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Three example applications motivate how typed operads address
three issues for complex system design:

Specification

Analysis Synthesis



The application domains:

Maritime search and rescue (SAR) architectures

Precision measurement system SAR tasking



Typed operads naturally appear in many contexts where n objects
are composed into a single object:

Operads Tree API Equations Systems
Types Edges Data types Variables Boundaries

Operations Nodes Methods Operators Architectures
Composites Trees Scripts Evaluation Nesting

Algebras Labels Implementations Values Models



A typed operad has

I a set T of types,

I sets of operations O(t1, ..., tn; t) where ti , t ∈ T ,

I ways to compose operations

f ◦ (g1, . . . , gn) ∈ O(t1i , . . . , t1k1 , . . . , tn1, . . . tnkn ; t),

I ways to permute the arguments of operations,

which obey some rules [9].



Specification becomes practical when simple, combinatorial
ingredients define functorial semantics:

Model : Syntax −→ Semantics

Here, we focus on specifying a typed operad for syntax.

Network models define how to overlay a specific kind of network
and put such networks side-by-side. For example, simple graphs

I overlay

⋃
=

I and are put side-by-side

∐
=



To construct a network operad:

I Define types of nodes C for your application
I Encode ways to combine these networks as a lax symmetric

monoidal functor F : S(C )→ Cat where S(C ) is free on C
I overlay ↔ composition in target categories
I put side-by-side ↔ lax structure maps

I Apply symmetric monoidal Grothendieck construction [1, 8]

I Let OF := op(
∫
F ) be the (typed) endomorphism operad:

op(C)(c1, . . . , ck ; c) := homC(c1 ⊗ · · · ⊗ ck , c)

Theorem (Baez, F, Moeller, Pollard, [1])

The composite functor

NetMod

∫
−→ SSMC

op(−)−−−→ TypedOp

constructs a network operad OF for each network model F .



Once specification of a network model from simple, combinatorial
ingredients is codified in a theorem–e.g.

Theorem (Baez, F, Moeller, Pollard, [1])

There is a functor
Γ: Mon→ NetMod

sending each monoid M to a network model Γ(M) : S→Mon.

the construction can be reused in many contexts.

For example, to specify the atomic types (C ) and relationships
between types (family of monoids) for search and rescue:



Compositionality guarantees coherent analysis.

That is, multiple, complementary analyses can be conducted.

W = diagram for analyzes =

In particular, different semantic models can address different
aspects of a design problem–e.g. function vs. control.



From the functional perspective, we can analyze the impact of
component failure:

Pf
LengthSys 7→ 40%

Pg
Sensors 7→ 28%

TempSys 7→ 60% Actuators 7→ 72%

Pl

Intfr 7→ 10%

Ps

Lab 7→ 21.4%
Optics 7→ 30% Bath 7→ 21.4%
Chassis 7→ 60% Optics 7→ 42.9%

Pt

Bath 7→ 80% Intfr 7→ 14.3%
Box 7→ 10%

Pa
Chassis 7→ 33.3%

Lab 7→ 10% Bath 7→ 66.7%

Semantics in the operad of probabilities W → Prob, in which
relative probabilities compose by multiplication, describe how
components contribute to failure probability.



From the control perspective, we can analyze dynamics.

For example, the laser interaction is parameterized by

I Tlaser := temperature

I Plaser := pressure

I RHlaser := relative humidity

I λ0 := laser wavelength (in vacuum)

which varies dynamically for t ∈ τ

Traj(laser) ∼= ([−273.15,∞)]×[0,∞)]×[0, 1])τ×[0,∞) ⊆ (R3)τ×R,

coupling Chassis, Intfr, and Box.

Semantics in the operad of relations W → Rel describe possible
behaviors for joint interaction and component states.



Both semantic models leverage limited focus:

I W is only a small fragment of the operad of port graphs [3]

I this means only the specific semantics for the problem at hand
need to be defined

I W could be extended for more detailed analyzes

which is controlled by limiting syntax.

Each model leverages a specific filter

I failure probability semantics are simple, modeled in Prob

I semantics for dynamics are more sophisticated, modeled in
Rel, in the tradition of Jan Willems’s behavioral approach

which is controlled by the semantic model.

Check out our paper [6] for brief discussion of using natural
transformations as a ‘filter of filters’.



In theory, synthesis is straightforward when simple objects and
morphisms generate syntax.

A Petri net declares primitive tasks and how they fit together:

I Transitions (squares) define primitive tasks τi ∈ T

I Arcs indicate types involved in τi
I Species (circles) are coordination locations.

Petri nets are sufficient to coordinate multiple agent types [2, 5]
and known to generate monoidal categories [4, 7].



That is, Petri nets provide simple, combinatorial ingredients to
define a network model to task agents.

The construction of the network model Λ: S(C )→ Cat:

I C := set of token colors

I Transitions must preserve the number of tokens of each color

I Λ(c1 ⊗ · · · ⊗ cn) := allowed behaviors for assembled agents

Theorem (F, [5])

There is network model Λ: S(C )→ Cat with

Λ(c1 ⊗ · · · ⊗ cn) ⊂ Free(T )n

s.t. each projection is a sequence of tasks for a single agent and T
is the set of transitions in a colored Petri net.



For example:

I Λ(HC130) := 〈a, b, c, d〉 ⊂ Free(T )

I Λ(UH60) := 〈a, b, c , d , τ1 : a→ c , τ2 : b → c〉 ⊂ Free(T )

but Λ(HC130⊗ UH60) ⊂ Free(T )× Free(T ) is generated by

I all pairs (f , g), (g , f ) s.t. f ∈ Λ(HC130), g ∈ Λ(UH60)

I (τ3 : c → c , τ3 : c → c), a new joint behavior



We prototyped automated synthesis with a constraint program.

Idea: enforce type matching

I Types → boolean vectors mj

I || composition → boolean Σj

To compute target of morphism:

mj+1 = mj + MΣj

To match target to source:

mj+1 ≥ MsΣj+1

NB: inequality allows for identities.

More tasks become possible with
more agents and the dimensions of

M(−) and Ms(−) increase.

In practice, the direct translation to a constraint program is not
computationally efficient, so more research is needed.



We discussed how 3 examples address issues for automated design:

I Specification

I Analysis

I Synthesis

To make automated design synthesis practical, these three threads
will need to be woven together.

Specification

Analysis Synthesis

Generators
Composit

ionality

Scalability



There are many directions for further research:

I More systematic methods to specify semantics?

I More examples of focused analysis for complex systems?

I Unify analytic and synthetic perspectives?

I Exploit multiple representations for computational efficiency?

Check out our paper [6] for further discussion.



THANK YOU!

Further reading:

I Operads for complex system design specification, analysis and
synthesis [6]

I Network models [1]

I Modeling hierarchical system with operads [3]

I Network models from Petri nets with catalysts [2]
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