Limits and Colimits in a Category of Lenses

Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa, Vincent Wang, Gioele Zardini

4th International Conference on Applied Category Theory (ACT2021) Cambridge (UK)

Lawful

Category-Based

Lawful

- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...

Category-Based

Lawful

- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...

Category-Based

- Strictly generalises Set-Based Lenses
- Also known as "Delta Lenses"

Lawful

- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...

Category-Based

- Strictly generalises Set-Based Lenses
- Also known as "Delta Lenses"

- Asymmetric: One system knows everything the other does
- Symmetric: Either system may know something the other doesn't
- All Symmetric Lenses can be constructed from Asymmetric ones

Lawful (Specification for niceness)

- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...

Category-Based (Generalisation)

- Strictly generalises Set-Based Lenses
- Also known as "Delta Lenses"

Asymmetric (Sufficiency)

- Asymmetric: One system knows everything the other does
- Symmetric: Either system may know something the other doesn't
- All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses

Definition

Let *A* and *B* be categories. A *lens* $\langle f, \varphi \rangle$: $A \rightleftharpoons B$ consists of a functor $f : A \rightarrow B$ and a lifting operation,

$$(a \in A, u \colon fa \to b \in B) \quad \longmapsto \quad \varphi(a, u) \colon a \to a' \in A$$

which satisfies the following axioms:

- 1. $f\varphi(a, u) = u;$ 2. $\varphi(a, 1_{fa}) = 1_a;$ 3. $\varphi(a, v \circ u) = \varphi(a', v) \circ \varphi(a, u).$

В

В

Definition

Let *A* and *B* be categories. A *lens* $\langle f, \varphi \rangle$: $A \rightleftharpoons B$ consists of a functor $f : A \rightarrow B$ and a lifting operation,

$$(a \in A, u \colon fa \to b \in B) \quad \longmapsto \quad \varphi(a, u) \colon a \to a' \in A$$

which satisfies the following axioms:

1. $f\varphi(a, u) = u$ 2. $\varphi(a, 1_{fa}) = 1_a$ 3. $\varphi(a, v \circ u) = \varphi(a', v) \circ \varphi(a, u)$

Definition

Let *A* and *B* be categories. A lens $\langle f, \varphi \rangle$: $A \rightleftharpoons B$ consists of a functor $f: A \to B$ and a lifting operation,

$$(a \in A, u : fa \to b \in B) \quad \longmapsto \quad \varphi(a, u) : a \to a' \in A$$

which satisfies the following axioms:

- 1. $f\varphi(a, u) = u$ Put followed by Get is trivial for morphisms
- 2. $\varphi(a, 1_{fa}) = 1_a$ Get followed by Put preserves identities
- 3. $\varphi(a, v \circ u) = \varphi(a', v) \circ \varphi(a, u)$ The Put of composites is the composite of Puts

 $f\varphi(a,u)=u$

 $\varphi(a,1_{fa})=1_a$

 $\varphi(a, v \circ u) = \varphi(a', v) \circ \varphi(a, u)$

Proposition (Lenses as Functors and Cofunctors)

Every lens $\langle f, \varphi \rangle$: $A \rightleftharpoons B$ may be represented as a commutative diagram of functors,

where φ is a faithful, identity-on-objects functor and $\overline{\varphi}$ is a discrete opfibration.

Lenses, formally (slick)

The category Lens

Definition

Let \mathcal{L} ens denote the category whose objects are categories and whose morphisms are lenses. Given a pair of lenses $\langle f, \varphi \rangle : A \rightleftharpoons B$ and $\langle g, \gamma \rangle : B \rightleftharpoons C$, their composite is given by the functor $g \circ f : A \to C$ together with the lifting operation:

$$\langle a \in A, u \colon gfa \to c \in C \rangle \quad \longmapsto \quad \varphi(a, \gamma(fa, u)).$$

• Lens has **initial** and **terminal** objects;

Actually, $\mathcal{L}ens$ is a pretty place

- Lens has **initial** and **terminal** objects;
- Lens has small coproducts;

- Lens has **initial** and **terminal** objects;
- Lens has small coproducts;
- Lens has equalisers;

- Lens has **initial** and **terminal** objects;
- Lens has small coproducts;
- Lens has equalisers;
- Lens has an orthogonal factorisation system, which factors every lens into a surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

- Lens has initial and terminal objects;
- Lens has small coproducts;
- Lens has equalisers;
- Lens has an orthogonal factorisation system, which factors every lens into a surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);
- Limit constructions imported from Cat behave well, even if they are missing universal property in Lens: we have **distributivity** of *imported* products over coproducts, and **extensivity**.

