A Canonical Algebra of Open Transition Systems

Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini
and Paweł Sobociński

Applied Category Theory 2021
University of Cambridge.

arXiv: 2010.10069
Part 1: Spans of Graphs
Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.
Span (Graph), algebra of open transition systems

Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.
Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.
Span (Graph), algebra of open transition systems

Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.

How to model this situation?
Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.

How to model this situation?
Span (Graph), algebra of open transition systems

Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.

How to model this situation?
Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.

How to model this situation?
Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.

How to model this situation?
Span (Graph), algebra of open transition systems

Many systems do not communicate by I/O message passing, but by synchronization on a common boundary.

How to model this situation?
Span (Graph):

- Compositional, stateful transition systems.
- Synchronization by composition.
- Transition systems are encoded as graphs.
- Boundaries may be single-vertex graphs, $\text{Span} (\text{Graph})_\ast$.
Span(Graph), algebra of open transition systems

Span(Graph):

- Compositional, stateful transition systems.
- Synchronization by composition.
- Transition systems are encoded as graphs.
- Boundaries may be single-vertex graphs, Span(Graph)_*.

Ad hoc?
Part 2: Stateful Morphisms
The \(\text{St}(\cdot) \) construction

Definition. For \((C, \otimes, I)\) symmetric monoidal,

\[
\text{St}(C)(A,B) := \{(S, \psi) \mid S \in \text{ob}C, \quad \psi: S \otimes A \to S \otimes B \}/\sim,
\]

quotiented by the equivalence relation

\[
\left(\begin{array}{c}
\begin{array}{c}
S \\
\downarrow \\
\psi \\
\downarrow \\
S
\end{array}
\end{array} \right) \sim
\left(\begin{array}{c}
\begin{array}{c}
T \\
\downarrow \\
\psi \\
\downarrow \\
T
\end{array}
\end{array} \right)
\]

where \(\psi: S \cong T \) is any isomorphism.

Diagrammatic algebra: from linear to concurrent systems. Bonchi, Holland, et al.
Memoryful geometry of interaction. Hoshino, Muroya, Hasuo.
The \textit{St}() construction

Composition is given by:

\[
\left(\begin{array}{c}
S \\
A \\
B
\end{array} \right) \psi
\left(\begin{array}{c}
S \\
T \\
B \\
C
\end{array} \right) = \left(\begin{array}{c}
S \otimes T \\
A \\
B \\
C
\end{array} \right).
\]

Tensoring is given by:

\[
\left(\begin{array}{c}
S \\
A \\
B
\end{array} \right) \otimes \left(\begin{array}{c}
S' \\
A' \\
B'
\end{array} \right) = \left(\begin{array}{c}
S \otimes S' \\
A \\
B \\
A' \\
B'
\end{array} \right).
\]

Universal property?

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
The \(\text{St}(\cdot) \) construction

\[
\text{St}(\text{Set}_x) : \quad S \times A \rightarrow S \times B \quad \text{Mealy transition system}
\]

\[
\text{St}(\text{Set}_+) : \quad S + A \rightarrow S + B \quad \text{Elgot transition system}
\]

\[
\text{St}(\text{Rel}_x) : \quad S \times A \rightarrow P(S \times B) \quad \text{Non-deterministic transition system}
\]
The $\text{St}(\cdot)$ construction

$\text{St}(\text{Set}_x)$: $S \times A \rightarrow S \times B$ Mealy transition system

$\text{St}(\text{Set}_+)$: $S + A \rightarrow S + B$ Elgot transition system

$\text{St}(\text{Rel}_x)$: $S \times A \rightarrow P(S \times B)$ Non-deterministic transition system

$\text{St}(\text{Span}((\text{Set})))$: $S \times A \leftrightarrow E \rightarrow S \times B$
The St(•) construction

\[\text{St}(\text{Set}_x) : S \times A \rightarrow S \times B \] Mealy transition system

\[\text{St}(\text{Set}_+) : S + A \rightarrow S + B \] Elgot transition system

\[\text{St}(\text{Rel}_x) : S \times A \rightarrow \mathcal{P}(S \times B) \] Non-deterministic transition system

\[\text{St}(\text{Span}(\text{Set})) : A \leftarrow E \rightarrow B \]
The $\text{St}(\cdot)$ construction

