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What we did (summary)



Context

Treewidth A numerical invariant defined on graphs.

Uses: Robertson-Seymour graph minor theorem.

Applications:

• Courcelle’s theorem: every property of graphs
definable in MSOL is linear time decidable on graphs
of bounded treewidth.
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Context

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

• ... for hypergraphs and digraphs;
• ... for temporal graphs (edge sets change over time);
• ... and even fractional graphs.
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The Problem

Obtaining treewidth analogues for other structures:
useful and possible.

But ad-hoc. We wanted:

• A categorial description capturing its meaning1

• A uniform, categorial construction.

1its use: dixit Wittgenstein
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Treewidth as Functor

We define

• Spined categories: categories with some extra
structure.

• Spined functors preserve this extra structure.
• Examples: Grphm, HGrphm, posets (Nat), etc.
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Treewidth as Functor

We prove the following
Theorem
Given a spined category C, either

• There are no spined functors F : C → Nat; or
• there is a distinguished functor (to be characterized

later) ∆C : C → Nat.

Moreover,

• ∆Grphm is treewidth,
• ∆HGrphm is hypergraph treewidth,

and so on.
6



Treewidth, briefly



Warning

Beware! By graph, we mean a combinatorist’s graph:

• Finite
• Irreflexive
• Undirected
• Without parallel edges

This clashes with the category theory convention. In
particular, our category of graphs is not a quasitopos.2

2We can take some limits as if we were reflexive. You’ll see.
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Treewidth: intuition

• Treewidth: a number tw(G) describing each graph G.
• Captures how ”tree-like” the global structure is.
• Trees are the graphs of treewidth 2. 3

• Lower treewidth → more tree-like

3Cf. sets having h-level 2 in HoTT
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Example: Tree-like graphs
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Example: Tree-like graphs
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Compare: Complete graph on 37 vertices
(treewidth 37)
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The starting point

Figure 1: tw(B +P R) = max{tw(B), tw(R)} 11



Spined Categories



Idea: Treewidth as Functor

Suggestive identity:

tw(B +P R) = max{tw(B), tw(R)}

Idea: tw as pushout-preserving functor Grph → N≤
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Issue 1: Homomorphisms

Issue: Graph homomorphisms do not preserve treewidth.

There is a graph homomorphism C4 → C2, but we don’t
have

tw(C4) ≤ tw(C2)
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Solution 1

Observation: Graph monomorphisms do preserve
treewidth. If G ↪→ H, then tw(G) ≤ tw(H).

Naive solution: Consider the category Grphm that has

• Objects: simple graphs.
• Morphisms: monomorphisms of simple graphs.

and characterize tw as some kind of pushout-preserving
functor

tw : Grphm → N≤

Easy, right?!
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Issue 2
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Issue 2: No Pushouts

The category Grphm lacks pushouts. Consider

K1 K2

K2 K2 +1 K2

K2

where Kn is the complete graph on n vertices, i.e.
K1 is • and K2 is • •.
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Solution 2: Proxy Pushouts

Grphm remembers something about the existence of
pushouts in Grph

Proxy pushouts: the categorial ingredient, axiomatizes
what Grphm remembers.

Spine: the combinatorial ingredient, axiomatizes
”complete” objects Ωn: think ”complete graphs”.

17



Solution 2: Proxy Pushouts

Grphm remembers something about the existence of
pushouts in Grph

Proxy pushouts: the categorial ingredient, axiomatizes
what Grphm remembers.

Spine: the combinatorial ingredient, axiomatizes
”complete” objects Ωn: think ”complete graphs”.

17



Spined Categories I

Definition
A spined category consists of a category C equipped with
the following additional structure:

• a sequence Ω : N → ob C called the spine of C,

• an operation P (called the proxy pushout) that
extends every diagram of the form
G Ωn Hg h in C

to a distinguished commutative square
Ωn G

H P(g, h)
h

g

P(g,h)h

P(g,h)g

so that the following two conditions hold:
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Spined Categories

Definition (cont.)
... so that the following two conditions hold:
SC1: If X ∈ ob C we have n ∈ N such that C(X,Ωn) ̸= ∅.

