusion

Conclusion

- This is a credible alternative to standard linear algebra.
- Diagrams are good at inductive & topological properties.
- Diagrams are extensible.
- Diagrams are truer to the model because relational.
- This is fun, I want to see more of that.

Questions?