Operads for complex system design specification,
analysis and synthesis®

John Foley
Metron, Inc.
foley@metsci.com
joint w/
Spencer Breiner, Eswaran Subrahmanian and John Dusel

Applied Category Theory 2021

Carnegie
meronam NIST Vialleg
7T B R ES 4L National Institute of elon

SCIENTITIC SOUTIONS S'S I;epo:tm:::’o:C:mm;rc:’ UniverSity

1This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. N66001-16-C-4048:

Three example applications motivate how typed operads address
three issues for complex system design:

Specification
o0 o0
{‘colors’ : [‘port’, ‘cut’, ..., ‘gd'],
‘directed’ : {
‘carrying’: { ° Cut
veut’: [‘port’], e Helo
‘boat’: [‘port’, ‘cut’], e QD
‘qd’: [‘cut’, ..., ‘helo’] } } } oo
e

Analysis Synthesis

- myy1 = my + ME;

Mgy, = M5, .,
1]

The application domains:

Maritime search and rescue (SAR) architectures

Gulf of doied ol ,a‘
Mexico oy west \, North
Atlantic
7'\ s Ocean

7%
“»%‘l'{a'!,ﬁ'c
@g"ﬁm

somaica el 4 17 s

Caribbean Sea

RENOTE
INTERFERONETER

LASER
DiseLay T L’ T DrseLAY T
E'Ekm .l ﬁgmmcm

Lesir Laser
HEAD HEAD

TE
INTERFEROMETER = STEPPING

RoToR
e Hverat p
y on?i!-’#'i.u

WAYBED

Beers & Penzes, J. Res. Natl. Inst. Stand. Technol. 104, 225 (1999)

SAR tasking

CREEKFIRE CASNF-1391

Typed operads naturally appear in many contexts where n objects
are composed into a single object:

Operads Tree API Equations Systems
Types Edges Data types Variables Boundaries
Operations | Nodes Methods Operators Architectures
Composites | Trees Scripts Evaluation Nesting
Algebras | Labels Implementations Values Models

s AL Ly

|g1 |g3

g

(21828

= o

f ' s
t |

A typed operad has

It | N/ 1\ /|

|81 |82|83

(218289

f : J
! |

» aset T of types,

» sets of operations O(t1, ..., t,; t) where tj, t € T,
» ways to compose operations

fo(gl,...,gn)e O(tl,',...,tlkl,...,tnl,...t,,kn;t),

> ways to permute the arguments of operations,

which obey some rules [9].

Specification becomes practical when simple, combinatorial
ingredients define functorial semantics:

Model: Syntax — Semantics

Here, we focus on specifying a typed operad for syntax.

Network models define how to overlay a specific kind of network
and put such networks side-by-side. For example, simple graphs

_ S L

» and are put side-by-side

L) Z

> overlay

To construct a network operad:

» Define types of nodes C for your application

» Encode ways to combine these networks as a lax symmetric
monoidal functor F: S(C) — Cat where S(C) is free on C

» overlay <> composition in target categories
> put side-by-side <> lax structure maps

» Apply symmetric monoidal Grothendieck construction [1, 8]

» Let O := op(f F) be the (typed) endomorphism operad:
op(C)(c1,- .-, ¢k €) :=homc(c1 ® -+ ® ¢k, €)

Theorem (Baez, F, Moeller, Pollard, [1])

The composite functor

NetMod 25 SSMC 2= TypedOp

constructs a network operad Of for each network model F.

Once specification of a network model from simple, combinatorial
ingredients is codified in a theorem—e.g.

Theorem (Baez, F, Moeller, Pollard, [1])
There is a functor

[: Mon — NetMod

sending each monoid M to a network model '(M): S — Mon.

the construction can be reused in many contexts.

For example, to specify the atomic types (C) and relationships
between types (family of monoids) for search and rescue:

{‘colors’ :
‘directed’ :

‘cut’ :
‘boat”’

ceey
‘gd’

[‘port”, ‘cut’,

{

‘carrying’: {

[‘port’],

R PR
: [‘port’,

[‘cut’, ...,

, ad’

1,

=

e Cut
e Helo
e QD

Compositionality guarantees coherent analysis.
That is, multiple, complementary analyses can be conducted.

W = diagram for analyzes =

intensity drive E,0
LSI i " |

1
i
|
I
.
'

LengthSys

Actuators

i
1
I
L
| intemsity i 1 —L1
(~=-=+{_r;-+{Chassis)|
e N
(Optics < switch
R — focusp:;/

: o8
P— N
fringe -------—- {Intfr }—O—"" -

Sensors

In particular, different semantic models can address different
aspects of a design problem—e.g. function vs. control.

From the functional perspective, we can analyze the impact of
component failure:

LengthSys ~— 40% Sensors +— 28%
P ey P

*| TempSys + 60% || & | Actuators +— 72%
Intfr — 10% Lab — 21.4%
P, Optics = 30% p Bath — 21.4%
Chassis +— 60% || ° | Optics +— 42.9%
Bath — 80% Intfr — 14.3%
P, Box — 10% p Chassis +— 33.3%
Lab = 10% || ° Bath — 66.7%

Semantics in the operad of probabilities WW — Prob, in which
relative probabilities compose by multiplication, describe how
components contribute to failure probability.

From the control perspective, we can analyze dynamics.
For example, the laser interaction is parameterized by
> Tiaser := temperature
> Piaser := pressure
» RHyaser := relative humidity
»)\ := laser wavelength (in vacuum)

which varies dynamically for t € 7
Traj(1aser) = ([-273.15, 00)] %[0, 00)] x[0, 1])" %[0, 00) € (R3)" xR,

coupling Chassis, Intfr, and Box.

