Limits and Colimits in a Category of Lenses

Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa,
Vincent Wang, Gioele Zardini

4th International Conference on Applied Category Theory (ACT2021)
Cambridge (UK)

ETHzirich B hasouse

k‘\ UNIVERSITY OF ™
a KWAZULU-NATAL UNIVERSITY OF
T s OXFORD

A YAKWAZULU-NATALI

Lenses, informally

SYSTEM
4 I
\ e
f.

INTERFACE

Lenses, informally

SYSTEM

||||||||||||

INTERFACE

Lenses, informally

SYSTEM

||||||||||||

INTERFACE

Lenses, informally

SYSTEM
é CoLy %
: L o-da
I GETCCZZIT
1 {:*4’\\\‘ '
: VT
C
\. ot !

INTERFACE

Lenses, informally

SYSTEM
4 , N
L ‘ . J
1 \\ ’Il E
. ¥ :

INTERFACE

“Lenses”

» Lawful

»> Category-Based

> Asymmetric

“Lenses”

» Lawful
- (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...

»> Category-Based

> Asymmetric

“Lenses”

» Lawful
- (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...
»> Category-Based

- Strictly generalises Set-Based Lenses
- Also known as “Delta Lenses”

> Asymmetric

“Lenses”

» Lawful
- (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...
»> Category-Based
- Strictly generalises Set-Based Lenses
- Also known as “Delta Lenses”
> Asymmetric
- Asymmetric: One system knows everything the other does
- Symmetric: Either system may know something the other doesn’t
- All Symmetric Lenses can be constructed from Asymmetric ones

“Lenses”

» Lawful (Specification for niceness)
- (vs. “Lawless”): Wild-West of Machine Learning, Game Theory, Economics...
» Category-Based (Generalisation)

- Strictly generalises Set-Based Lenses
- Also known as “Delta Lenses”

» Asymmetric (Sufficiency)

- Asymmetric: One system knows everything the other does
- Symmetric: Either system may know something the other doesn’t
- All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses

Lenses, formally (Nuts-and-Bolts)

Let A and B be categories. A lens (f,) : A = Bconsists of a functor f : A — Band a lifting operation,
(a€Au: fa-beB) +— g¢lau):a—->ad €A

which satisfies the following axioms:
1. fo(a,u) =u;

2. pla,15q) = 14;

3. p(a,vou) =p(a’,v) o p(a,u).

Lenses, formally (Nuts-and-Bolts)

(

Lenses, formally (Nuts-and-Bolts)

(

Lenses, formally (Nuts-and-Bolts)

(

fa

Lenses, formally (Nuts-and-Bolts)

(

fa

Lenses, formally (Nuts-and-Bolts)

(e RS
i : 1
1 . 1
1 1
1 1
1 1
1 a 1
1 1
1 1
1 1
1]
\ 7
k - 1_,
1
1
1
1
1
1
fa

~

Lenses, formally (Nuts-and-Bolts)

IIIIIIIIIIII

IIIIIIIIIIII

fa

Lenses, formally (Nuts-and-Bolts)

\uuuuu:

| 3

1 = k-

_,: y J

L =~

1 ~ 1

1 = 1

1 ~ 1

1 (a\ -

1 [SS 1

1 1

M 4
||||||||||
| 3
! o) r
L]

IIIIIIIIIIII

Val@F‘.go(a, u)

Lenses, formally (Nuts-and-Bolts)

Let A and B be categories. A lens (f,) : A = Bconsists of a functor f : A — Band a lifting operation,
(a€Au: fa-beB) +— g¢lau):a—->ad €A

which satisfies the following axioms:

1. fe(a,u)=u

2. pla,1fq) = 1,
3. p(a,vou) =gp(a,v)o p(a,u)

Lenses, formally (Nuts-and-Bolts)

Let A and B be categories. A lens (f,) : A = Bconsists of a functor f : A — Band a lifting operation,
(a€Au: fa-beB) +— g¢lau):a—->ad €A

which satisfies the following axioms:
1. fo(a,u) = u Put followed by Get is trivial for morphisms
2. ¢(a,154) = 14 Get followed by Put preserves identities

3. p(a,vou) = @(a’,v) o p(a,u) The Put of composites is the composite of Puts

Lenses, formally (Nuts-and-Bolts)

(
pla,u)
o
"~ I_'l I\ 1 I\ r_,
_ I % | I
fa : > b

Lenses, Formally (Nuts-and-Bolts)

(

a ’ 1,
1 1

v [
~ AN
i @ |

! \

1 1
1

1

|

—
f a;) Lsa

o(a, lfa) =1,

Lenses, formally (Nuts-and-Bolts)

(ola,vou)
—_— N
a a/ a”
~—
»la,u) p(a’,v)
_ i) ®

p(a,vou) = g(a’,v) o p(a,u)

Lenses, formally (slick)

Proposition (Lenses as Functors and Cofunctors)

Every lens (f,¢) : A = B may be represented as a commutative diagram of functors,
A
7N
A T} B

where g is a faithful, identity-on-objects functor and ¢ is a discrete opfibration.

