
Limits and Colimits in a Category of Lenses

Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa,
VincentWang, Gioele Zardini

4th International Conference on Applied Category Theory (ACT2021)
Cambridge (UK)



Lenses, informally

𝑓•⋯ ⋯

⋯ ⋯•

⋮

SYSTEM

INTERFACE

⋮



Lenses, informally

𝑓•⋯ ⋯

⋯ ⋯•

⋮

SYSTEM

INTERFACE

⋆

⋮



Lenses, informally

𝑓•

𝑓−1⋆

⋯ ⋯

⋯ ⋯•

⋮

SYSTEM

INTERFACE

⋆

⋮

⋮



Lenses, informally

𝑓•

𝑓−1⋆

⋯ ⋯

⋯ ⋯•

⋮

SYSTEM

INTERFACE

⋆

⋮

⋮



Lenses, informally

𝑓•

𝑓−1⋆

⋯ ⋯

⋯ ⋯•

⋮

SYSTEM

INTERFACE

⋆

⋮



“Lenses”

▶ Lawful

(Specification for niceness)
– (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...

▶ Category-Based

(Generalisation)
– Strictly generalises Set-Based Lenses
– Also known as “Delta Lenses”

▶ Asymmetric

(Sufficiency)
– Asymmetric: One system knows everything the other does
– Symmetric: Either system may know something the other doesn’t
– All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses



“Lenses”

▶ Lawful

(Specification for niceness)

– (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...
▶ Category-Based

(Generalisation)
– Strictly generalises Set-Based Lenses
– Also known as “Delta Lenses”

▶ Asymmetric

(Sufficiency)
– Asymmetric: One system knows everything the other does
– Symmetric: Either system may know something the other doesn’t
– All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses



“Lenses”

▶ Lawful

(Specification for niceness)

– (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...
▶ Category-Based

(Generalisation)

– Strictly generalises Set-Based Lenses
– Also known as “Delta Lenses”

▶ Asymmetric

(Sufficiency)
– Asymmetric: One system knows everything the other does
– Symmetric: Either system may know something the other doesn’t
– All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses



“Lenses”

▶ Lawful

(Specification for niceness)

– (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...
▶ Category-Based

(Generalisation)

– Strictly generalises Set-Based Lenses
– Also known as “Delta Lenses”

▶ Asymmetric

(Sufficiency)

– Asymmetric: One system knows everything the other does
– Symmetric: Either system may know something the other doesn’t
– All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses



“Lenses”

▶ Lawful (Specification for niceness)
– (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...

▶ Category-Based (Generalisation)
– Strictly generalises Set-Based Lenses
– Also known as “Delta Lenses”

▶ Asymmetric (Sufficiency)
– Asymmetric: One system knows everything the other does
– Symmetric: Either system may know something the other doesn’t
– All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses



Lenses, formally (Nuts-and-Bolts)

Definition

Let 𝐴 and 𝐵 be categories. A lens ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵 consists of a functor 𝑓∶ 𝐴 → 𝐵 and a lifting operation,

(𝑎 ∈ 𝐴, 𝑢∶ 𝑓𝑎 → 𝑏 ∈ 𝐵) ⟼ 𝜑(𝑎, 𝑢)∶ 𝑎 → 𝑎′ ∈ 𝐴

which satisfies the following axioms:

1. 𝑓𝜑(𝑎, 𝑢) = 𝑢;

2. 𝜑(𝑎, 1𝑓𝑎) = 1𝑎;

3. 𝜑(𝑎, 𝑣 ∘ 𝑢) = 𝜑(𝑎′, 𝑣) ∘ 𝜑(𝑎, 𝑢).