- Lens has **initial** and **terminal** objects;
- Lens has small coproducts;
- Lens has equalisers;
- Lens has an orthogonal factorisation system, which factors every lens into a surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);
- Limit constructions imported from Cat behave well, even if they are missing universal property in Lens: we have **distributivity** of *imported* products over coproducts, and **extensivity**.
- ▶ (Next Talk): Lens has (certain) coequalisers

Engineering co-design as a guiding example

- Design is characterised by three spaces:
 - implementation space: the options we can choose from;
 - functionality space: what we need to provide/achieve;
 - requirements/costs space: resources we need to have available;

Engineering co-design as a guiding example

- Design is characterised by three spaces:
 - implementation space: the options we can choose from;
 - functionality space: what we need to provide/achieve;
 - requirements/costs space: resources we need to have available;

Engineering co-design as a guiding example

- Design is characterised by three spaces:
 - implementation space: the options we can choose from;
 - functionality space: what we need to provide/achieve;
 - requirements/costs space: resources we need to have available;

Design problems, formally

Definition

A design problem with implementation (DPI) is a tuple $\langle F, R, I, fun, req \rangle$, where:

- ▶ F is a poset, called *functionality space*;
- ▶ R is a poset, called *requirements space*;
- ▶ I is a set, called *implementation space*;
- ▶ the map fun : $I \rightarrow F$ maps an implementation to the functionality it provides;
- ▶ the map req : $I \rightarrow R$ maps an implementation to the resources it requires.

Practically, design problems can be understood as feasibility relations

- ▶ For design purposes, we need to know **how** something is done: we need the implementations
- ▶ For the algorithmic solution of co-design problems, we consider **feasibility relations** directly;
- A design problem is a **boolean profunctor**:

 $d: \mathbb{F}^{\mathrm{op}} \times \mathbb{R} \to_{\mathcal{P}_{\mathrm{os}}} \mathcal{B} \mathrm{ool}$ $\langle f^*, \mathbf{r} \rangle \mapsto \exists i \in \mathbb{I} : (f \leq_{\mathbb{F}} \mathrm{fun}(i)) \land (\mathrm{req}(i) \leq_{\mathbb{R}} \mathbf{r}).$

Practically, design problems can be understood as feasibility relations

- ▶ For design purposes, we need to know **how** something is done: we need the implementations
- ▶ For the algorithmic solution of co-design problems, we consider **feasibility relations** directly;
- A design problem is a **boolean profunctor**:

 $d: \mathbb{F}^{\mathrm{op}} \times \mathbb{R} \to_{\mathcal{P}_{\mathrm{os}}} \mathcal{B} \mathrm{ool}$ $\langle f^*, r \rangle \mapsto \exists i \in \mathbb{I} : (f \leq_{\mathbb{F}} \mathrm{fun}(i)) \wedge (\mathrm{req}(i) \leq_{\mathbb{R}} r).$

- This is a **monotone** map (morphism in \mathcal{P} os):
 - Lower functionalities do not require more requirements;
 - Higher requirements do not provide less functionalities
- Design problems form the category **DP**:
 - Objects are posets, morphisms are design problems;
 - Covered in detail in ACT4E (https://applied-compositional-thinking.engineering)

Realizing design problems as lenses

• Consider the design problem related to buying a car based on its speed:

Realizing design problems as lenses

• Consider the design problem related to buying a car based on its speed:

▶ We consider d: $\mathbb{F}^{\text{op}} \times \mathbb{R} \to_{\mathcal{P}_{\text{os}}} \mathcal{B}_{\text{ool}}$ with posets

Slow vehicles are the only *cheap* ones, the rest are *expensive*.

Realising design problems as lenses

▶ We can represent the functor $F^{op} \times \mathbb{R} \to_{\mathcal{P}os} \mathcal{B}ool$ *fibrewise*.

Realising design problems as lenses

- ▶ We can represent the functor $F^{op} \times \mathbb{R} \to_{\mathcal{P}os} \mathcal{B}ool \ fibrewise.$
- A lens over the functor provides a *unique, reachable* pair in $F^{op} \times \mathbf{R}$ from each infeasible pair.
- A lens models **feasibility** and informs **compromises** to make the unfeasible feasible.

