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Overview

> Goal: state and prove a classical theorem of probability theory
without talking about (numerical) probabilities.

> Based on a recent categorical approach to probability.

> The big picture:

Traditional probability theory

Categorical probability theory

Analytic:
says what probabilities are

Analogous to number systems

Synthetic:
says how probabilities behave

Analogous to abstract algebra



The basic primitives are morphisms in a symmetric monoidal category:

Y

X

> Intuitively, a morphism is a probabilistic function: random output
for any input.

> We impose axiom that (partly) formalize this intuition.



We can compose morphisms using string diagram calculus, like this:

B Y

Y
g k

A X Y

This defines an overall morphism

ARARX®Y — B®Y.



Postulate additional pieces of structure:

> Every object X has a copying function:

X X

X

> Every object X has a deletion function:

|

X



Definition
A Markov category C is a symmetric monoidal category supplied with
copying and deleting operations on every object,

R

giving commutative comonoid structures

70U W

which interact well with the monoidal structure, and such that for all f,

_




Semantics

BorelStoch is the category with:
> Standard Borel spaces as objects (finite sets, N and [0, 1]).
> Measurable Markov kernels as morphisms.
> Products of measurable spaces for ®.

BorelStoch satisfies all of the axioms that | will mention.

It is the Kleisli category of the Giry monad!



Determinism

Throughout, we're in a Markov category C.

Definition
A morphism f : X — Y is deterministic if it commutes with copying,

> Intuition: Applying f to copies of input = copying the output of f.

> The deterministic morphisms form a cartesian monoidal subcategory
Cdet-



Representability

Definition
A Markov category C is representable if for every X € C there is
PX € C and a natural bijection

Cdet(_a PX) = C(_7X)7

and a.s.-compatibly representable if this respects p-a.s. equality for
every p.

> Intuition: PX is space of probability measures on X.
> Under the bijection, the deterministic id : PX — PX corresponds to
sampy : PX — X,

the map that returns a random sample from a distribution.



BorelStoch is representable in a very particular way:

Theorem (De Finetti, abstract version)

PX is the equalizer of all the finite permutations on XY, with universal
arrow given by

> Intuition:

probability distribution = prescription of how to sample from it

> Difficult to prove: existence part of universal property.



The de Finetti theorem

Theorem

Let C be an a.s.-compatibly representable Markov category with
conditionals and countable Kolmogorov products.

Then for every p : A — XY invariant under finite permutations, there is
g : A— PX such that

\/ ’sa%p‘-.-’sa%p‘
p
|

> BorelStoch satisfies these assumptions.

> Mystery: we know of no other nontrivial Markov category which does!



Detour: de Finetti and Bayesianism
> Suppose that | hand you a coin (which may be biased).

> How much would you bet on the outcome
heads, tails, tails
when the coin is flipped 3 times?
= Surely the same as you would bet on

tails, tails, heads.

> Your bets satisfy permutation invariance.
= They correspond to a measure on [0, 1], the space of biases.

> For a Bayesian, this is the prior over the biases.



Structure of proof

Spreadability
Lemma

Parametrization

Invariant
Observable
\ Lemma
Shift invariance of
tail conditional
Exchangeable states
are conditionally iid
De Finetti
for states
De Finetti
Theorem

construction




Proof teaser

Suppose that p is a state.

By universal property of Kolmogorov products, it is enough to show

n W|res

. ij

for every finite n.



Using induction on n,

n wires

n wires

n wires

U



Summary and Outlook

> Markov categories are an emerging framework for “synthetic”
probability theory.

> We already have synthetic versions of several theorems of probability
and statistics:

> 0/1-laws of Kolmogorov and Hewitt-Savage,
> Fisher factorization theorem on sufficient statistics,

> Blackwell-Sherman-Stein theorem on informativeness of statistical
experiments,

> De Finetti’s theorem on permutation-invariant distribution.



Summary and Outlook

> Sometimes such developments require turning theorems into
definitions.

