
Treewidth via Spined Categories
Zoltan A. Kocsis (CSIRO)

ACT 2021, Cambridge, UK
15 July 2021

joint work with Benjamin Merlin Bumpus (University of Glasgow)

Papers please

Z. A. K., Benjamin Merlin Bumpus:
Treewidth via Spined Categories
(this talk)
arXiv:2105.05372

Benjamin Merlin Bumpus, Z. A. K.:
Spined categories: generalizing tree-width beyond
graphs
(journal article, submitted)
arXiv:2104.01841

www.existence.property

1

What we did (summary)

Context

Treewidth A numerical invariant defined on graphs.

Uses: Robertson-Seymour graph minor theorem.

Applications:

• Courcelle’s theorem: every property of graphs
definable in MSOL is linear time decidable on graphs
of bounded treewidth.

2

Context

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

• ... for hypergraphs and digraphs;
• ... for temporal graphs (edge sets change over time);
• ... and even fractional graphs.

3

Context

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

• ... for hypergraphs and digraphs;

• ... for temporal graphs (edge sets change over time);
• ... and even fractional graphs.

3

Context

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

• ... for hypergraphs and digraphs;
• ... for temporal graphs (edge sets change over time);

• ... and even fractional graphs.

3

Context

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

• ... for hypergraphs and digraphs;
• ... for temporal graphs (edge sets change over time);
• ... and even fractional graphs.

3

The Problem

Obtaining treewidth analogues for other structures:
useful and possible.

But ad-hoc. We wanted:

• A categorial description capturing its meaning1

• A uniform, categorial construction.

1its use: dixit Wittgenstein
4

The Problem

Obtaining treewidth analogues for other structures:
useful and possible.

But ad-hoc. We wanted:

• A categorial description capturing its meaning1

• A uniform, categorial construction.

1its use: dixit Wittgenstein
4

Treewidth as Functor

We define

• Spined categories: categories with some extra
structure.

• Spined functors preserve this extra structure.
• Examples: Grphm, HGrphm, posets (Nat), etc.

5

Treewidth as Functor

We prove the following
Theorem
Given a spined category C, either

• There are no spined functors F : C → Nat; or
• there is a distinguished functor (to be characterized

later) ∆C : C → Nat.

Moreover,

• ∆Grphm is treewidth,
• ∆HGrphm is hypergraph treewidth,

and so on.
6

Treewidth, briefly

Warning

Beware! By graph, we mean a combinatorist’s graph:

• Finite
• Irreflexive
• Undirected
• Without parallel edges

This clashes with the category theory convention. In
particular, our category of graphs is not a quasitopos.2

2We can take some limits as if we were reflexive. You’ll see.
7

Treewidth: intuition

• Treewidth: a number tw(G) describing each graph G.
• Captures how ”tree-like” the global structure is.
• Trees are the graphs of treewidth 2. 3

• Lower treewidth → more tree-like

3Cf. sets having h-level 2 in HoTT
8

Example: Tree-like graphs

9

Example: Tree-like graphs

9

Example: Tree-like graphs

9

Compare: Complete graph on 37 vertices
(treewidth 37)

10

The starting point

Figure 1: tw(B +P R) = max{tw(B), tw(R)} 11

Spined Categories

Idea: Treewidth as Functor

Suggestive identity:

tw(B +P R) = max{tw(B), tw(R)}

Idea: tw as pushout-preserving functor Grph → N≤

12

Idea: Treewidth as Functor

Suggestive identity:

tw(B +P R) = max{tw(B), tw(R)}

Idea: tw as pushout-preserving functor Grph → N≤

12

Issue 1: Homomorphisms

Issue: Graph homomorphisms do not preserve treewidth.

There is a graph homomorphism C4 → C2, but we don’t
have

tw(C4) ≤ tw(C2)

13

Solution 1

Observation: Graph monomorphisms do preserve
treewidth. If G ↪→ H, then tw(G) ≤ tw(H).