SC2: Given any diagram of the form

Ωn G G′

H P(g, h)

H′ P(g′ ◦ g, h′ ◦ h)

h

g g′

P(g,h)g

P(g′◦g,h′◦h)g′◦g

h′

P(g,h)h

P(g′◦g,h′◦h)h′◦h
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Spined Categories

Definition (cont.)
... so that the following two conditions hold:
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Spined Functor

The obvious notion of morphism between spined categories.
Definition
Consider spined categories (C,ΩC,PC) and (D,ΩD,PD).
We call a functor F : C → D a spined functor if it

1. preserves the spine, i.e. F ◦ ΩC = ΩD, and
2. preserves proxy pushouts, i.e. the F-image of every

proxy pushout square in C is a proxy pushout square
in D.

One can state the latter equationally, by demanding that
the equalities F[PC(g, h)] = PD(Fg,Fh),
FPC(g, h)g = PD(Fg,Fh)Fg and
FPC(g, h)h = PD(Fg,Fh)Fh all hold. 19



Examples

The poset N≤ regarded as a category, with

Spine: Ωn = n
Proxy pushouts: pushouts (i.e. suprema)

We denote this spined category Nat. It will play an
important role as the codomain of our ”abstract treewidth”!
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Examples

The category Grphm (simple graphs and monomorphisms),
with
Spine: Ωn = Kn, the complete graph on n vertices
Proxy pushouts: the proxy pushout

Ωn G

H P(g, h)
h

g

P(g,h)h

P(g,h)g

is just the pushout square in Grph.
Similarly for HGrphm (hypergraphs and monomorphisms).
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Other Examples

• The category FinSetm (sets and monomorphisms) with
Ωn denoting the n-element set, and proxy pushouts as
in Set.

• The poset Ndiv, with least common multiples as proxy
pushouts,

Ωn =
∏
p≤n

pn

where p ranges over the primes.
• Many other combinatorial examples...
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Treewidth as Functor



Easy Observations

The map that sends each graph to the size of its largest
complete subgraph is a spined functor ω : Grphm → Nat.

From here on we focus on spined categories C such that
there exists at least one s : C → Nat.
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Triangulation Functor

We define a distinguished S-functor ∆C : C → Nat on each
category C with some s : C → Nat. This will...

• ... be canonical, and constructed uniformly.
• ... satisfy a maximality property.
• ... coincide with treewidth when C = Grphm.
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Pseudo-chordal Objects

Definition
Take an object X ∈ ob C. We call X pseudo-chordal if for
any two spined functors F,G : C → Nat, we have

F[X] = G[X].

I.e. if all treewidth-like functors agree on X.

We “know the treewidth” of pseudo-chordal objects X:

∆C[X] = s[X].
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Triangulation Functor

We can use pseudo-chordal objects as “test objects” to
define ∆C on all other objects.

Definition
We define the triangulation functor ∆C : C → Nat via

∆C[X] = inf {∆C[H] | ∃f : X → H s.t. H is pseudo-chordal}

for each X ∈ ob C.
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Main Theorem

Theorem
The triangulation functor ∆C : C → Nat is

• a functor C → Nat.
• a spined functor on C.
• the object-wise maximal spined functor C → Nat.
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Main Theorem: Proof

Just stare at the following diagram ;)
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Treewidth as Functor, Finally

Theorem
1. ∆Grphm coincides with treewidth.
2. ∆HGrphm coincides with hypergraph treewidth.
3. A similar category of modular graphs yields modular

treewidth.
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Computing ∆C

Consider a spined category (C,Ω,P) such that

1. All Hom-sets C(X,Y) are finite and enumerable;
2. Equality of morphisms is decidable and ◦ is

computable;
3. Proxy pushouts P(g, h) are computable;
4. C has finitely many objects over Ωn (up to iso).