> Next: a synthetic treatment of the law of large numbers.
> This has further tantalizing connections with ergodic theory.
> In parallel, we also aim at a better understanding of the semantics.

> Central question here: how common are Markov categories with
conditionals?



Bonus slides: Conditionals

Definition
C has conditionals if for every f : A= X ® Y thereis fix : X@ A=Y
with

(I
fix
T
f = .
| f
A
A

> Intuition: The outputs of f can be generated one at a time.



Bayesian inversion

Every s : X — Y has a Bayesian adjoint s’ : Y — X satisfying:

X Y

The Bayesian adjoint st depends on p.



Almost sure equality

Definition
Let p:A— Xand f,g: X = Y.

f and g are equal p-almost surely, f =, g, if

> Intuition: f and g behave the same on all inputs produced by p.

> Other concepts (besides equality) also relativize with respect to
p-almost surely.



Infinite tensor products

Let (Xi)ics be a family of objects.

For finite F C F' C I, we have projection morphisms
% — @
icF! i€F

given by composing with deletion for all /i € F’\ F.



Infinite tensor products

Definition
The infinite tensor product
X=X
i€l

is the limit of the finite tensor products X© := @),_f X; if it exists and is
preserved by every — ® Y.

v

> Intuition: To map into an infinite tensor product, one needs to map
consistently into its finite subproducts.



Kolmogorov products

Definition
An infinite tensor product X! is a Kolmogorov product if the limit
projections 7F : X! — XF are deterministic.

> This additional condition fixes the comonoid structure on X'.

> We need countable Kolmogorov products already in order to state the
de Finetti theorem.



Spreadability Lemma

Lemma

If p: A— XN is exchangeable, then p is also invariant with respect to
applying any injective map N — N to the tensor factors.

> Intuition: If random variables X, X5, ... are permutation-invariant,
then they have the same distribution as X5, X3, ...

Proof sketch. On every finite F C N, every injection N — N coincides
with a suitable permutation.



Invariant Observable Lemma

Lemma
Let p: I — X and s: X — X satisfy sp = p.

Then for deterministic f: X — Y,

f f
. —p-a.s. — . —p-as.

> Intuition: s and p make X into a measure-preserving dynamical
system, f is an observable.

> If f is invariant “backward in time”, then it is also invariant “forward
in time" .



Invariant Observable Lemma

Proof sketch.

Like an equation between inner products in “L%(A, p)

= The claim follows by “Cauchy-Schwarz".




The tail conditional

We use double wires to denote XV.

By the existence of conditionals, there is pj,; such that

The second equation is by the Spreadability Lemma.



Shift invariance of the tail conditional

Lemma

|

P|tail —p-as.

> Intuition: pj,; is independent of any finite initial segment.

Proof sketch. An application of the Invariant Observable Lemma. Its
assumption holds by the Spreadability Lemma. O



Kleisli categories are Markov categories

Proposition
Let

> D be a category with finite products,

> P a commutative monad on D with P(1) = 1.

Then the Kleisli category KI(P) is a Markov category in the obvious way.

Examples:

> Kleisli category of the Giry monad, other related monads for
measure-theoretic probability.

> Kleisli category of the non-empty power set monad, which is (almost)
Rel.

The proposition still holds when D is merely a Markov category itself!



Classical de Finetti theorem

A sequence (xp)nen of random variables on a space X is exchangeable if
their distribution is invariant under finite permutations o,

]P’[Xl S 56(1), ..., Xp € Sa(n)]

= ]P’[xlesl,...,x,,eS,,].

Theorem

If (xn) is exchangeable, then there is a measure © on PX such that

Pl € Siyo. 0 € Sl = [ bl € S1)-++ploxn € Sr) ().

Idea: sequence of tosses of a coin with unknown bias!



Categories of comonoids

Proposition
Let C be any symmetric monoidal category. Then the category with:

> Commutative comonoids in C as objects,
> Counital maps as morphisms,
> The specified comultiplications as copy maps,

is a Markov category.