Naive solution: Consider the category Grphm that has

• Objects: simple graphs.
• Morphisms: monomorphisms of simple graphs.

and characterize tw as some kind of pushout-preserving
functor

tw : Grphm → N≤

Easy, right?!

14

Issue 2

15

Issue 2: No Pushouts

The category Grphm lacks pushouts. Consider

K1 K2

K2 K2 +1 K2

K2

where Kn is the complete graph on n vertices, i.e.
K1 is • and K2 is • •.

16

Solution 2: Proxy Pushouts

Grphm remembers something about the existence of
pushouts in Grph

Proxy pushouts: the categorial ingredient, axiomatizes
what Grphm remembers.

Spine: the combinatorial ingredient, axiomatizes
”complete” objects Ωn: think ”complete graphs”.

17

Solution 2: Proxy Pushouts

Grphm remembers something about the existence of
pushouts in Grph

Proxy pushouts: the categorial ingredient, axiomatizes
what Grphm remembers.

Spine: the combinatorial ingredient, axiomatizes
”complete” objects Ωn: think ”complete graphs”.

17

Spined Categories I

Definition
A spined category consists of a category C equipped with
the following additional structure:

• a sequence Ω : N → ob C called the spine of C,

• an operation P (called the proxy pushout) that
extends every diagram of the form
G Ωn Hg h in C

to a distinguished commutative square
Ωn G

H P(g, h)
h

g

P(g,h)h

P(g,h)g

so that the following two conditions hold:

18

Spined Categories I

Definition
A spined category consists of a category C equipped with
the following additional structure:

• a sequence Ω : N → ob C called the spine of C,
• an operation P (called the proxy pushout) that

extends every diagram of the form
G Ωn Hg h in C

to a distinguished commutative square
Ωn G

H P(g, h)
h

g

P(g,h)h

P(g,h)g

so that the following two conditions hold:

18

Spined Categories I

Definition
A spined category consists of a category C equipped with
the following additional structure:

• a sequence Ω : N → ob C called the spine of C,
• an operation P (called the proxy pushout) that

extends every diagram of the form
G Ωn Hg h in C

to a distinguished commutative square
Ωn G

H P(g, h)
h

g

P(g,h)h

P(g,h)g

so that the following two conditions hold: 18

Spined Categories

Definition (cont.)
... so that the following two conditions hold:
SC1: If X ∈ ob C we have n ∈ N such that C(X,Ωn) ̸= ∅.

SC2: Given any diagram of the form

Ωn G G′

H P(g, h)

H′ P(g′ ◦ g, h′ ◦ h)

h

g g′

P(g,h)g

P(g′◦g,h′◦h)g′◦g

h′

P(g,h)h

P(g′◦g,h′◦h)h′◦h

18

Spined Categories

Definition (cont.)
... so that the following two conditions hold:
SC1: If X ∈ ob C we have n ∈ N such that C(X,Ωn) ̸= ∅.
SC2: Given any diagram of the form

Ωn G G′

H P(g, h)

H′ P(g′ ◦ g, h′ ◦ h)

h

g g′

P(g,h)g

P(g′◦g,h′◦h)g′◦g

h′

P(g,h)h

P(g′◦g,h′◦h)h′◦h

18

Spined Categories

Definition (cont.)
... so that the following two conditions hold:
SC1: If X ∈ ob C we have n ∈ N such that C(X,Ωn) ̸= ∅.
SC2: Given any diagram of the form

Ωn G G′

H P(g, h)

H′ P(g′ ◦ g, h′ ◦ h)

h

g g′

P(g,h)g

P(g′◦g,h′◦h)g′◦g

h′

P(g,h)h
(g′,h′)

P(g′◦g,h′◦h)h′◦h

∃!(g′, h′) : P(g, h) → P(g′ ◦ g, h′ ◦ h) making it commute.
18

Spined Functor

The obvious notion of morphism between spined categories.
Definition
Consider spined categories (C,ΩC,PC) and (D,ΩD,PD).
We call a functor F : C → D a spined functor if it

1. preserves the spine, i.e. F ◦ ΩC = ΩD, and
2. preserves proxy pushouts, i.e. the F-image of every

proxy pushout square in C is a proxy pushout square
in D.