Lenses, formally (Nuts-and-Bolts)

⋯

⋯

𝐴

𝐵



Lenses, formally (Nuts-and-Bolts)

⋯

⋯𝑎

𝐴

𝐵



Lenses, formally (Nuts-and-Bolts)

𝑓𝑎⋯ ⋯

⋯ ⋯

⋮

𝑎

⋮

𝐴

𝐵



Lenses, formally (Nuts-and-Bolts)

𝑓𝑎 𝑏⋯ ⋯

⋯ ⋯

⋮

𝑎

⋮

𝑢

𝐴

𝐵



Lenses, formally (Nuts-and-Bolts)

𝑓𝑎 𝑏⋯ ⋯

⋯ ⋯

⋮

𝑎

⋮

𝑢

𝐴

𝐵

⋮



Lenses, formally (Nuts-and-Bolts)

𝑓𝑎 𝑏⋯ ⋯

⋯ ⋯

⋮

𝑎

⋮

𝑢

𝐴

𝐵

𝑎′

⋮
𝜑(𝑎, 𝑢)



Lenses, formally (Nuts-and-Bolts)

𝑓𝑎 𝑏⋯ ⋯

⋯ ⋯

•

𝑎

•

𝑢

𝐴

𝐵

𝑎′

•

∀𝑎 𝜑(𝑎, 𝑢)

𝜑(𝑎, 𝑢)



Lenses, formally (Nuts-and-Bolts)

Definition

Let 𝐴 and 𝐵 be categories. A lens ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵 consists of a functor 𝑓∶ 𝐴 → 𝐵 and a lifting operation,

(𝑎 ∈ 𝐴, 𝑢∶ 𝑓𝑎 → 𝑏 ∈ 𝐵) ⟼ 𝜑(𝑎, 𝑢)∶ 𝑎 → 𝑎′ ∈ 𝐴

which satisfies the following axioms:

1. 𝑓𝜑(𝑎, 𝑢) = 𝑢

Put followed by Get is trivial for morphisms

2. 𝜑(𝑎, 1𝑓𝑎) = 1𝑎

Get followed by Put preserves identities

3. 𝜑(𝑎, 𝑣 ∘ 𝑢) = 𝜑(𝑎′, 𝑣) ∘ 𝜑(𝑎, 𝑢)

The Put of composites is the composite of Puts



Lenses, formally (Nuts-and-Bolts)

Definition

Let 𝐴 and 𝐵 be categories. A lens ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵 consists of a functor 𝑓∶ 𝐴 → 𝐵 and a lifting operation,

(𝑎 ∈ 𝐴, 𝑢∶ 𝑓𝑎 → 𝑏 ∈ 𝐵) ⟼ 𝜑(𝑎, 𝑢)∶ 𝑎 → 𝑎′ ∈ 𝐴

which satisfies the following axioms:

1. 𝑓𝜑(𝑎, 𝑢) = 𝑢 Put followed by Get is trivial for morphisms

2. 𝜑(𝑎, 1𝑓𝑎) = 1𝑎 Get followed by Put preserves identities

3. 𝜑(𝑎, 𝑣 ∘ 𝑢) = 𝜑(𝑎′, 𝑣) ∘ 𝜑(𝑎, 𝑢) The Put of composites is the composite of Puts



Lenses, formally (Nuts-and-Bolts)

𝑓𝑎 𝑏⋯ ⋯

⋯ ⋯𝑎

𝑢

𝑎′
𝜑(𝑎, 𝑢)

𝑓𝜑(𝑎, 𝑢) = 𝑢



Lenses, Formally (Nuts-and-Bolts)

𝑓𝑎⋯ ⋯

⋯ ⋯𝑎

1𝑓𝑎

1𝑎

𝜑(𝑎, 1𝑓𝑎) = 1𝑎



Lenses, formally (Nuts-and-Bolts)

𝑓𝑎 •⋯ ⋯

⋯ ⋯𝑎

𝑢

𝑎′

𝜑(𝑎, 𝑢)

𝜑(𝑎, 𝑣 ∘ 𝑢) = 𝜑(𝑎′, 𝑣) ∘ 𝜑(𝑎, 𝑢)

•
𝑣

𝑎″

𝜑(𝑎′, 𝑣)

𝑣 ∘ 𝑢

𝜑(𝑎, 𝑣 ∘ 𝑢)



Lenses, formally (slick)

Proposition (Lenses as Functors and Cofunctors)

Every lens ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵may be represented as a commutative diagram of functors,

Λ

𝐴 𝐵

𝜑 𝜑̄

𝑓

where 𝜑 is a faithful, identity-on-objects functor and ̄𝜑 is a discrete opfibration.