There is a uniform (but slooow) algorithm that computes
∆C that works in any such category C.

https://github.com/zaklogician/act2021-code
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Conclusion

Payoff

We get “abstract tree decompositions”: we can write
algorithms for objects of bounded ∆C just like we do for
graphs of bounded treewidth.

Future work

• Work out more specific examples.
• Dualize! ”subgraphs :: treewidth” as ”colorings :: ???”.
• Relation with Baez and Courser’s Structured Cospans?
• Aspiration: a categorial Courcelle’s Theorem
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Thanks!
Questions?
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Appendix: Why not...

• Adhesive categories? What goes wrong? Posets are
never adhesive, so we would not have a codomain for
∆.

• Algebraic and order-theoretic examples?
Seemingly difficult. By dualizing, we might have
something for finitely presented groups, but details
have to be worked out.

• Algebraic issues? Pushouts arise from free products
in algebraic theories. These tend to be infinite. But
when not (e.g. bounded join-semilattices), you need to
choose a spine carefully to avoid measurability issues.

• Spatial, topological examples? I’m very hopeful
(but note that finite topology is order theory).



Appendix: Glossary

• Robertson-Seymour theorem: the ”set” of
undirected graphs, when partially ordered by the
graph minor relation, is well-quasi-ordered. (E.g.
Wagner’s forbidden minors, K5 and K3,3 as
obstructions to planarity!)

• Kruskal’s tree theorem: Robertson-Seymour for
trees. Much easier to prove.

• Courcelle’s theorem: Every graph property
definable in MSO is decidable in linear time on graphs
of bounded treewidth.



Appendix: Treewidth Definition 1

Treewidth has many equivalent definitions.

• Most useful: via tree decompositions.
• Most relevant: via chordal completion.
• The latter is easier to understand.



Appendix: Treewidth Definition 2

Definition
A graph G is chordal if every cycle C ⊆ G (of length > 3)
has a chord: an edge of G connecting two non-consecutive
vertices of C

Figure 2: The graph on the left is not chordal. The graph on
the right is chordal.



Appendix: Treewidth Definition 3

Definition
Given G ↪→ H such that H is chordal, we say that H is a
chordal completion of G. The treewidth of G is the size of
the largest complete graph that occurs (as a subgraph) in
every chordal completion of G.

In combinatorics, one usually adds −1 here.



Appendix: Treewidth Example



Appendix: Treewidth as Functor: Proof*

Theorem
∆Grphm coincides with treewidth.

Proof.
1. ”Size of largest complete subgraph” is an S-functor

ω : Grphm → Nat.
2. If X has a pseudo-chordal completion Y, then it also

has a chordal completion Y′ with ω(Y) = ω(Y′) (just
take the chordal completion of Y).

3. tw(X) is the size of the largest complete subgraph that
occurs in every chordal completion of X, so we’re done.



Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.



Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.



Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.



Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.



Appendix: Measurability Proofs*

• Spined categories interact nicely via spined functors.
• E.g. spined functors reflect measurability.
• HGrphm is measurable via the Gaifman functor

G : HGrphm → Grphm + existence of ∆Grphm

• FinSetm is not: via the functor that forgets edges
V : Grphm → FinSetm + maximality of ∆Grphm



Appendix: Measurability Proofs*

• Spined categories interact nicely via spined functors.
• If C is measurable, and there is F : D → C, then D is

measurable.
• HGrphm is measurable: the Gaifman functor

HGrphm → Grphm that sends each hypergraph to its
graph skeleton is spined.

• FinSetm is not measurable: the functor that forgets
edges, Grphm → FinSetm is spined. But generally
tw(X) ̸≥ |V(X)|.



Appendix: An open question

Consider the category which has

Objects: finite posets
Morphisms: order embeddings

equipped with the usual pushout construction.

Is there a spine which turns this into a measurable spined
category?
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