One can state the latter equationally, by demanding that
the equalities F[PC(g, h)] = PD(Fg,Fh),
FPC(g, h)g = PD(Fg,Fh)Fg and
FPC(g, h)h = PD(Fg,Fh)Fh all hold. 19

Examples

The poset N≤ regarded as a category, with

Spine: Ωn = n
Proxy pushouts: pushouts (i.e. suprema)

We denote this spined category Nat. It will play an
important role as the codomain of our ”abstract treewidth”!

20

Examples

The category Grphm (simple graphs and monomorphisms),
with
Spine: Ωn = Kn, the complete graph on n vertices
Proxy pushouts: the proxy pushout

Ωn G

H P(g, h)
h

g

P(g,h)h

P(g,h)g

is just the pushout square in Grph.
Similarly for HGrphm (hypergraphs and monomorphisms).

21

Other Examples

• The category FinSetm (sets and monomorphisms) with
Ωn denoting the n-element set, and proxy pushouts as
in Set.

• The poset Ndiv, with least common multiples as proxy
pushouts,

Ωn =
∏
p≤n

pn

where p ranges over the primes.
• Many other combinatorial examples...

22

Treewidth as Functor

Easy Observations

The map that sends each graph to the size of its largest
complete subgraph is a spined functor ω : Grphm → Nat.

From here on we focus on spined categories C such that
there exists at least one s : C → Nat.

23

Triangulation Functor

We define a distinguished S-functor ∆C : C → Nat on each
category C with some s : C → Nat. This will...

• ... be canonical, and constructed uniformly.
• ... satisfy a maximality property.
• ... coincide with treewidth when C = Grphm.

24

Pseudo-chordal Objects

Definition
Take an object X ∈ ob C. We call X pseudo-chordal if for
any two spined functors F,G : C → Nat, we have

F[X] = G[X].

I.e. if all treewidth-like functors agree on X.

We “know the treewidth” of pseudo-chordal objects X:

∆C[X] = s[X].

25

Pseudo-chordal Objects

Definition
Take an object X ∈ ob C. We call X pseudo-chordal if for
any two spined functors F,G : C → Nat, we have

F[X] = G[X].

I.e. if all treewidth-like functors agree on X.

We “know the treewidth” of pseudo-chordal objects X:

∆C[X] = s[X].

25

Triangulation Functor

We can use pseudo-chordal objects as “test objects” to
define ∆C on all other objects.

Definition
We define the triangulation functor ∆C : C → Nat via

∆C[X] = inf {∆C[H] | ∃f : X → H s.t. H is pseudo-chordal}

for each X ∈ ob C.

26

Main Theorem

Theorem
The triangulation functor ∆C : C → Nat is

• a functor C → Nat.
• a spined functor on C.
• the object-wise maximal spined functor C → Nat.

27

Main Theorem: Proof

Just stare at the following diagram ;)

28

Treewidth as Functor, Finally

Theorem
1. ∆Grphm coincides with treewidth.
2. ∆HGrphm coincides with hypergraph treewidth.
3. A similar category of modular graphs yields modular

treewidth.

29

Computing ∆C

Consider a spined category (C,Ω,P) such that

1. All Hom-sets C(X,Y) are finite and enumerable;
2. Equality of morphisms is decidable and ◦ is

computable;
3. Proxy pushouts P(g, h) are computable;
4. C has finitely many objects over Ωn (up to iso).

There is a uniform (but slooow) algorithm that computes
∆C that works in any such category C.

https://github.com/zaklogician/act2021-code

30

Conclusion

Payoff

We get “abstract tree decompositions”: we can write
algorithms for objects of bounded ∆C just like we do for
graphs of bounded treewidth.