$\text{St}(\text{Set}_x) : S \times A \rightarrow S \times B$
$\text{St}(\text{Set}_+) : S + A \rightarrow S + B$
$\text{St}(\text{Rel}_x) : S \times A \rightarrow \mathcal{P}(S \times B)$
$\text{St} (\text{Span} (\text{Set}))$:

Non-deterministic transition system

Mealy transition system

Elgot transition system
The $\text{St}()$ construction

$\text{St}(\text{Set}_x) : \quad S \times A \to S \times B$ \quad \text{Mealy transition system}

$\text{St}(\text{Set}_+) : \quad S + A \to S + B$ \quad \text{Elgot transition system}

$\text{St}(\text{Rel}_x) : \quad S \times A \to P(S \times B)$ \quad \text{Non-deterministic transition system}

$\text{St}(\text{Span}(\text{Set})) : \quad \begin{array}{ccc}
A & \leftarrow & E \rightarrow & B \\
\downarrow & & \downarrow & \downarrow \\
1 & \leftarrow & S \rightarrow & 1
\end{array}$ \quad \text{Span(Graph)}_x
The $\text{St}(\cdot)$ construction

$\text{St} (\text{Set}_x) : S \times A \rightarrow S \times B$ \hspace{1cm} Mealy transition system

$\text{St} (\text{Set}_+) : S + A \rightarrow S + B$ \hspace{1cm} Elgot transition system

$\text{St} (\text{Rel}_x) : S \times A \rightarrow P(S \times B)$ \hspace{1cm} Non-deterministic transition system

$\text{St} (\text{Span} (\text{Set})) : A \leftarrow E \rightarrow B$

$\uparrow \quad \downarrow$

$1 \leftarrow S \rightarrow 1$

$\text{Span} (\text{Graph})_*$

Theorem. There is a monoidal isomorphism:

$\text{St} (\text{Span} (\text{Set})) \cong \text{Span} (\text{Graph})_*$

\text{stateful synchronization: spans of graphs}
Part 3: Feedback
Categories with feedback

Symmetric monoidal category with an operator
\[fbk_s : \text{hom}\,(S \otimes A, S \otimes B) \to \text{hom}\,(A,B), \]
such that:

1. \[u; fbk_s(f); v = fbk_s((u \otimes \text{id}); f; (v \otimes \text{id})) \]
2. \[fbk_s(1) = f \]
3. \[fbk_s(fb_k(I)(f)) = fbk_{S \otimes 1}(f) \]
4. \[fbk_s(f) \circ g = fbk_s(f \circ g) \]
5. \[fbk_k((f; (h \otimes 1)); f) = fbk_k((h \otimes 1); f) \]

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
Categories with feedback

Symmetric monoidal category with an operator \(\text{fbks} : \text{hom}(S \otimes A, S \otimes B) \to \text{hom}(A, B) \), such that:

1. \(u \circ f \circ v = u \circ f \circ v \)
2. \(f \circ f = f \)
3. \(f \circ f = f \)
4. \(f = g \)
5. \(f \circ \psi = \psi \circ f \) (\(\psi \text{ iso} \))

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
Categories with feedback

Symmetric monoidal category with an operator \(\text{fbks} : \text{hom}(S \otimes A, S \otimes B) \to \text{hom}(A, B) \), such that:

1. \(u \circ f \circ v = u \circ f \circ v \)
2. \(f = f \)
3. \(f = f \)
4. \(f \circ g = f \circ g \)
5. \(f \circ \varepsilon = \varepsilon \circ f \)

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
Categories with feedback

Symmetric monoidal category with an operator \(\text{fbks} : \text{hom}(S \otimes A, S \otimes B) \to \text{hom}(A, B) \), such that:

1. \(u \circ f \circ v = u \circ f \circ v \)
2. \(f \circ f = f \)
3. \(f \circ f = f \)
4. \(f \circ g = g \circ f \)
5. \(\emptyset \circ f = f \circ \emptyset \) (\(\emptyset \) iso)

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
Categories with feedback

Symmetric monoidal category with an operator $\text{fbks}: \text{hom}(S \otimes A, S \otimes B) \to \text{hom}(A, B)$, such that:

1. $u \circ f \circ v = u \circ f \circ v$
2. $f \circ f = f$
3. $f \circ f = f$
4. $f \circ g = g$
5. $f \circ \vartheta \circ f = \vartheta$ (\$iso\$)

