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Categorical Foundations of Gradient-Based
Learning



How to Build a Neural Network out of Lenses

Using Para and Lens we get a high level picture
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Now we'll see some examples of what can be plugged into each of
these boxes.



The Setting

» Each box in the diagram is a pair of maps

P Guiding example: Simple hidden layer neural network, basic
gradient descent, MSE loss.

» We'll specify each pair of maps for each box

» Goal: you (roughly) understand how to translate this into code

» Implementation:

github.com /statusfailed /numeric-optics-python/
P> examples include a convolutional image classifier for MNIST?

Lecun et al., “Gradient-Based Learning Applied to Document Recognition.”


https://github.com/statusfailed/numeric-optics-python/

Supervised Learning
In supervised learning, we want to learn a map
f:A— B
from a dataset of examples
(a,b) e Ax B

Now, based on our beliefs about the structure of A and B, we
design a parametrised map:

model : P x A — B

and we search for some 6 € P such that model(6, —) best
represents the data.



Gradient-Based Learning

We want to use a datapoint (a,b) € A x B to improve 6, so we
need a map

7 PxAxB—P
The reverse derivative is almost what we want. For a map
f:A— B,

R[f]: Ax B — A’

(while in an RDC A" = A and B’ = B, it's useful think of the
“primed” objects as representing changes)

So the reverse derivative of our model morphism has the following
type:

R[model] : Px AXx B" — P" x A’



Updates, “Displacement” and Reverse Derivatives

This is not quite enough: we have two problems:

1. We have a “true” value b € B and a “predicted” value
model(f,a) € B but we need a B’
2. The reverse derivative gives us a P’ and we want a P

This is exactly what the update and loss lenses are for:

R[model] : Px Ax B" — P" x A’
loss, s : B X B — B’ x B’

update . : P X P — P



Updates

Updates are like “generalised addition”: add a vector to a point.
The most obvious choice is just to add! That's basic gradient
descent:
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where { is copying and >H is addition




Updates 2

So basic gradient descent is comprised of this pair of maps:

get: P — P
0 0

put: Px P — P
0 0 —0+06



Loss + Learning Rate

Simple choice is just to subtract:
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Loss + Learning Rate
This is just MSE Loss + fixed learning rate!
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Loss + Learning Rate

We can think of MSE loss as the parametrised lens with maps

get : Bx B — R
R .
H— R
y 9 QngX% 7)
out: Bx BxR — P
y gy U—=U(y—y)

And the fixed learning rate as

get: R — 1
[ = ()

put :Rx I — R
[—n



Models, Architectures, and Layers

Two levels of detail in the model: “architecture” and “layers”.

P Architecture: the whole program as a collection of subroutines
(a composition of parametrised lenses)

» Layer?: an individual subroutine (a parametrised lens / pair of
maps)

Example of a complicated architecture3:

Dot-Prod. Attention Attention ConvBlock Input Encoder I/0 Mixer Decoder
Encoded Encoded Encoded
Target Source Inputs Inputs Inputs ~ Outputs Outputs  Inputs

Q K \
¥

Timing

5x1 ConvStep
Dilation 1

5x1 ConvStep
Dilation 4

3x1 ConvStep

Dilation 1

Mixture of
Experts (opt.)

3x1 ConvStep
Dilation 1

3x1 ConvStep
Dilation 1

Dilation 1
Dot-product Dot-Prod. Attention ConvBlock
Attention ox foonuSteo ax (CEREIES ConvBlock
2x
Fomtwse | [Pontwiss T5x1 ComiStep |

Dot-Prod. Attention (_‘54_/ @
Encoded Encoded Decoded
Attended Source Outputs Inputs Outputs QOutputs

2ambiguous terminology warning

3Kaiser et al., “One Model to Learn Them All"
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Dense Layers

A simple hidden layer neural network is a composition of two dense
layers. Let's unpack a dense layer and see what's inside...
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Bias Layers




Linear Layers

P Parameters P = R”% are the coefficients of a matrix
» Input A = R% is an a-dimensional vector
P Forward pass multiplies the matrix by the vector:

get : Mat(A, B) x Vec(A) — Vec(B)
get(M,z) — Mx

P Reverse pass does this (note that it typechecks!):

put : Mat(A, B) x Vec(A) x Vec(B) — Mat(A, B) x Vec(A)
put(M, z,y) = (y @ 2, M"y)



Activation Layer
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Hidden Layer Neural Network

Returning to the “standard” picture of a neural network:

Expanding out “dense’:
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A Hidden Layer Neural Network as a Parametrised Lens

[R4 |R3
g [R10 |R10 [RQ |R9 ‘[R3
UL R3 R
AN MSE @
.
Dense Dense
\ | R[MSE] n
3 R
|R4 R

. with MSE loss, basic gradient descent, and fixed error rate



What else can we plug in?

P So far we've only seen neural networks, where objects are R"

forn € N.
P We can do learning with boolean circuits too, as in Reverse
Derivative Ascent®:

2
]
z3 z4
Zy |3

*Wilson and Zanasi, “Reverse Derivative Ascent.”



Questions?



Reverse Derivatives, Graphically
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Reverse Derivatives, Graphically
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Reverse Derivatives, Graphically

RI#]

A—— B _—:> AxB'l —— A’

K[‘*_@}_@_C] ) AA' (koS

—

| A, — ] /

ey
Av K. 5,/ \_’\
| 2] 4!

r




References

Kaiser, Lukasz, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani,
Niki Parmar, Llion Jones, and Jakob Uszkoreit. “One Model to
Learn Them All,” 2017. http://arxiv.org/abs/1706.05137.

Lecun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
“Gradient-Based Learning Applied to Document Recognition.”
In Proceedings of the leee, 2278-2324, 1998.
https://doi.org/10.1109/5.726791.

Wilson, Paul, and Fabio Zanasi. “Reverse Derivative Ascent: A
Categorical Approach to Learning Boolean Circuits.” Electronic
Proceedings in Theoretical Computer Science 333 (February

2021): 247-60. https://doi.org/10.4204 /eptcs.333.17.


http://arxiv.org/abs/1706.05137
https://doi.org/10.1109/5.726791
https://doi.org/10.4204/eptcs.333.17