Future work

• Work out more specific examples.
• Dualize! ”subgraphs :: treewidth” as ”colorings :: ???”.
• Relation with Baez and Courser’s Structured Cospans?
• Aspiration: a categorial Courcelle’s Theorem

31

Thanks!
Questions?

31

Appendix: Why not...

• Adhesive categories? What goes wrong? Posets are
never adhesive, so we would not have a codomain for
∆.

• Algebraic and order-theoretic examples?
Seemingly difficult. By dualizing, we might have
something for finitely presented groups, but details
have to be worked out.

• Algebraic issues? Pushouts arise from free products
in algebraic theories. These tend to be infinite. But
when not (e.g. bounded join-semilattices), you need to
choose a spine carefully to avoid measurability issues.

• Spatial, topological examples? I’m very hopeful
(but note that finite topology is order theory).

Appendix: Glossary

• Robertson-Seymour theorem: the ”set” of
undirected graphs, when partially ordered by the
graph minor relation, is well-quasi-ordered. (E.g.
Wagner’s forbidden minors, K5 and K3,3 as
obstructions to planarity!)

• Kruskal’s tree theorem: Robertson-Seymour for
trees. Much easier to prove.

• Courcelle’s theorem: Every graph property
definable in MSO is decidable in linear time on graphs
of bounded treewidth.

Appendix: Treewidth Definition 1

Treewidth has many equivalent definitions.

• Most useful: via tree decompositions.
• Most relevant: via chordal completion.
• The latter is easier to understand.

Appendix: Treewidth Definition 2

Definition
A graph G is chordal if every cycle C ⊆ G (of length > 3)
has a chord: an edge of G connecting two non-consecutive
vertices of C

Figure 2: The graph on the left is not chordal. The graph on
the right is chordal.

Appendix: Treewidth Definition 3

Definition
Given G ↪→ H such that H is chordal, we say that H is a
chordal completion of G. The treewidth of G is the size of
the largest complete graph that occurs (as a subgraph) in
every chordal completion of G.

In combinatorics, one usually adds −1 here.

Appendix: Treewidth Example

Appendix: Treewidth as Functor: Proof*

Theorem
∆Grphm coincides with treewidth.

Proof.
1. ”Size of largest complete subgraph” is an S-functor

ω : Grphm → Nat.
2. If X has a pseudo-chordal completion Y, then it also

has a chordal completion Y′ with ω(Y) = ω(Y′) (just
take the chordal completion of Y).

3. tw(X) is the size of the largest complete subgraph that
occurs in every chordal completion of X, so we’re done.

Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.

Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.

Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.

Computing ∆C: Idea*

• Pseudo-chordal objects are hard to find: you need to
know all S-functors to begin with.

• But main theorem relies on two properties: Ωn is
pseudo-chordal, and pseudo-chordal objects are closed
under proxy pushouts.

• Pseudo-chordals form the largest set with these two
properties!

• Using computational assumptions, we can construct
the smallest set with these two properties inductively!

• This yields a (slooow) algorithm to compute ∆C.

Appendix: Measurability Proofs*

• Spined categories interact nicely via spined functors.
• E.g. spined functors reflect measurability.
• HGrphm is measurable via the Gaifman functor

G : HGrphm → Grphm + existence of ∆Grphm

• FinSetm is not: via the functor that forgets edges
V : Grphm → FinSetm + maximality of ∆Grphm

Appendix: Measurability Proofs*

• Spined categories interact nicely via spined functors.
• If C is measurable, and there is F : D → C, then D is

measurable.
• HGrphm is measurable: the Gaifman functor

HGrphm → Grphm that sends each hypergraph to its
graph skeleton is spined.

• FinSetm is not measurable: the functor that forgets
edges, Grphm → FinSetm is spined. But generally
tw(X) ̸≥ |V(X)|.

Appendix: An open question

Consider the category which has

Objects: finite posets
Morphisms: order embeddings

equipped with the usual pushout construction.

Is there a spine which turns this into a measurable spined
category?

	What we did (summary)
	Treewidth, briefly
	Spined Categories
	Treewidth as Functor
	Appendix