Realising design problems as lenses

- ▶ We can represent the functor $F^{op} \times \mathbb{R} \to_{\mathcal{P}os} \mathcal{B}ool \ fibrewise.$
- A lens over the functor provides a *unique, reachable* pair in $F^{op} \times \mathbf{R}$ from each infeasible pair.
- A lens models **feasibility** and informs **compromises** to make the unfeasible feasible.

$\mathcal{L}ens$ has small coproducts

• Given lenses $\langle f, \varphi \rangle$: $A \rightleftharpoons B, \langle g, \gamma \rangle$: $C \rightleftharpoons B$, take the coproduct in Cat: A + C;

- > In Cat, coproduct injection functors are injective-on-objects discrete opfibrations
- Given lenses $\langle f, \varphi \rangle : A \rightleftharpoons B, \langle g, \gamma \rangle : C \rightleftharpoons B$, we have a **unique** lens $A + C \rightleftharpoons B$ with:

$\mathcal{L}ens$ has small coproducts

• Given lenses $\langle f, \varphi \rangle$: $A \rightleftharpoons B, \langle g, \gamma \rangle$: $C \rightleftharpoons B$, take the coproduct in Cat: A + C;

- ▶ In Cat, coproduct injection functors are injective-on-objects discrete opfibrations
- Given lenses $\langle f, \varphi \rangle : A \rightleftharpoons B, \langle g, \gamma \rangle : C \rightleftharpoons B$, we have a **unique** lens $A + C \rightleftharpoons B$ with:

Example

From speed^{op} \times cost \Rightarrow Bool and seats^{op} \times weight \Rightarrow Bool you get

 $speed^{op} \times cost + seats^{op} \times weight \rightleftharpoons \mathcal{B}ool$

Lens has equalizers

- Consider lenses $\langle f, \varphi \rangle : A \rightleftharpoons B$ and $\langle g, \gamma \rangle : A \rightleftharpoons B$
- One can construct the equaliser $e: E \rightarrow A$ of the **underlying functors** in Cat.
- ▶ Then the equaliser is the largest subobject $m : M \rightarrow E$ such that $e \circ m : M \rightleftharpoons E$ is a discrete opfibration which forms a cone over the parallel pair in \mathcal{L} ens.

Lens has equalizers

- Consider lenses $\langle f, \varphi \rangle : A \rightleftharpoons B$ and $\langle g, \gamma \rangle : A \rightleftharpoons B$
- One can construct the equaliser $e: E \rightarrow A$ of the **underlying functors** in Cat.
- ▶ Then the equaliser is the largest subobject $m : M \rightarrow E$ such that $e \circ m : M \rightleftharpoons E$ is a discrete opfibration which forms a cone over the parallel pair in \mathcal{L} ens.

Example

- ► Consider two design problems (two experts) $\langle f, \varphi \rangle$: $F^{op} \times \mathbf{R} \rightleftharpoons \mathcal{B}ool, \langle g, \gamma \rangle$: $F^{op} \times \mathbf{R} \rightleftharpoons \mathcal{B}ool$
- Their equalizer $E \rightleftharpoons F^{op} \times \mathbf{R}$:
 - **embeds** *E* into $\mathbb{F}^{op} \times \mathbb{R}$, and selects pairs in $\mathbb{F}^{op} \times \mathbb{R}$ for which experts **agree**
 - In the worst case, **total disagreement**, i.e. E = 0.

\mathcal{L} ens has an orthogonal factorisation system

- ▶ Johnson & Rosebrugh showed that Lens admits a proper orthogonal factorisation system
- > This is actually an (epi, mono)-factorisation system, factoring every lens into:
 - A surjective-on-object lens (epimorphism), and
 - A cosieve (monomorphism).

Example

• Consider a lens $\langle f, \varphi \rangle$: speed^{op} × cost \Rightarrow Bool with just *true* values

Conclusion and Outlook

- ▶ We considered *nice* but *general* Lenses *sufficiently rich* to model problems of:
 - synchronisation
 - coordination
 - interoperation

Conclusion and Outlook

- ▶ We considered *nice* but *general* Lenses *sufficiently rich* to model problems of:
 - synchronisation
 - coordination
 - interoperation
- ▶ We studied the category *L*ens to look for canonical constructions...

Conclusion and Outlook

- We considered *nice* but *general* Lenses *sufficiently rich* to model problems of:
 - synchronisation
 - coordination
 - interoperation
- ▶ We studied the category *L*ens to look for canonical constructions...
- ...and we found some.