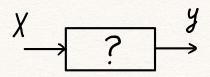
CATEGORICAL FOUNDATIONS OF GRADIENT-BASED LEARNING

(CRUTTWELL, GAVRANOVIC, GHANI, WILSON, ZANASI)

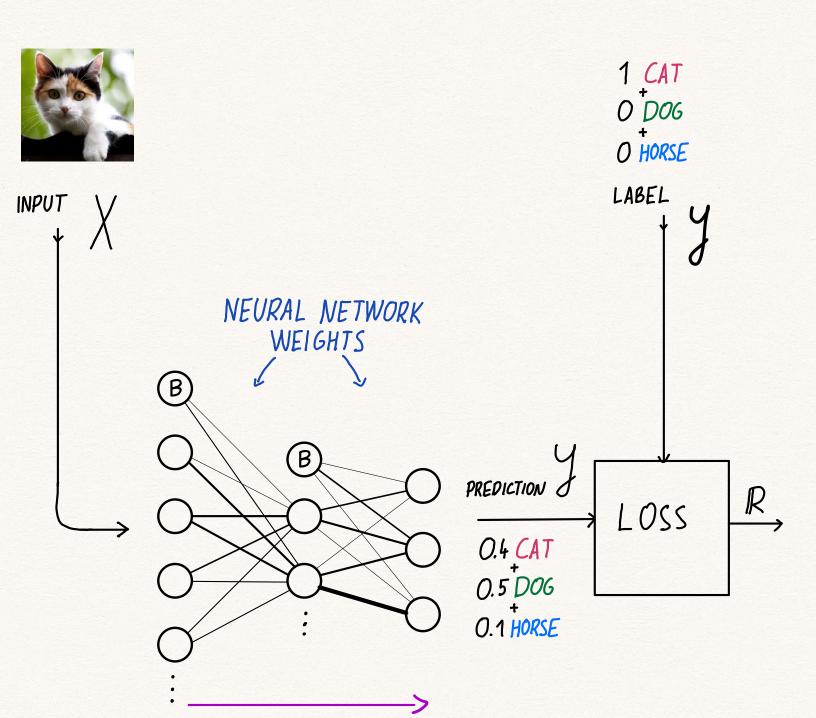
GOAL: PROVIDE A CATEGORICAL FRAMEWORK

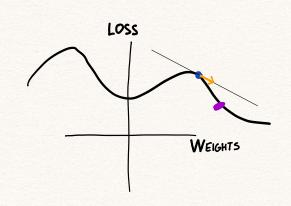
FOR DEEP LEARNING

SUPERVISED LEARNING WITH NEURAL NETWORKS IN ONE SLIDE:



DATASET: List Xxy





GRADIENT DESCENT "OPTIMIZER"

- ·NN IS COMPUTATION PARAMETERIZED BY WEIGHTS
- ·BACKPROPAGATION OF CHANGES
- · PARAMETER UPDATE "OPTIMIZERS"

NEURAL NETWORKS

- ·LINEAR LAYER
- ·BIAS TERM ·ACTIVATION FUNCTION

THIS SIMPLE STORY PERMEATES DEEP LEARNING!

PLAN FOR TODAY?

TAKE A BIRD'S EJE VIEW OF NEURAL NETWORKS

- · TRACE OUT THE INFORMATION FLOW ABOVE
- · PRECISELY WRITE DOWN ALL THE HIGH-LEVEL NOTIONS IN ISOLATION:
 - ·DIFFERENTIATION -REVERSE DERIVATIVE CATS.
 - · BIDIRECTIONALITY OPTICS [LENSES
- ·PARAMETERIZATION PARA AND STUDY THEIR INTERACTION.

PARAMETERIZED OPTICS

AS A COMMON STRUCTURE BEHIND

- ·NEURAL NETWORKS
- · LOSS FUNCTIONS
- · OPTIMIZERS

· PAUL: CONCRETE EXAMPLES OF NEURAL NETWORKS

DIFFERENTIATION

- · CARTESIAN (FORWARD) DIFFERENTIAL CATEGORIES (Blute et.al.)
- · CARTESIAN REVERSE DIFFERENTIAL CATEGORIES (CRDC) (Cockett et.al.)

DEFINITION.

A CRDC C is a Cartesian left-additive category which for every map

£:A--->B

has a REVERSE DIFFERENTIAL COMBINATOR

 $R[f]:A\times B\longrightarrow A \qquad \begin{pmatrix} compare \\ D[f]:A\times A\longrightarrow B \end{pmatrix}$

subject to 7 axioms.

EXAMPLE. Smooth is a CRDC. Polyzz IS A CRDC.

