Anaphora and Ellipsis in Lambek Calculus with a Relevant Modality: Syntax and Semantics

Lachlan McPheat¹(he/him), Gijs Wijnholds², Mehrnoosh Sadrzadeh¹, Adriana Correia², Alexis Toumi³

¹University College London, ²Utrecht University, ³Oxford University

Today's Goal

- How to turn the piece of language
 - "John sleeps. He snores."
 - into a vector?
 - My bigger goal
- Making distributional-compositional models of discourse

Anaphora and Ellipsis

Coreference

When two lexically distinct items have the same meaning.

- Ontological coreference:
 - 'Stefan Löfven' = 'Prime minister of Sweden'
 - 'Fock Space' = 'Tensor Algebra'

Contextual coreference refers mainly to **anaphora** and **ellipsis**

Contextual coreference: 'He' = 'John' in "John sleeps. He snores."

Anaphora and Ellipsis

previously mentioned words

used by a later mentioned word

Anaphora (and cataphora) are words which receive their meaning from

- eg. "John sleeps. He snores."
- **Ellipsis** is a type of coreference where the meaning of a whole phrase is

eg. "John plays guitar. Mary does too."

See [Coecke et al, 2018] for nice model of discourse and probabilistic anaphora resolution!

Anaphora and Ellipsis

depending on which coreference you resolve first.

Resolving anaphora ('*his*') first yields the **strict** meaning

Resolving the ellipsis ('does too') first yields the **sloppy** reading:

- Combining anaphora and ellipsis can lead to multiple possible meanings,
 - "John likes his code. Bill does too."
 - "John likes John's code. Bill likes John's code."

 - "John likes John's code. Bill likes Bill's code."

Anaphora and Ellipsis via Type Logical Grammars

Anaphora & Ellipsis via TLGs

type logical grammars (TLGs)

Given a discourse where a is being referred to by b: (eq. a = John and b = He in "John sleeps. He snores.")

- 1. Copy the meaning of *a*
- 2. Move one of the copies of *a* to *b*
- 3. Identify b with a

[Jäger 1998, 2006] proposes method to analyse anaphora and ellipsis in

- 1. Copy *a*
- 2. Move a copy to b
- 3. Identify

John sleeps. He snores.

1. Copy *a*

- 2. Move a copy to b
- 3. Identify

John John sleeps. He snores.

1. Copy *a*

2. Move a copy to b

3. Identify

John John sleeps. He snores.

11

- 1. Copy *a*
- 2. Move a copy to b
- 3. Identify

John sleeps. John snores.

!L* - Definition

- First defined in [Kanovich et al, 2016] in a sequent calculus presentation
- Fix a fixed set of atoms At, and define **formulas** of $!L^*$ as:
 - $\phi ::= \emptyset \mid \phi \in At \mid \phi, \phi \mid \phi/\phi \mid \phi \land \phi \mid !\phi$
- Sequents of $!L^*$ written $\Gamma \longrightarrow A$ meaning " Γ reduces to A"
- Sequents are built using rules of $!L^*$ (next slide...)

Rules of !L*

$\frac{\Gamma \to A \quad \Delta_1, B, \Delta_2 \to C}{\Delta_1, B/A, \Gamma, \Delta_2 \to C} (/L)$

$\frac{\Gamma \to A \quad \Delta_1, B, \Delta_2 \to C}{\Delta_1, \Gamma, A \setminus B, \Delta_2 \to C} (\backslash L)$

 $A \longrightarrow A$

 $\frac{\Gamma, A \to B}{\Gamma \to B/A} (/R)$

 $\frac{A, \Gamma \to B}{\Gamma \to A \backslash B} (\backslash R)$

14

Rules of !L*

$\frac{\Delta_1, !A, \Gamma, \Delta_2 \to C}{\Delta_1, \Gamma, !A, \Delta_2 \to C} (perm_1)$

 $\frac{\Gamma_1, A, \Gamma_2 \to C}{\Gamma_1, !A, \Gamma_2 \to C} (!L)$

 $\frac{\Delta_1, \Gamma, !A, \Delta_2 \to C}{\Delta_1, !A, \Gamma, \Delta_2 \to C} (perm_2)$

 $\frac{\Delta_1, !A, !A, \Delta_2 \to C}{\Delta_1, !A, \Delta_2 \to C} (contr)$

 $\frac{!A_1, \ldots, !A_n \to B}{!A_1, \ldots, !A_n \to !B}$ (!R)

Categorical Presentation of !L*

- sequents $\Gamma \longrightarrow A$ are morphisms
- C(!L*) is a monoidal biclosed category with
 - a monoidal comonad, !
 - copying transformation $\Delta : ! \rightarrow ! \otimes !$
 - Permutation isomorphism $\sigma : ! \otimes 1 \cong 1 \otimes !$

Define a category $\mathscr{C}(!L^*)$ where $!L^*$ -formulas are objects, and derivable

[Baez & Stay , 2009]

17

Anaphora/Ellipsis Resolution in $\mathscr{C}(!L^*)$

Vector Space Semantics of

X

Vector Space Semantics of !L*

strong monoidal biclosed functors

of anaphora and ellipsis.

Mapping ! to fermionic Fock space or identity comonad.

Recall vector space semantics (VSS) from ACT2020 [McP. et al, 2020], as

- $F: \mathscr{C}(!L^*) \to \mathbf{fdVect}$
- Thus, every diagram in $\mathscr{C}(!L^*)$ allows us to produce vector representations

Examples

Example: Anaphora

Example: Ellipsis

Empirical Validation

The Task

- The goal is disambiguating elliptical sentences of the form
- (General sentence format: "S V's O and S* does too")

Applied VSS to disambiguation task from [Wijnholds & Sadrzadeh 2019]

"Man draws sword and artist does too"

Where the ambiguous verb (*draw*) has two meanings: '*depict*' and '*pull*'

The Results

Tested over 400 such sentences, and correlated with human annotations.

 $v \longmapsto v \otimes v \quad \mathbf{1} \otimes v \quad v \otimes \mathbf{1} \quad v \otimes \mathbf{k} + \mathbf{k} \otimes v$

word2vec	
fasttext	
baselines	
verb only	0.24
additive	0.31
BERT phrase	0.36
inter-annotator agreement	0.58

Spearman's ρ correlations, upper bound is inter-annotator agreement

		V 🚫 I	
	basis	basis	
full	copy(a)	copy(b)	k-extension
0.44	0.34	0.42	0.44
0.43	0.36	0.41	0.43

Outlook

VSS for decidable calculus with similar properties to $!L^*$

Find complete models of !L*

Apply plausibility model to solve Winograd Schema Challenge

Study compatibility of our model of anaphora and ellipsis with **DisCoCirc**

Many thanks!

Any questions?

References

[Kanovich et al, 2016] Max Kanovich, Stepan Kuznetsov, and Andre Scedrov. Undecidability of the Lambek calculus with a relevant modality [Coecke et al, 2018] Bob Coecke, Giovanni de Felice, Dan Marsden, and Alexis Toumi. Towards compositional distributional discourse analysis [Jäger, 1998] Gerhard Jäger. A multi-modal analysis of anaphora and ellipsis

[Jäger, 2006] Gerhard Jäger. Anaphora and type logical grammar

[Baez & Stay, 2009] John Baez and Michael Stay. Physics, topology, logic, and computation: A rosetta stone

[McP. et al, 2020] McPheat, Lachlan, Mehrnoosh Sadrzadeh, Hadi Wazni, and Gijs Wijnholds. Categorical vector space semantics for lambek calculus with a relevant modality