Lenses, formally (slick)

\uuuuu:

| 3

1 = k-

_,: y J

L =~

1 ~ 1

1 = 1

1 ~ 1

1 (a\ -

1 [SS 1

1 1

M 4
||||||||||
| 3
! o) r
L]

IIIIIIIIIIII

Val@F‘.go(a, u)

Lenses, formally (slick)

Lenses, formally (slick)

Lenses, formally (slick)

Lenses, formally (slick)

Id-on-Obj. D.Opf.

A > B

The category Lens

Let Lens denote the category whose objects are categories and whose morphisms are lenses. Given a pair of

lenses (f,) : A = Band(g,y) : B = C, their composite is given by the functor go f: A — C together with
the lifting operation:
(a€eAu: gfa—>celC) — ola,y(fa,un)).

Actually, Lens is a pretty place

Actually, Lens is a pretty place

» Lens has initial and terminal objects;

Actually, Lens is a pretty place

» Lens has initial and terminal objects;

» Lens has small coproducts;

Actually, Lens is a pretty place

» Lens has initial and terminal objects;
» Lens has small coproducts;

» Lens has equalisers;

Actually, Lens is a pretty place

» Lens has initial and terminal objects;
» Lens has small coproducts;
» Lens has equalisers;

» CLens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

Actually, Lens is a pretty place

» Lens has initial and terminal objects;
» Lens has small coproducts;
» Lens has equalisers;

» CLens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

» Limit constructions imported from Cat behave well, even if they are missing universal property in
Lens: we have distributivity of imported products over coproducts, and extensivity.

Actually, Lens is a pretty place

» Lens has initial and terminal objects;
» Lens has small coproducts;
» Lens has equalisers;

» CLens has an orthogonal factorisation system, which factors every lens into a
surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

» Limit constructions imported from Cat behave well, even if they are missing universal property in
Lens: we have distributivity of imported products over coproducts, and extensivity.

v

(Next Talk): Lens has (certain) coequalisers

Engineering co-design as a guiding example

» Design is characterised by three spaces:

- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;
- requirements/costs space: resources we need to have available;

functionality implementations requirements

Engineering co-design as a guiding example

» Design is characterised by three spaces:
- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;
- requirements/costs space: resources we need to have available;

[]
o o
L] [] ° []
[J o
functionality implementations requirements

speed car models cost

Engineering co-design as a guiding example

» Design is characterised by three spaces:
- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;
- requirements/costs space: resources we need to have available;

[]
o o
L] [] ° []
[J o
functionality implementations requirements
speed car models cost

capacity X max current battery models mass X cost

Design problems, formally

A design problem with implementation (DPI) is a tuple (F, R, I, fun, req), where:
» Fisa poset, called functionality space;
» Ris a poset, called requirements space;
> lisaset, called implementation space;

» the map fun: I — F maps an implementation to the functionality it provides;

» the mapreq: I — R maps an implementation to the resources it requires.

F I R
[]
re
.4#.___.3___9_____’.
[] []

functionality implementations requirements

Practically, design problems can be understood as feasibility relations

» For design purposes, we need to know how something is done: we need the implementations
» For the algorithmic solution of co-design problems, we consider feasibility relations directly;

» A design problem is a boolean profunctor:

d: F? X R -y, Bool
(f*,ry> i el: (f Zp fun(i)) A (req(i) <g 7).

https://applied-compositional-thinking.engineering

Practically, design problems can be understood as feasibility relations

» For design purposes, we need to know how something is done: we need the implementations
» For the algorithmic solution of co-design problems, we consider feasibility relations directly;

» A design problem is a boolean profunctor:

d: F? X R -y, Bool
(f*,ry> i el: (f Zp fun(i)) A (req(i) <g 7).

» This is a monotone map (morphism in Pos):

- Lower functionalities do not require more requirements;
- Higher requirements do not provide less functionalities

» Design problems form the category DP:

- Objects are posets, morphisms are design problems;
- Covered in detail in ACT4E (https://applied-compositional-thinking.engineering)

https://applied-compositional-thinking.engineering

Realizing design problems as lenses

» Consider the design problem related to buying a car based on its speed:

Realizing design problems as lenses

» Consider the design problem related to buying a car based on its speed:

» We consider d : FP X R —,,, Bool with posets

fast
|
average expensive
I I
slow cheap
F R

» Slow vehicles are the only cheap ones, the rest are expensive.