Lenses, formally (slick)

𝑓𝑎 𝑏⋯ ⋯

⋯ ⋯

•

𝑎

•

𝑢

𝐴

𝐵

𝑎′

•

∀𝑎 𝜑(𝑎, 𝑢)

𝜑(𝑎, 𝑢)



Lenses, formally (slick)

𝑓𝑎
𝑏

•

•

𝐴
𝐵

•

𝑎

Λ

𝑎′

•

•

•

𝑎

𝑎′



Lenses, formally (slick)

𝑓𝑎
𝑏

•

•

𝐴
𝐵

•

𝑎

Λ

𝑎′

•

•

•

𝑎

𝑎′



Lenses, formally (slick)

𝑓𝑎
𝑏

•

•

𝐴
𝐵

•

𝑎

Λ

𝑎′

•

•

•

𝑎

𝑎′



Lenses, formally (slick)

𝐴 𝐵

Λ

Id-on-Obj. D.Opf.

𝑓



The category ℒens

Definition
Let ℒens denote the category whose objects are categories and whose morphisms are lenses. Given a pair of
lenses ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵 and ⟨𝑔, 𝛾⟩ ∶ 𝐵 ⇌ 𝐶, their composite is given by the functor 𝑔 ∘ 𝑓∶ 𝐴 → 𝐶 together with
the lifting operation:

⟨𝑎 ∈ 𝐴, 𝑢∶ 𝑔𝑓𝑎 → 𝑐 ∈ 𝐶⟩ ⟼ 𝜑(𝑎, 𝛾(𝑓𝑎, 𝑢)).



Actually, ℒens is a pretty place

▶ ℒens has initial and terminal objects;

▶ ℒens has small coproducts;

▶ ℒens has equalisers;

▶ ℒens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

▶ Limit constructions imported from 𝒞at behave well, even if they are missing universal property in
ℒens: we have distributivity of imported products over coproducts, and extensivity.

▶ (Next Talk): ℒens has (certain) coequalisers



Actually, ℒens is a pretty place

▶ ℒens has initial and terminal objects;

▶ ℒens has small coproducts;

▶ ℒens has equalisers;

▶ ℒens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

▶ Limit constructions imported from 𝒞at behave well, even if they are missing universal property in
ℒens: we have distributivity of imported products over coproducts, and extensivity.

▶ (Next Talk): ℒens has (certain) coequalisers



Actually, ℒens is a pretty place

▶ ℒens has initial and terminal objects;

▶ ℒens has small coproducts;

▶ ℒens has equalisers;

▶ ℒens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

▶ Limit constructions imported from 𝒞at behave well, even if they are missing universal property in
ℒens: we have distributivity of imported products over coproducts, and extensivity.

▶ (Next Talk): ℒens has (certain) coequalisers



Actually, ℒens is a pretty place

▶ ℒens has initial and terminal objects;

▶ ℒens has small coproducts;

▶ ℒens has equalisers;

▶ ℒens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

▶ Limit constructions imported from 𝒞at behave well, even if they are missing universal property in
ℒens: we have distributivity of imported products over coproducts, and extensivity.

▶ (Next Talk): ℒens has (certain) coequalisers



Actually, ℒens is a pretty place

▶ ℒens has initial and terminal objects;

▶ ℒens has small coproducts;

▶ ℒens has equalisers;

▶ ℒens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

▶ Limit constructions imported from 𝒞at behave well, even if they are missing universal property in
ℒens: we have distributivity of imported products over coproducts, and extensivity.