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
Categories with feedback

Symmetric monoidal category with an operator

\[\text{fbks} : \text{hom}(S \otimes A, S \otimes B) \rightarrow \text{hom}(A, B), \]

such that:

1. \[u \circ f \circ v = u \circ f \circ v \]

2. \[f = f \]

3. \[f = f \]

4. \[f \circ g = f \circ g \]

5. \[f \circ \eta = \eta \circ f \text{\ (\& iso)} \]

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
Categories with feedback

Differences with traced monoidal categories?

i. \neq

(Weak Sliding)

ii. \neq

(Yanking)
Categories with feedback

Differences with traced monoidal categories?

i. \(f \circ \chi \circ \chi \) equals \(\chi \circ f \) (\(\chi \text{ iso} \))

ii. etc. (\(\text{WEAKSLIDING} \))

etc. (\(\text{YANKING} \))
Categories with feedback

Differences with traced monoidal categories?

i. \[f \circ \alpha \circ (\alpha \text{ iso}) = \alpha \circ f \] (Weak Sliding)

ii. \[\exists \] (Yanking)
Categories with feedback

Differences with traced monoidal categories?

i. \[(\gamma \text{ iso}) \quad\]

ii. \[\Box \quad\]

(Weak Sliding)

(Yanking)

- Feedback is weaker than trace (and balanced trace).
- Feedback and guarded trace coincide in compact closed categories.
- Feedback has a different type than delayed trace.
Categories with feedback

Multiple applications of feedback can be reduced into a single one. All of the axioms are needed for this result.
Categories with feedback

Multiple applications of feedback can be reduced into a single one. All of the axioms are needed for this result.

We can use this to show that $\text{St}(C)$ is the free category with feedback.
Categories with feedback

Proposition. Let \(\mathcal{C} \) be a symmetric monoidal category. \(S^\mathcal{T}(\mathcal{C}) \) has a feedback structure given by

\[
\text{fbk}_T \left(S \begin{array}{c} S \\ S \end{array} = \begin{array}{c} \text{f} \\ \text{f} \end{array} \begin{array}{c} S \\ S \end{array} \right) = \left(S \otimes T \begin{array}{c} S \\ S \end{array} = \begin{array}{c} \text{f} \\ \text{f} \end{array} \begin{array}{c} S \\ S \end{array} \right).
\]

Theorem. Let \(\mathcal{C} \) be a symmetric monoidal category. The symmetric monoidal category \(S^\mathcal{T}(\mathcal{C}) \) is the free category with feedback over \(\mathcal{C} \), meaning that

\[
S^\mathcal{T}(\mathcal{C}) \xrightarrow{\exists! \tilde{F}} \text{D}
\]

Feedback-preserving:

\[
\tilde{F}(\text{fbk}_S(f)) = \text{fbk}_{\mathcal{T}S}(\tilde{F}(f)).
\]

Category with feedback.

Symmetric monoidal functor.

Feedback, trace, and fixed-point semantics. Katis, Sabadini, Walters.
Categories with feedback

THEOREM. The following is an isomorphism of categories.

\[\text{SPAN}(\text{GRAPH})_* \cong \text{ST}(\text{SPAN}(\text{SET})) \]

\(\text{SPAN}(\text{GRAPH})_* \) is the free category with feedback over \(\text{SPAN}(\text{SET}) \).
Categories with feedback

THEOREM. The following is an isomorphism of categories.

\[
\text{SPAN}(\text{GRAPH})_* \cong \text{ST}(\text{SPAN} (\text{SET}))
\]

\text{SPAN}(\text{GRAPH})_* \text{ is the free category with feedback over } \text{SPAN} (\text{SET}).

