Functorial Language Models

Alexis Toumi1
Alex Koziell-Pipe2

1University of Oxford, Cambridge Quantum
2University of Oxford (from October 2021)

15 July
ACT 2021
Outline

● BERT, GPT-3 have made strides toward end-to-end NLP.
● Interpretability is still a challenge.
● DisCoCat models give some hope in opening the black box.
● Can we integrate DisCoCat models into an end-to-end framework?
● First steps towards this via a functorial approach.
 ○ Functorial Learning
● Application to missing word prediction.
● Functorial Language Models.
Language Models

- **Language Model**: probability distribution over word sequences
 \[w_1w_2\ldots w_n \mapsto P(w_1w_2\ldots w_n) \]
- Extensive use in state of the art NLP (BERT, GPT-3) end-to-end.
- **Interpretability** is still a challenge; when we open up these models, we’re still just looking at matrices of weights...
- A language model based on DisCoCat could improve on this by adding an explicit interpretation of grammatical structure, *categorically*.
Pregroup Category

Pregroup Grammar

\[G = (V, X, R, s) \]

- Vocabulary: \(V \)
- Grammatical types: \(X \)
- Grammatical Rules: \(R \)
- Sentence type: \(s \)

Defines a rigid monoidal category:

- Objects generated by \(V + X \)
- Morphisms generated by \(R \)

Grammatical Derivations ↔ String Diagrams

For pregroups, rules in \(R \) are dictionary entries of the form

\[w \rightarrow t \]

(as well as cups)
DisCoCat

A DisCoCat model is a monoidal functor $F: G \to S$, where

- G is a grammar category
 - grammatical types as objects
 - grammatical reductions as morphisms
- S is a semantic category
 - e.g. FVect, $\text{CPM(}\text{FVect}\text{)}$, ...

Example: $\text{Pregroup} \to \text{FVect}$
DisCoCat End-to-End

- Despite some empirical validation on small datasets, DisCoCat is yet to be applied at scale.

- Two-fold challenge:
 - Predicting the grammar, given a word sequence.
 - Learning the representation of word meanings.
DisCoCat End-to-End

- Despite some empirical validation on small datasets, DisCoCat is yet to be applied at scale.

- Two-fold challenge:
 - Predicting the grammar, given a word sequence.
 - Learning the representation of word meanings.
Functorial Language Models

- Let $F : \text{Pregroup} \to \text{FVect}$ be a DisCoCat model. Can we describe its action on objects and morphisms in a concise way?
 - Objects: a map from grammatical types to natural numbers
 $$F_0 : X \to \mathbb{N}$$
 - Morphisms: a set of maps from vocabulary to vectors
 $$F_1 = \left\{ V_t \to \mathbb{R}^{F(t)} \mid t \in G_0 \right\}$$

- Claim: we can encode all the information about this functor within a set of matrices.
 - “Encoding Matrices”
- …treat the matrix entries as parameters, and learn the functor from data.
 - “Functorial Learning”

*$$V_t = \{ w \mid w \in V, w \to t \in R \}$$
Encoding Matrices

- Order the words in our vocabulary according to some canonical (e.g. alphabetical) order.
- For a set V_t^* of vocabulary words of grammatical type $t \in G_0$, define an encoding matrix:

$$E_t : |V_t| \times F(t) \rightarrow \mathbb{R}$$

- The object mapping $F_0 : X \rightarrow \mathbb{N}$ is given by the “widths” of the matrices, and can be considered a set of hyperparameters of the model.

$$V_t^* = \{ w \mid w \in V, w \rightarrow t \in R \}$$
- Each row corresponds to the vector mapped for a certain word in the vocabulary.

\[
E_t : |V_t| \times F(t) \rightarrow \mathbb{R}
\]
Encoding Matrices

- Each row corresponds to the vector mapped to from a certain word in the vocabulary.
- Hence the image of the functor F on a word can be obtained via composition (pre-multiplication) with a one-hot vector w:

$$w \circ E_t = F(w, t)$$
Encoding Matrices

- Each row corresponds to the vector mapped to from a certain word in the vocabulary.
- Hence the image of the functor \mathcal{F} on a word can be obtained via composition (pre-multiplication) with a one-hot vector w:

$$w \circ E_t = \mathcal{F}(w, t)$$
(Supervised) **Functorial Learning**

- Given a dataset $X \subseteq Ar(G) \times Ar(S)$, compute (or approximate):

\[
F^* = \arg\min_{F : G \to S} \left(R(F_1) + \sum_{(d,y) \in X} L(F(d), y) \right)
\]

- Where
 - R is a **regularization** over the mapping on morphisms (encoding matrices).
 - L is a **loss function** appropriate to the learning task.

- Fix $F(s) = 1$. Then the value of $F(d)$ turns out as a scalar, and could be thought of as the “truth or false-ness” of a sentence. Labels $y \in \{0, 1\}$ could be used to simulate question-answering1,2

1de Felice, Meichanetzidis, & Toumi, *Functorial Question Answering (2019)*

2Meichanetzidis, Toumi, de Felice, & Coecke, *Grammar-Aware Question-Answering on Quantum Computers (2020)*
Experiment

- Randomly initialize the functor (encoding matrices).
- Remove a word (box) from a valid sentence, use the functor to map diagram to vector.

github.com/oxford-quantum-group/discopy/
Experiment

- Precompose with encoding matrix of missing word type.
Experiment

- Apply softmax function \(\sigma(\theta_i) = \frac{e^{\theta_i}}{\sum_i e^{\theta_i}} \) to obtain a probability distribution over the vocabulary.
- Compare to a ground truth label, and update the functor via gradient-based methods.
Experiment

Target: water
Prediction: water (0.97), dog (0.02)

Target: krill
Prediction: cheese (0.53), fish (0.17), grain (0.19)
Future

- Combine with a probabilistic grammar $P(d|w_1,...,w_n)${superscript 1}
- Use a trained model to generate sentences{superscript 2}, towards generative adversarial
- Use “bubbles” to encode softmax{superscript 3}
- Learn the functor in an unsupervised manner
- Upscaling to larger datasets
- Vary the grammar and semantic categories.
- Replace “encoding matrices” with “encoding networks”
- Make it quantum by considering functors $G \rightarrow QCirc$

{superscript 1}Schiebler, Toumi & Sadrzadeh, *Incremental Monoidal Grammars* (2020)
{superscript 2}de Felice, Di Lavore, Román & Toumi, *Functorial Language Games for Question Answering* (2020)
{superscript 3}Toumi, Yeung, & de Felice, *Diagrammatic Differentiation for Quantum Machine Learning* (2021)
Thank you!