Semantics in the operad of relations YW — Rel describe possible
behaviors for joint interaction and component states.

Both semantic models leverage limited focus:
» W is only a small fragment of the operad of port graphs [3]

» this means only the specific semantics for the problem at hand
need to be defined

> W could be extended for more detailed analyzes
which is controlled by limiting syntax.
Each model leverages a specific filter
» failure probability semantics are simple, modeled in Prob

» semantics for dynamics are more sophisticated, modeled in
Rel, in the tradition of Jan Willems's behavioral approach

which is controlled by the semantic model.

Check out our paper [6] for brief discussion of using natural
transformations as a ‘filter of filters'.

In theory, synthesis is straightforward when simple objects and
morphisms generate syntax.

A Petri net declares primitive tasks and how they fit together:

T3 « UHE0
¥ HC130

UHG0 + BC 130 U'I-6 + HC130

_LQ 2UmE0 _ 2me0 r/_'\'
i NGV

o)
&

» Transitions (squares) define primitive tasks 7, € T

» Arcs indicate types involved in 7;

» Species (circles) are coordination locations.

Petri nets are sufficient to coordinate multiple agent types [2, 5]
and known to generate monoidal categories [4,7].

That is, Petri nets provide simple, combinatorial ingredients to
define a network model to task agents.

The construction of the network model A: S(C) — Cat:
» C := set of token colors
» Transitions must preserve the number of tokens of each color

» AN(cp ® -+ ® ¢p) := allowed behaviors for assembled agents

Theorem (F, [5])
There is network model \: S(C) — Cat with

Nca ®---®cy) C Free(T)"

s.t. each projection is a sequence of tasks for a single agent and T
is the set of transitions in a colored Petri net.

For example:

» A(HC130) := (a, b, c,d) C Free(T)

» A(UH60) := (a,b,c,d, 71: a— ¢, 72: b— c) C Free(T)
but A(HC130 ® UH60) C Free(T) x Free(T) is generated by

» all pairs (f,g), (g,f) s.t. f € A(HC130), g € A(UH60)

» (13: ¢ — ¢,73: ¢ — ¢), a new joint behavior

UHED
a — TTa

O

1

WHED + BC130 |
f

T3

! *

| vmeo + mc1z0

e UHGO
HC130

T4

We prototyped automated synthesis with a constraint program.

Idea: enforce type matching
» Types — boolean vectors m;
> || composition — boolean ¥;

To compute target of morphism:
mjy1 = mj + MZJ'
To match target to source:

mjiq > MSZJ+1

NB: inequality allows for identities.

o0 (o3 ml]

ob° © oo ©
J’l..-ﬂh-::l Mexdc

A0) ——————— A(UHE0 & HC130)

u:':mnn: Mairazs
M (UHED & BC130)

000
LV V]
oonuo

M (Ums0) [0
000

10 10
] i10
M *{Unga)

100 0
010 a

More tasks become possible with
more agents and the dimensions of

M(—) and M*(—) increase.

M *[UHED @ BC130)
100 000D O
01000000
o011 00010

In practice, the direct translation to a constraint program is not
computationally efficient, so more research is needed.

We discussed how 3 examples address issues for automated design:
» Specification
> Analysis
» Synthesis

To make automated design synthesis practical, these three threads
will need to be woven together.

Scalability

Analysis Synthesis

There are many directions for further research:

» More systematic methods to specify semantics?
> More examples of focused analysis for complex systems?
» Unify analytic and synthetic perspectives?

» Exploit multiple representations for computational efficiency?

Templates Core Meta-Model Exploitation libraries

.. | Evol. Algorithm

Check out our paper [6] for further discussion.

THANK YOU!

Further reading:

» Operads for complex system design specification, analysis and
synthesis [6]

» Network models [1]
» Modeling hierarchical system with operads [3]

» Network models from Petri nets with catalysts [2]

This work was supported by the DARPA Complex Adaptive System
Composition and Design Environment (CASCADE) project under
Contract No. N66001-16-C-4048.

We thank John Baez, Tony Falcone, Ben Long, Tom Mifflin, John
Paschkewitz, Ram Sriram and Blake Pollard for helpful discussions.

[1] J. C. Baez, J. D. Foley, J. Moeller and B. S. Pollard, Network models,
Theor. Appl. Categ. 35 20 (2020), 700-744.

[2] J. C. Baez, J. D. Foley and J. Moeller, Network models from Petri nets
with catalysts, Compositionality 1 4 (2019).

[3] S. Breiner, B. Pollard, E. Subrahmanian and O. Marie-Rose, Modeling
Hierarchical System with Operads, Proc. of ACT 2019, (2020) 72-83.

[4] J. C. Baez and J. Master, Open Petri nets, Math. Struct. Comp. Sci. 30 3
(2020), 314-341.

[5] J. D. Foley, An example of exploring coordinated SoS behavior with an
operad and algebra integrated with a constraint program, 2018.

[6] J. D. Foley, S. Breiner, E. Subrahmanian and J. M. Dusel, Operads for
complex system design specification, analysis and synthesis, Proc. R. Soc.
A 477 (2021), 20210099.

[7] J. Meseguer and U. Montanari, Petri nets are monoids, Inf. Comput. 88
(1990), 105-155.

[8] J. Moeller and C. Vasilakopoulou, Monoidal Grothendieck Construction,
Theor. Appl. Categ. 35 31 (2020), 1159-1207.

[9] D. Yau, Colored Operads, American Mathematical Society, Providence,
Rhode Island, 2016.