▶ (Next Talk): ℒens has (certain) coequalisers



Actually, ℒens is a pretty place

▶ ℒens has initial and terminal objects;

▶ ℒens has small coproducts;

▶ ℒens has equalisers;

▶ ℒens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

▶ Limit constructions imported from 𝒞at behave well, even if they are missing universal property in
ℒens: we have distributivity of imported products over coproducts, and extensivity.

▶ (Next Talk): ℒens has (certain) coequalisers



Actually, ℒens is a pretty place

▶ ℒens has initial and terminal objects;

▶ ℒens has small coproducts;

▶ ℒens has equalisers;

▶ ℒens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

▶ Limit constructions imported from 𝒞at behave well, even if they are missing universal property in
ℒens: we have distributivity of imported products over coproducts, and extensivity.

▶ (Next Talk): ℒens has (certain) coequalisers



Engineering co-design as a guiding example

▶ Design is characterised by three spaces:
– implementation space: the options we can choose from;
– functionality space: what we need to provide/achieve;
– requirements/costs space: resources we need to have available;

implementations

car models
battery models

functionality

speed
capacity ×max current

requirements

cost
mass × cost



Engineering co-design as a guiding example

▶ Design is characterised by three spaces:
– implementation space: the options we can choose from;
– functionality space: what we need to provide/achieve;
– requirements/costs space: resources we need to have available;

implementations
car models

battery models

functionality
speed

capacity ×max current

requirements
cost

mass × cost



Engineering co-design as a guiding example

▶ Design is characterised by three spaces:
– implementation space: the options we can choose from;
– functionality space: what we need to provide/achieve;
– requirements/costs space: resources we need to have available;

implementations
car models

battery models

functionality
speed

capacity ×max current

requirements
cost

mass × cost



Design problems, formally
Definition
A design problem with implementation (DPI) is a tuple ⟨F, R, I, fun, req⟩, where:
▶ F is a poset, called functionality space;
▶ R is a poset, called requirements space;
▶ I is a set, called implementation space;
▶ the map fun∶ I → Fmaps an implementation to the functionality it provides;
▶ the map req∶ I → Rmaps an implementation to the resources it requires.

IF R

implementationsfunctionality requirements

fun req



Practically, design problems can be understood as feasibility relations

▶ For design purposes, we need to know how something is done: we need the implementations
▶ For the algorithmic solution of co-design problems, we consider feasibility relations directly;
▶ A design problem is a boolean profunctor:

𝑑∶ Fop × R →𝒫os ℬool
⟨𝑓∗, 𝑟⟩ ↦ ∃𝑖 ∈ I∶ (𝑓 ⪯F fun(𝑖)) ∧ (req(𝑖) ⪯R 𝑟).

▶ This is amonotonemap (morphism in 𝒫os):
– Lower functionalities do not requiremore requirements;
– Higher requirements do not provide less functionalities

▶ Design problems form the category DP:
– Objects are posets, morphisms are design problems;
– Covered in detail in ACT4E (https://applied-compositional-thinking.engineering)

https://applied-compositional-thinking.engineering


Practically, design problems can be understood as feasibility relations

▶ For design purposes, we need to know how something is done: we need the implementations
▶ For the algorithmic solution of co-design problems, we consider feasibility relations directly;
▶ A design problem is a boolean profunctor:

𝑑∶ Fop × R →𝒫os ℬool
⟨𝑓∗, 𝑟⟩ ↦ ∃𝑖 ∈ I∶ (𝑓 ⪯F fun(𝑖)) ∧ (req(𝑖) ⪯R 𝑟).

▶ This is amonotonemap (morphism in 𝒫os):
– Lower functionalities do not requiremore requirements;
– Higher requirements do not provide less functionalities

▶ Design problems form the category DP:
– Objects are posets, morphisms are design problems;
– Covered in detail in ACT4E (https://applied-compositional-thinking.engineering)

https://applied-compositional-thinking.engineering


Realizing design problems as lenses
▶ Consider the design problem related to buying a car based on its speed:

▶ We consider 𝑑∶ Fop × R →𝒫os ℬool with posets

fast

average expensive

slow cheap
F R

▶ Slow vehicles are the only cheap ones, the rest are expensive.



