Limits and Colimits in a Category of Lenses

Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa, Vincent Wang, Gioele Zardini

4th International Conference on Applied Category Theory (ACT2021)
Cambridge (UK)

ETHzürich

MACQUARIE
University

Lenses, informally

Lenses, informally

Lenses, informally

Lenses, informally

Lenses, informally

"Lenses"

- Lawful
- Category-Based
- Asymmetric

"Lenses"

- Lawful
- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...
- Category-Based
- Asymmetric

"Lenses"

- Lawful
- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...
- Category-Based
- Strictly generalises Set-Based Lenses
- Also known as "Delta Lenses"
- Asymmetric

"Lenses"

- Lawful
- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...
- Category-Based
- Strictly generalises Set-Based Lenses
- Also known as "Delta Lenses"
- Asymmetric
- Asymmetric: One system knows everything the other does
- Symmetric: Either system may know something the other doesn't
- All Symmetric Lenses can be constructed from Asymmetric ones

"Lenses"

- Lawful (Specification for niceness)
- (vs. "Lawless"): Wild-West of Machine Learning, Game Theory, Economics...
- Category-Based (Generalisation)
- Strictly generalises Set-Based Lenses
- Also known as "Delta Lenses"
- Asymmetric (Sufficiency)
- Asymmetric: One system knows everything the other does
- Symmetric: Either system may know something the other doesn't
- All Symmetric Lenses can be constructed from Asymmetric ones

Nice but general Lenses

Lenses, formally (Nuts-and-Bolts)

Definition

Let A and B be categories. A lens $\langle f, \varphi\rangle: A \rightleftharpoons B$ consists of a functor $f: A \rightarrow B$ and a lifting operation,

$$
(a \in A, u: f a \rightarrow b \in B) \quad \longmapsto \quad \varphi(a, u): a \rightarrow a^{\prime} \in A
$$

which satisfies the following axioms:

1. $f \varphi(a, u)=u$;
2. $\varphi\left(a, 1_{f a}\right)=1_{a}$;
3. $\varphi(a, v \circ u)=\varphi\left(a^{\prime}, v\right) \circ \varphi(a, u)$.

Lenses, formally (Nuts-and-Bolts)

Lenses, formally (Nuts-and-Bolts)

Lenses, formally (Nuts-and-Bolts)

$$
A
$$

Lenses, formally (Nuts-and-Bolts)

Definition

Let A and B be categories. A lens $\langle f, \varphi\rangle: A \rightleftharpoons B$ consists of a functor $f: A \rightarrow B$ and a lifting operation,

$$
(a \in A, u: f a \rightarrow b \in B) \quad \longmapsto \quad \varphi(a, u): a \rightarrow a^{\prime} \in A
$$

which satisfies the following axioms:

1. $f \varphi(a, u)=u$
2. $\varphi\left(a, 1_{f a}\right)=1_{a}$
3. $\varphi(a, v \circ u)=\varphi\left(a^{\prime}, v\right) \circ \varphi(a, u)$

Lenses, formally (Nuts-and-Bolts)

Definition

Let A and B be categories. A lens $\langle f, \varphi\rangle: A \rightleftharpoons B$ consists of a functor $f: A \rightarrow B$ and a lifting operation,

$$
(a \in A, u: f a \rightarrow b \in B) \quad \longmapsto \quad \varphi(a, u): a \rightarrow a^{\prime} \in A
$$

which satisfies the following axioms:

1. $f \varphi(a, u)=u$ Put followed by Get is trivial for morphisms
2. $\varphi\left(a, 1_{f a}\right)=1_{a}$ Get followed by Put preserves identities
3. $\varphi(a, v \circ u)=\varphi\left(a^{\prime}, v\right) \circ \varphi(a, u)$ The Put of composites is the composite of Puts

Lenses, formally (Nuts-and-Bolts)

$f \varphi(a, u)=u$

Lenses, Formally (Nuts-and-Bolts)

$$
\varphi\left(a, 1_{f a}\right)=1_{a}
$$

Lenses, formally (Nuts-and-Bolts)

Lenses, formally (slick)

Proposition (Lenses as Functors and Cofunctors)

Every lens $\langle f, \varphi\rangle: A \rightleftharpoons B$ may be represented as a commutative diagram of functors,

where φ is a faithful, identity-on-objects functor and $\bar{\varphi}$ is a discrete opfibration.

Lenses, formally (slick)
A

Lenses, formally (slick)

Lenses, formally (slick)

Lenses, formally (slick)

Lenses, formally (slick)

The category \mathcal{L} ens

Definition

Let \mathcal{L} ens denote the category whose objects are categories and whose morphisms are lenses. Given a pair of lenses $\langle f, \varphi\rangle: A \rightleftharpoons B$ and $\langle g, \gamma\rangle: B \rightleftharpoons C$, their composite is given by the functor $g \circ f: A \rightarrow C$ together with the lifting operation:

$$
\langle a \in A, u: g f a \rightarrow c \in C\rangle \quad \longmapsto \quad \varphi(a, \gamma(f a, u)) .
$$