A good example is Vect,” for a field k:

> The comonoids correspond to commutative k-algebras of k-valued
random variables.

> We obtain algebraic probability theory with “random variable
transformers” as morphisms (formal opposites of Markov kernels).



Diagram categories and ergodic theory

Proposition
Let D be any category and C a Markov category. The category in which

> Objects are functors D — Cget,

> Morphisms are natural transformations with components in C.

With the poset D = Z, we get a category of discrete-time stochastic
processes.

This generalizes an observation going back to (Lawvere, 1962).

We can also take D = BG for a group G, resulting in categories of
dynamical systems with deterministic dynamics but stochastic morphisms.



Hyperstructures: categorical algebra in Markov categories

A group G is a monoid G together with (—)~!: G — G such that

This equation can be interpreted in any Markov category! (Together with
the bialgebra law.)



> More generally, one can consider models of any algebraic theory in
any Markov category.

> In Kleisli categories of probability-like monads, these are known as
hyperstructures.

> Peter Arndt’s suggestion:

Develop categorical algebra for hyperstructures in terms of Markov
categories!



The causality axiom

Definition
C is causal if

implies

> Intuition: The choice between h; and hy in the “future” of g does
not influence the “past” of g.

> Not every Markov category is causal.



The positivity axiom
Definition

C is positive if whenever gf is deterministic for composable f and g, then
also

> Intuition: If a deterministic process has a random intermediate result,
then that result can be computed independently from the process.

> Not every Markov category is positive.

> Dario Stein: every causal Markov category is positive!



Theorem (Kolmogorov zero—one law)

Let X; be a Kolmogorov product of a family (X)ie;.

If
> p: A — X; makes the X; independent and identically distributed, and

> s: X, — T is such that
Xe T

P

A
displays Xg L T || A for every finite F C /,

then ps is deterministic.




The classical Hewitt—Savage zero-one law

Theorem

Let (xn)nen be independent and identically distributed random variables,

and S any event depending only on the x, and invariant under finite
permutations.

Then P(S) € {0,1}.




The synthetic Hewitt—Savage zero-one law

Theorem
Let J be an infinite set and C a causal Markov category. Suppose that:

> The Kolmogorov power X®/ := limrc finite X©F exists.
> p: A— X® displays the conditional independence L;c; X; || A.
> s: X? — T is deterministic.

> For every finite permutation ¢ : J — J, permuting the factors
& : X® = X®J satisfies

op = p, SO0 =S.

Then sp is deterministic.

Proof is by string diagrams, but far from trivial!



Why categorical probability?

In no particular order:

Applications to probabilistic programming.

v

v

Prove theorems in greater generality and with more intuitive proofs.
> Reverse mathematics: sort out interdependencies between theorems.

Ultimately, prove theorems of higher complexity?

v

Simpler teaching of probability theory. (String diagrams!)

v

> Different conceptual perspective on what probability is.



Discrete probability theory as a Markov category

One of the paradigmatic Markov categories is FinStoch, the category of
finite sets and stochastic matrices: a morphism f : X — Y is

(f(y|X))xEX,y€Y S RXXY

with

flyl) =0, D flylx) =1
y
Composition is the Chapman-Kolmogorov formula,

(f)(zlx) = Zg zly) fylx).

A morphism p: 1 — X is a probability distribution.

A general morphism X — Y has many names: Markov kernel,
probabilistic mapping, communication channel, ...



The monoidal structure implements stochastic independence,

(g @ f)(xy|ab) := g(x|a) f(y|b).

The copy maps are

1 ifxg =x = x,

copyyx : X — X x X, copy x (x1, x2|x) = )
0 otherwise.

The deletion maps are the unique morphisms X — 1.



> Works just the same with “probabilities” taking values in any
semiring R.

> Taking R to be the Boolean semiring B = {0, 1} with
1+1=1
results in the Kleisli category of the nonempty finite powerset monad.

= We get a Markov category for non-determinism.

> Measure-theoretic probability: Kleisli category of the Giry monad.