Realising design problems as lenses

» We can represent the functor FP X R — . Bool fibrewise.

{ (fast, expensive)

e, § 1 :

(fast, cheap) ‘(average, expensive)
D ;
: (average, cheap) : . (slow, expensive) :
R 4

", (slow, cheap)

Realising design problems as lenses

» We can represent the functor FP X R — . Bool fibrewise.
» A lens over the functor provides a unique, reachable pair in F°? X R from each infeasible pair.

» A lens models feasibility and informs compromises to make the unfeasible feasible.

{ (fast, expensive)
IR / 1
" (fast, cheap) ‘(average, expensive) :
L j
: (average, cheap) : : (slow, expensive) :
e, freenenean 4 :

", (slow, cheap)

Realising design problems as lenses

» We can represent the functor FP X R — . Bool fibrewise.
» A lens over the functor provides a unique, reachable pair in F°? X R from each infeasible pair.

» A lens models feasibility and informs compromises to make the unfeasible feasible.

{ (fast, expensive)

I : 4
(fast, cheap) ‘(average, expensive) :
ol - + ;
: (average, cheap) : . (slow, expensive) :

Lens has small coproducts

» Given lenses (f,9) : A = B,(g,y) : C = B, take the coproduct in Cat: A + C;

» In Cat, coproduct injection functors are injective-on-objects discrete opfibrations

» Given lenses (f,p) : A= B,(g,y) : C = B, we have a unique lens A + C = B with:
A+Q

"N

A+Cf—)

Lens has small coproducts

» Given lenses (f,9) : A = B,(g,y) : C = B, take the coproduct in Cat: A + C;

» In Cat, coproduct injection functors are injective-on-objects discrete opfibrations

» Given lenses (f,p) : A= B,(g,y) : C = B, we have a unique lens A + C = B with:
A+Q

"N

A+Cf—)

Example

» From speed®? X cost = Bool and seats’? X weight = Bool you get

speed® X cost + seats’? X weight = Bool

Lens has equalizers

» Consider lenses (f,9) : A= Band(g,y): A=18B

» One can construct the equaliser e : E — A of the underlying functors in Cat.

» Then the equaliser is the largest subobject m : M » E such thateom : M = Eis a discrete
opfibration which forms a cone over the parallel pair in Lens.

Lens has equalizers

» Consider lenses (f,9) : A= Band(g,y): A=18B

» One can construct the equaliser e : E — A of the underlying functors in Cat.

» Then the equaliser is the largest subobject m : M » E such thateom : M = Eis a discrete
opfibration which forms a cone over the parallel pair in Lens.

Example

» Consider two design problems (two experts) (f, ¢) : F? X R = Bool, (g,y) : F°? X R = Bool

» Their equalizer E = F°? X R:

- embeds E into F°? X R, and selects pairs in F°? X R for which experts agree

- In the worst case, total disagreement, i.e. E = 0.

EITTTTTPTN . / 1
" (fast,cheap) ‘(average, expensive) !
. + P + :
* (average, cheap) - : (slow, expensive)
T - \ 4 :
(slow, cheap)

false —— > true

~{fast, expensive) -

1 \ REEEEEEEERT T .
(fast,cheap) {average, expensivey.
: 4 P 1 :
*(average, cheap) - : (slow, expensive) -
R S - : 1+ :

false —— > true

Lens has an orthogonal factorisation system

» Johnson & Rosebrugh showed that Lens admits a proper orthogonal factorisation system
» This is actually an (epi, mono)-factorisation system, factoring every lens into:

- A surjective-on-object lens (epimorphism), and

- A cosieve (monomorphism).

Example
» Consider alens (f,) : speed® X cost = Bool with just true values

epimorphism
speed®P X cost % {true}

\9 Aﬁmorphism

{false — true}

Conclusion and Outlook

» We considered nice but general Lenses sufficiently rich to model problems of:
- synchronisation
- coordination
- interoperation

Conclusion and Outlook

» We considered nice but general Lenses sufficiently rich to model problems of:

- synchronisation
- coordination
- interoperation

» We studied the category Lens to look for canonical constructions...

Conclusion and Outlook

» We considered nice but general Lenses sufficiently rich to model problems of:

- synchronisation
- coordination
- interoperation

» We studied the category Lens to look for canonical constructions...

» ...and we found some.

	Motivation