Realizing design problems as lenses
▶ Consider the design problem related to buying a car based on its speed:

▶ We consider 𝑑∶ Fop × R →𝒫os ℬool with posets

fast

average expensive

slow cheap
F R

▶ Slow vehicles are the only cheap ones, the rest are expensive.



Realising design problems as lenses

▶ We can represent the functor Fop × R →𝒫os ℬool fibrewise.

▶ A lens over the functor provides a unique, reachable pair in Fop × R from each infeasible pair.
▶ A lens models feasibility and informs compromises to make the unfeasible feasible.

⟨fast, expensive⟩

⟨fast, cheap⟩ ⟨average, expensive⟩

⟨average, cheap⟩ ⟨slow, expensive⟩

⟨slow, cheap⟩

false true



Realising design problems as lenses

▶ We can represent the functor Fop × R →𝒫os ℬool fibrewise.
▶ A lens over the functor provides a unique, reachable pair in Fop × R from each infeasible pair.
▶ A lens models feasibility and informs compromises to make the unfeasible feasible.

⟨fast, expensive⟩

⟨fast, cheap⟩ ⟨average, expensive⟩

⟨average, cheap⟩ ⟨slow, expensive⟩

⟨slow, cheap⟩

false true



Realising design problems as lenses

▶ We can represent the functor Fop × R →𝒫os ℬool fibrewise.
▶ A lens over the functor provides a unique, reachable pair in Fop × R from each infeasible pair.
▶ A lens models feasibility and informs compromises to make the unfeasible feasible.

⟨fast, expensive⟩

⟨fast, cheap⟩ ⟨average, expensive⟩

⟨average, cheap⟩ ⟨slow, expensive⟩

⟨slow, cheap⟩

false true



ℒens has small coproducts

▶ Given lenses ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵, ⟨𝑔, 𝛾⟩ ∶ 𝐶 ⇌ 𝐵, take the coproduct in 𝒞at: 𝐴 + 𝐶;
▶ In 𝒞at, coproduct injection functors are injective-on-objects discrete opfibrations
▶ Given lenses ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵, ⟨𝑔, 𝛾⟩ ∶ 𝐶 ⇌ 𝐵, we have a unique lens 𝐴 + 𝐶 ⇌ 𝐵 with:

Λ +Ω

𝐴 + 𝐶 𝐵

𝜑+𝛾 [𝜑̄,𝛾̄]

[𝑓,𝑔]

Example
▶ From speedop × cost⇌ ℬool and seatsop ×weight⇌ ℬool you get

speedop × cost + seatsop ×weight⇌ ℬool



ℒens has small coproducts

▶ Given lenses ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵, ⟨𝑔, 𝛾⟩ ∶ 𝐶 ⇌ 𝐵, take the coproduct in 𝒞at: 𝐴 + 𝐶;
▶ In 𝒞at, coproduct injection functors are injective-on-objects discrete opfibrations
▶ Given lenses ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵, ⟨𝑔, 𝛾⟩ ∶ 𝐶 ⇌ 𝐵, we have a unique lens 𝐴 + 𝐶 ⇌ 𝐵 with:

Λ +Ω

𝐴 + 𝐶 𝐵

𝜑+𝛾 [𝜑̄,𝛾̄]

[𝑓,𝑔]

Example
▶ From speedop × cost⇌ ℬool and seatsop ×weight⇌ ℬool you get

speedop × cost + seatsop ×weight⇌ ℬool



ℒens has equalizers
▶ Consider lenses ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵 and ⟨𝑔, 𝛾⟩ ∶ 𝐴 ⇌ 𝐵
▶ One can construct the equaliser 𝑒∶ 𝐸 → 𝐴 of the underlying functors in 𝒞at.
▶ Then the equaliser is the largest subobject𝑚∶ 𝑀 ↣ 𝐸 such that 𝑒 ∘ 𝑚∶ 𝑀 ⇌ 𝐸 is a discrete
opfibration which forms a cone over the parallel pair in ℒens.