Actually, $\mathcal{L e n s}$ is a pretty place

Actually, $\mathcal{L e n s}$ is a pretty place

- Lens has initial and terminal objects;

Actually, $\mathcal{L e n s}$ is a pretty place

- Lens has initial and terminal objects;
- Lens has small coproducts;

Actually, $\mathcal{L e n s}$ is a pretty place

- Lens has initial and terminal objects;
- Lens has small coproducts;
- Lens has equalisers;

Actually, $\mathcal{L e n s}$ is a pretty place

- \mathcal{L} ens has initial and terminal objects;
- Lens has small coproducts;
- Lens has equalisers;
- Lens has an orthogonal factorisation system, which factors every lens into a surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);

Actually, $\mathcal{L e n s}$ is a pretty place

- Lens has initial and terminal objects;
- Lens has small coproducts;
- Lens has equalisers;
- Lens has an orthogonal factorisation system, which factors every lens into a surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);
- Limit constructions imported from \mathcal{C} at behave well, even if they are missing universal property in \mathcal{L} ens: we have distributivity of imported products over coproducts, and extensivity.

Actually, $\mathcal{L e n s}$ is a pretty place

- Lens has initial and terminal objects;
- Lens has small coproducts;
- Lens has equalisers;
- Lens has an orthogonal factorisation system, which factors every lens into a surjective-on-objects lens (epic) followed by a injective-on-objects discrete opfibration (monic);
- Limit constructions imported from Cat behave well, even if they are missing universal property in \mathcal{L} ens: we have distributivity of imported products over coproducts, and extensivity.
- (Next Talk): Lens has (certain) coequalisers

Engineering co-design as a guiding example

- Design is characterised by three spaces:
- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;
- requirements/costs space: resources we need to have available;

Engineering co-design as a guiding example

- Design is characterised by three spaces:
- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;
- requirements/costs space: resources we need to have available;

Engineering co-design as a guiding example

- Design is characterised by three spaces:
- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;
- requirements/costs space: resources we need to have available;

Design problems, formally

Definition

A design problem with implementation (DPI) is a tuple $\langle\mathrm{F}, \mathrm{R}, \mathrm{I}$, fun, req〉, where:

- F is a poset, called functionality space;
- R is a poset, called requirements space;
- I is a set, called implementation space;
- the map fun: I \rightarrow F maps an implementation to the functionality it provides;
- the map req: I \rightarrow R maps an implementation to the resources it requires.

Practically, design problems can be understood as feasibility relations

- For design purposes, we need to know how something is done: we need the implementations
- For the algorithmic solution of co-design problems, we consider feasibility relations directly;
- A design problem is a boolean profunctor:

$$
\begin{aligned}
& d: \mathrm{F}^{\mathrm{op}} \times \mathrm{R} \\
& \quad \rightarrow_{\mathcal{P}_{\text {os }}} \mathcal{B o o l} \\
& \quad\left\langle f^{*}, r\right\rangle \mapsto \exists i \in \mathrm{I}:\left(f \leq_{\mathrm{F}} \text { fun }(i)\right) \wedge\left(\operatorname{req}(i) \leq_{\mathrm{R}} r\right) .
\end{aligned}
$$

Practically, design problems can be understood as feasibility relations

- For design purposes, we need to know how something is done: we need the implementations
- For the algorithmic solution of co-design problems, we consider feasibility relations directly;
- A design problem is a boolean profunctor:

$$
\begin{aligned}
& d: \mathrm{F}^{\mathrm{op}} \times \mathrm{R} \\
& \quad \rightarrow_{\mathcal{P}_{\text {os }}} \mathcal{B o o l} \\
& \quad\left\langle f^{*}, r\right\rangle \mapsto \exists i \in \mathrm{I}:\left(f \leq_{\mathrm{F}} \text { fun }(i)\right) \wedge\left(\operatorname{req}(i) \leq_{\mathrm{R}} r\right) .
\end{aligned}
$$

- This is a monotone map (morphism in $\mathcal{P}_{\text {os }}$):
- Lower functionalities do not require more requirements;
- Higher requirements do not provide less functionalities
- Design problems form the category DP:
- Objects are posets, morphisms are design problems;
- Covered in detail in ACT4E (https://applied-compositional-thinking.engineering)

Realizing design problems as lenses

- Consider the design problem related to buying a car based on its speed:

Realizing design problems as lenses

- Consider the design problem related to buying a car based on its speed:

- We consider $d: \mathrm{F}^{\mathrm{op}} \times \mathrm{R} \rightarrow_{\mathcal{P}_{\mathrm{OS}}} \mathcal{B o o l}$ with posets

- Slow vehicles are the only cheap ones, the rest are expensive.

Realising design problems as lenses

- We can represent the functor $\mathrm{F}^{\mathrm{op}} \times \mathrm{R} \rightarrow_{\mathcal{P}_{\mathrm{OS}}}$ Bool fibrewise.

Realising design problems as lenses

- We can represent the functor $\mathrm{F}^{\mathrm{op}} \times \mathrm{R} \rightarrow_{\mathcal{P}_{\mathrm{OS}}} \mathcal{B}$ ool fibrewise.
- A lens over the functor provides a unique, reachable pair in $\mathrm{F}^{\mathrm{op}} \times \mathrm{R}$ from each infeasible pair.
- A lens models feasibility and informs compromises to make the unfeasible feasible.