Example:

\[
\begin{array}{c}
\text{Set} \longrightarrow \text{Span} \quad \text{lifts to} \quad \text{MealyTS} \longrightarrow \text{SPAN} (\text{GRAPH})_*.
\end{array}
\]

\[
f : A \rightarrow B
\]

\[
\begin{array}{l}
\text{id} \quad A \quad f
\end{array}
\]

\[
\begin{array}{l}
f(a,0) = a \\
f(a,1) = b \\
f(b,0) = b \\
f(b,1) = a
\end{array}
\]

\[
\begin{array}{c}
A \quad \Rightarrow \quad B
\end{array}
\]

\[
\begin{array}{c}
\text{MealyTS}
\end{array}
\]

\[
\begin{array}{c}
A \quad \Rightarrow \quad B
\end{array}
\]

\[
\begin{array}{c}
\text{SPAN} (\text{GRAPH})_*
\end{array}
\]
Categories with feedback

THEOREM. The following is an isomorphism of categories.

$$\text{SPAN} (\text{GRAPH})_* \cong \text{ST} (\text{SPAN}(\text{SET}))$$

$\text{SPAN} (\text{GRAPH})_*$ is the free category with feedback over $\text{SPAN} (\text{SET})$.

Example:

$$\text{Set} \rightarrow \text{Span} \text{ lifts to } \text{MealyTS} \rightarrow \text{Span} (\text{Graph})_*.$$
Part 4:
Generalizing $St(\bullet)$
Generalizing Feedback

Feedback describes a particular flow of information.

\[\text{input} \rightarrow \text{output} \quad \text{normal flow} \]

\[\text{input} \rightarrow \text{output} \quad \text{flow with feedback} \]
Generalizing Feedback

Feedback describes a particular flow of information.

\[
\begin{align*}
\text{input} & \quad \rightarrow \quad \text{output} \\
\text{normal flow} & \quad \downarrow \\
\text{input} & \quad \rightarrow \quad \text{output} \\
\text{flow with feedback}
\end{align*}
\]

These are monads in the bicategory PROF of profunctors:

\[
\begin{align*}
\text{hom}(I, O) & \quad \int_{\text{sec}} \quad \text{hom}(S \otimes I, S \otimes O) \\
\text{monads correspond to a new assignment of morphisms to a category.}
\end{align*}
\]

Open Diagrams via Coend Calculus, Mario Román, ACT’20
Generalizing Feedback

What is the most general form of feedback?

\[\text{St}_D(A, B) := \int_{D \in D} \text{hom}(D \triangleright A, D \triangleright B) \]

The normal form theorem holds for any pair of monoidal actions \((0, 0)\). These generalize:

- Traced categories without yanking.
- Categories with feedback.
- Categories with initialized feedback.
- Delayed traces.
What is the most general form of feedback?

\[S_{c}(A,B) = \int_{\text{Sec}} \hom(S \otimes A, S \otimes B) \]

The normal form theorem holds for any pair of monoidal actions \((e, e)\). These generalize:

- Traced categories without yanking.
- Categories with feedback.
- Categories with initialized feedback.
- Delayed traces.
Generalizing Feedback

What is the most general form of feedback?

\[
\text{St}_{\text{Core } C} (A, B) := \int_{S \in \text{Core } C} \text{hom}(S \otimes A, S \otimes B)
\]

The normal form theorem holds for any pair of monoidal actions \(\ast, \circ \). These generalize:

- Traced categories without yanking.
- Categories with feedback.
- Categories with initialized feedback.
- Delayed traces.
What is the most general form of feedback?

\[\text{St}_{\mathcal{C}/\mathcal{I}}(A, B) := \int_{S, s \in \mathcal{C}/\mathcal{I}} \hom(S \otimes A, S \otimes B) \]

The normal form theorem holds for any pair of monoidal actions \((\circ, \circ)\). These generalize:

- Traced categories without yanking.
- Categories with feedback.
- Categories with initialized feedback.
- Delayed traces.
Generalizing Feedback

What is the most general form of feedback?

\[\text{St}_{c \diamond} (A, B) := \int \text{Sec} \hom (c \diamond A, c \diamond B) \]

The normal form theorem holds for any pair of monoidal actions \((\odot, \odot)\). These generalize:

- Right/left traced categories.
- Categories with feedback.
- Categories with initialized feedback.
- Delayed traces.
Conclusion

- \(\text{Span} (\text{Graph})_* \cong \text{St} (\text{Span} (\text{Set})) \).
- \(\text{St}(\cdot) \) commonly appears across the literature.
- \(\text{St}(\cdot) \) is the free category with feedback.
- Categories with feedback are a weakening of traces.
- Categories with feedback have a normal form theorem.
- \(\text{St}(\cdot) \) can be generalized to variants of feedback.
- Relate to the coalgebraic approach.
References.

Romain. Open diagrams via Coend Calculus. (ACT’20).