Example
▶ Consider two design problems (two experts) ⟨𝑓, 𝜑⟩ ∶ Fop × R ⇌ ℬool, ⟨𝑔, 𝛾⟩ ∶ Fop × R ⇌ ℬool
▶ Their equalizer 𝐸 ⇌ Fop × R:

– embeds 𝐸 into Fop × R, and selects pairs in Fop × R for which experts agree
– In the worst case, total disagreement, i.e. 𝐸 = 0.

⟨fast, expensive⟩

⟨fast, cheap⟩ ⟨average, expensive⟩

⟨average, cheap⟩ ⟨slow, expensive⟩

⟨slow, cheap⟩

false true

⟨fast, expensive⟩

⟨fast, cheap⟩ ⟨average, expensive⟩

⟨average, cheap⟩ ⟨slow, expensive⟩

⟨slow, cheap⟩

false true



ℒens has equalizers
▶ Consider lenses ⟨𝑓, 𝜑⟩ ∶ 𝐴 ⇌ 𝐵 and ⟨𝑔, 𝛾⟩ ∶ 𝐴 ⇌ 𝐵
▶ One can construct the equaliser 𝑒∶ 𝐸 → 𝐴 of the underlying functors in 𝒞at.
▶ Then the equaliser is the largest subobject𝑚∶ 𝑀 ↣ 𝐸 such that 𝑒 ∘ 𝑚∶ 𝑀 ⇌ 𝐸 is a discrete
opfibration which forms a cone over the parallel pair in ℒens.

Example
▶ Consider two design problems (two experts) ⟨𝑓, 𝜑⟩ ∶ Fop × R ⇌ ℬool, ⟨𝑔, 𝛾⟩ ∶ Fop × R ⇌ ℬool
▶ Their equalizer 𝐸 ⇌ Fop × R:

– embeds 𝐸 into Fop × R, and selects pairs in Fop × R for which experts agree
– In the worst case, total disagreement, i.e. 𝐸 = 0.

⟨fast, expensive⟩

⟨fast, cheap⟩ ⟨average, expensive⟩

⟨average, cheap⟩ ⟨slow, expensive⟩

⟨slow, cheap⟩

false true

⟨fast, expensive⟩

⟨fast, cheap⟩ ⟨average, expensive⟩

⟨average, cheap⟩ ⟨slow, expensive⟩

⟨slow, cheap⟩

false true



ℒens has an orthogonal factorisation system

▶ Johnson & Rosebrugh showed that ℒens admits a proper orthogonal factorisation system
▶ This is actually an (epi, mono)-factorisation system, factoring every lens into:

– A surjective-on-object lens (epimorphism), and
– A cosieve (monomorphism).

Example
▶ Consider a lens ⟨𝑓, 𝜑⟩ ∶ speedop × cost⇌ ℬool with just true values

speedop × cost {true}

{false→ true}

epimorphism

monomorphism



Conclusion and Outlook

▶ We considered nice but general Lenses sufficiently rich to model problems of:
– synchronisation
– coordination
– interoperation

▶ We studied the category ℒens to look for canonical constructions...
▶ ...and we found some.



Conclusion and Outlook

▶ We considered nice but general Lenses sufficiently rich to model problems of:
– synchronisation
– coordination
– interoperation

▶ We studied the category ℒens to look for canonical constructions...

▶ ...and we found some.



Conclusion and Outlook

▶ We considered nice but general Lenses sufficiently rich to model problems of:
– synchronisation
– coordination
– interoperation

▶ We studied the category ℒens to look for canonical constructions...
▶ ...and we found some.


	Motivation