Realising design problems as lenses

- We can represent the functor $\mathrm{F}^{\mathrm{op}} \times \mathrm{R} \rightarrow_{\mathcal{P}_{\mathrm{OS}}}$ Bool fibrewise.
- A lens over the functor provides a unique, reachable pair in $\mathrm{F}^{\mathrm{op}} \times \mathrm{R}$ from each infeasible pair.
- A lens models feasibility and informs compromises to make the unfeasible feasible.

\mathcal{L} ens has small coproducts

- Given lenses $\langle f, \varphi\rangle: A \rightleftharpoons B,\langle g, \gamma\rangle: C \rightleftharpoons B$, take the coproduct in Cat: $A+C$;
- In \mathcal{C} at, coproduct injection functors are injective-on-objects discrete opfibrations
- Given lenses $\langle f, \varphi\rangle: A \rightleftharpoons B,\langle g, \gamma\rangle: C \rightleftharpoons B$, we have a unique lens $A+C \rightleftharpoons B$ with:

\mathcal{L} ens has small coproducts

- Given lenses $\langle f, \varphi\rangle: A \rightleftharpoons B,\langle g, \gamma\rangle: C \rightleftharpoons B$, take the coproduct in Cat: $A+C$;
- In \mathcal{C} at, coproduct injection functors are injective-on-objects discrete opfibrations
- Given lenses $\langle f, \varphi\rangle: A \rightleftharpoons B,\langle g, \gamma\rangle: C \rightleftharpoons B$, we have a unique lens $A+C \rightleftharpoons B$ with:

Example

- From speed ${ }^{\mathrm{op}} \times$ cost $\rightleftharpoons \mathcal{B o o l}$ and seats ${ }^{\mathrm{op}} \times$ weight $\rightleftharpoons \mathcal{B}$ ool you get

$$
\text { speed }^{\mathrm{op}} \times \text { cost }+ \text { seats }^{\mathrm{op}} \times \text { weight } \rightleftharpoons \mathcal{B o o l}
$$

\mathcal{L} ens has equalizers

- Consider lenses $\langle f, \varphi\rangle: A \rightleftharpoons B$ and $\langle g, \gamma\rangle: A \rightleftharpoons B$
- One can construct the equaliser $e: E \rightarrow A$ of the underlying functors in \mathcal{C} at.
- Then the equaliser is the largest subobject $m: M \mapsto E$ such that $e \circ m: M \rightleftharpoons E$ is a discrete opfibration which forms a cone over the parallel pair in \mathcal{L} ens.

$\mathcal{L e n s ~ h a s ~ e q u a l i z e r s ~}$

- Consider lenses $\langle f, \varphi\rangle: A \rightleftharpoons B$ and $\langle g, \gamma\rangle: A \rightleftharpoons B$
- One can construct the equaliser $e: E \rightarrow A$ of the underlying functors in \mathcal{C} at.
- Then the equaliser is the largest subobject $m: M \mapsto E$ such that $e \circ m: M \rightleftharpoons E$ is a discrete opfibration which forms a cone over the parallel pair in \mathcal{L} ens.

Example

- Consider two design problems (two experts) $\langle f, \varphi\rangle: \mathrm{F}^{\mathrm{op}} \times \mathrm{R} \rightleftharpoons \mathcal{B}$ ool, $\langle\mathrm{g}, \gamma\rangle: \mathrm{F}^{\mathrm{op}} \times \mathrm{R} \rightleftharpoons \mathcal{B}$ ool
- Their equalizer $E \rightleftharpoons \mathrm{~F}^{\mathrm{op}} \times \mathrm{R}$:
- embeds E into $\mathrm{F}^{\mathrm{op}} \times \mathrm{R}$, and selects pairs in $\mathrm{F}^{\mathrm{op}} \times \mathrm{R}$ for which experts agree
- In the worst case, total disagreement, i.e. $E=0$.

\mathcal{L} ens has an orthogonal factorisation system

- Johnson \& Rosebrugh showed that $\mathcal{L e n s}$ admits a proper orthogonal factorisation system
- This is actually an (epi, mono)-factorisation system, factoring every lens into:
- A surjective-on-object lens (epimorphism), and
- A cosieve (monomorphism).

Example

- Consider a lens $\langle f, \varphi\rangle:$ speed $^{\mathrm{op}} \times$ cost $\rightleftharpoons \mathcal{B o o l}$ with just true values

Conclusion and Outlook

- We considered nice but general Lenses sufficiently rich to model problems of:
- synchronisation
- coordination
- interoperation

Conclusion and Outlook

- We considered nice but general Lenses sufficiently rich to model problems of:
- synchronisation
- coordination
- interoperation
- We studied the category \mathcal{L} ens to look for canonical constructions...

Conclusion and Outlook

- We considered nice but general Lenses sufficiently rich to model problems of:
- synchronisation
- coordination
- interoperation
- We studied the category \mathcal{L} ens to look for canonical constructions...
- ...and we found some.

