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Three example applications motivate how typed operads address
three issues for complex system design:

Specification
o0 o0
{‘colors’ : [‘port’, ‘cut’, ..., ‘gd'],
‘directed’ : {
‘carrying’: { ° Cut
veut’: [‘port’], e Helo
‘boat’: [‘port’, ‘cut’], e QD
‘qd’: [‘cut’, ..., ‘helo’] } } } oo
e

Analysis Synthesis
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The application domains:

Maritime search and rescue (SAR) architectures
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Typed operads naturally appear in many contexts where n objects
are composed into a single object:

Operads Tree API Equations Systems
Types Edges Data types Variables Boundaries
Operations | Nodes Methods Operators  Architectures
Composites | Trees Scripts Evaluation Nesting
Algebras | Labels Implementations Values Models
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A typed operad has
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» aset T of types,

» sets of operations O(t1, ..., t,; t) where tj, t € T,
» ways to compose operations

fo(gl,...,gn)e O(tl,',...,tlkl,...,tnl,...t,,kn;t),

> ways to permute the arguments of operations,

which obey some rules [9].



Specification becomes practical when simple, combinatorial
ingredients define functorial semantics:

Model: Syntax — Semantics

Here, we focus on specifying a typed operad for syntax.

Network models define how to overlay a specific kind of network
and put such networks side-by-side. For example, simple graphs

_ S L

» and are put side-by-side

L) Z

> overlay



To construct a network operad:

» Define types of nodes C for your application

» Encode ways to combine these networks as a lax symmetric
monoidal functor F: S(C) — Cat where S(C) is free on C

» overlay <> composition in target categories
> put side-by-side <> lax structure maps

» Apply symmetric monoidal Grothendieck construction [1, 8]

» Let O := op(f F) be the (typed) endomorphism operad:
op(C)(c1,- .-, ¢k €) :=homc(c1 ® -+ ® ¢k, €)

Theorem (Baez, F, Moeller, Pollard, [1])

The composite functor

NetMod 25 SSMC 2= TypedOp

constructs a network operad Of for each network model F.



Once specification of a network model from simple, combinatorial
ingredients is codified in a theorem—e.g.

Theorem (Baez, F, Moeller, Pollard, [1])
There is a functor

[: Mon — NetMod

sending each monoid M to a network model '(M): S — Mon.

the construction can be reused in many contexts.

For example, to specify the atomic types (C) and relationships
between types (family of monoids) for search and rescue:

{‘colors’ :
‘directed’ :

‘cut’ :
‘boat”’

ceey
‘gd’

[ ‘port”, ‘cut’,

{

‘carrying’: {

[‘port’],
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Compositionality guarantees coherent analysis.
That is, multiple, complementary analyses can be conducted.
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In particular, different semantic models can address different
aspects of a design problem—e.g. function vs. control.



From the functional perspective, we can analyze the impact of
component failure:

LengthSys ~— 40% Sensors +—  28%
P ey P

*| TempSys + 60% || & | Actuators +— 72%
Intfr — 10% Lab — 21.4%
P, Optics = 30% p Bath —  21.4%
Chassis +— 60% || ° | Optics +— 42.9%
Bath —  80% Intfr — 14.3%
P, Box —  10% p Chassis +— 33.3%
Lab = 10% || ° Bath — 66.7%

Semantics in the operad of probabilities WW — Prob, in which
relative probabilities compose by multiplication, describe how
components contribute to failure probability.




From the control perspective, we can analyze dynamics.
For example, the laser interaction is parameterized by
> Tiaser := temperature
> Piaser := pressure
» RHyaser := relative humidity
» )\ := laser wavelength (in vacuum)

which varies dynamically for t € 7
Traj(1aser) = ([-273.15, 00)] %[0, 00)] x[0, 1])" %[0, 00) € (R3)" xR,

coupling Chassis, Intfr, and Box.

Semantics in the operad of relations YW — Rel describe possible
behaviors for joint interaction and component states.



Both semantic models leverage limited focus:
» W is only a small fragment of the operad of port graphs [3]

» this means only the specific semantics for the problem at hand
need to be defined

> W could be extended for more detailed analyzes
which is controlled by limiting syntax.
Each model leverages a specific filter
» failure probability semantics are simple, modeled in Prob

» semantics for dynamics are more sophisticated, modeled in
Rel, in the tradition of Jan Willems's behavioral approach

which is controlled by the semantic model.

Check out our paper [6] for brief discussion of using natural
transformations as a ‘filter of filters'.



In theory, synthesis is straightforward when simple objects and
morphisms generate syntax.

A Petri net declares primitive tasks and how they fit together:

T3 « UHE0
¥ HC130

UHG0 + BC 130 U'I-6 + HC130
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» Transitions (squares) define primitive tasks 7, € T

» Arcs indicate types involved in 7;

» Species (circles) are coordination locations.

Petri nets are sufficient to coordinate multiple agent types [2, 5]
and known to generate monoidal categories [4,7].



That is, Petri nets provide simple, combinatorial ingredients to
define a network model to task agents.

The construction of the network model A: S(C) — Cat:
» C := set of token colors
» Transitions must preserve the number of tokens of each color

» AN(cp ® -+ ® ¢p) := allowed behaviors for assembled agents

Theorem (F, [5])
There is network model \: S(C) — Cat with

Nca ®---®cy) C Free(T)"

s.t. each projection is a sequence of tasks for a single agent and T
is the set of transitions in a colored Petri net.



For example:

» A(HC130) := (a, b, c,d) C Free(T)

» A(UH60) := (a,b,c,d, 71: a— ¢, 72: b— c) C Free(T)
but A(HC130 ® UH60) C Free(T) x Free(T) is generated by

» all pairs (f,g), (g,f) s.t. f € A(HC130), g € A(UH60)

» (13: ¢ — ¢,73: ¢ — ¢), a new joint behavior

UHED
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We prototyped automated synthesis with a constraint program.

Idea: enforce type matching
» Types — boolean vectors m;
> || composition — boolean ¥;

To compute target of morphism:
mjy1 = mj + MZJ'
To match target to source:

mjiq > MSZJ+1

NB: inequality allows for identities.
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More tasks become possible with
more agents and the dimensions of

M(—) and M*(—) increase.
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In practice, the direct translation to a constraint program is not
computationally efficient, so more research is needed.



We discussed how 3 examples address issues for automated design:
» Specification
> Analysis
» Synthesis

To make automated design synthesis practical, these three threads
will need to be woven together.

Scalability

Analysis Synthesis



There are many directions for further research:

» More systematic methods to specify semantics?
> More examples of focused analysis for complex systems?
» Unify analytic and synthetic perspectives?

» Exploit multiple representations for computational efficiency?

Templates Core Meta-Model Exploitation libraries

.. | Evol. Algorithm

Check out our paper [6] for further discussion.



THANK YOU!

Further reading:

» Operads for complex system design specification, analysis and
synthesis [6]

» Network models [1]
» Modeling hierarchical system with operads [3]

» Network models from Petri nets with catalysts [2]

This work was supported by the DARPA Complex Adaptive System
Composition and Design Environment (CASCADE) project under
Contract No. N66001-16-C-4048.

We thank John Baez, Tony Falcone, Ben Long, Tom Mifflin, John
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