EXAMPLE. Let $\mathbb{R}^{\frac{2}{3}}\mathbb{R}$ in Smooth. $(x,y) \mapsto x^2 + 3yx$

Then R[f]: RxR--R $(x,y), w \longrightarrow (2xw, 3xw)$

PLAN: STUDY CRDC'S THROUGH OPTICS/LENSES

OPTICS/LENSES

DEFINITION. Let Cle a SMC. Category Optic(C):

· Objects - pains of objects
$$(X')$$
 in C

· Optic $(C)(X', Y') = \int C(X, Y \circ M)_X C(Y \circ M, X')$
 (M, f, b)
 $f: X \longrightarrow Y \circ M$
 $b: Y' \circ M \longrightarrow X'$

$$\int_{C}^{n:e} C(X, M \times Y)_{X} C(M \times Y, X')$$

$$= \cong UNIV. PROPERTY OF PROD.$$

$$\int_{C}^{n:e} C(X, Y)_{X} C(X, M)_{X} C(M_{X}Y', X')$$

$$= \Im VONEDA REDUCTION$$

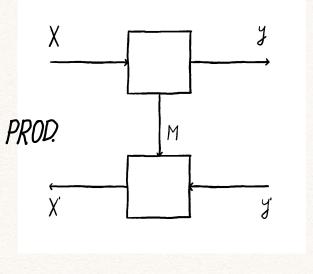
$$\int_{C}^{n:e} C(X, Y)_{X} C(X_{X}Y', X')$$

$$= \Im VONEDA REDUCTION$$

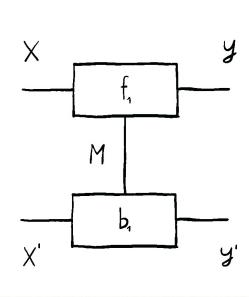
$$\int_{C}^{n:e} C(X_{X}Y', X')$$

$$= \Im VONEDA REDUCTION$$

$$\int_{C}^{n:e} C(X_{X}Y', X')$$



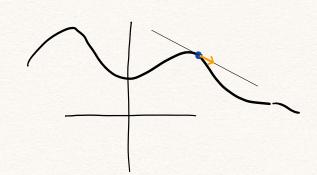
OPTICS CAN BE COMPOSED



PROPOSITION. Optic (8) is symmetric monoidal.

EXAMPLE.

GRADIENT DESCENT



is a lens, for
$$C:=Smooth$$

$$\begin{pmatrix} P \\ P \end{pmatrix} \xrightarrow{(id_{P},u)} \begin{pmatrix} P \\ P' \end{pmatrix}$$

 $\begin{pmatrix} \ddot{S} \times P \\ \varsigma \times P \end{pmatrix} \longrightarrow \begin{pmatrix} P \\ P' \end{pmatrix}$

EXAMPLE. STATEFUL OPTIMIZERS

· MOMENTUM,

$$\begin{array}{c}
get: P_{x}P \longrightarrow P \\
(v, \rho) \longmapsto P
\end{array}$$

$$\begin{array}{c}
put: P_{x}P_{x}P \longrightarrow P_{x}P \\
(v, \rho, \nabla\rho) \longmapsto (v', \rho-v')
\end{array}$$

where N=YN+EP'

· NESTEROV MOMENTUM get: $P_{x}P \longrightarrow P$ $(v, p) \longmapsto p-\gamma v$ put - same as alove

- · ADAGRAD
- ADAM

BACK TO CRDC's:

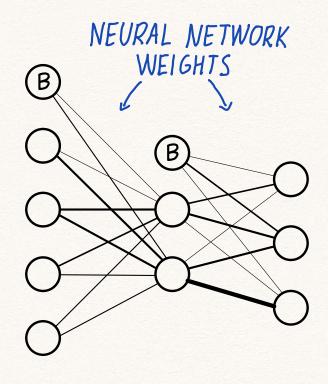
PROPOSITION.

Eor each CRDC & there is a symmetric monoidal functor

$$\begin{array}{ll}
\mathcal{C} & \xrightarrow{F} & \text{Lens}(\mathcal{C}) \cong Optic(\mathcal{C}) \\
A & \longrightarrow & (A, A) \\
\downarrow & & & & & \\
B & \longleftarrow & (B, B)
\end{array}$$

· THIS IS OUR FRAMEWORK FOR BACKPROPAGATION

PARAMETERIZATION



Objects - objects of
$$C$$

Pana $(C)(A,B) = \int_{P,C}^{QP} C(P \otimes A,B)$
 $A \xrightarrow{(P,C,L;P \otimes A,B)} (P,P)$

CATEGORY

2-cells are reparameterizations: a 2-cell A

$$A = B$$

$$(Q,g)$$

is a map $Q \xrightarrow{r} P$ such that

EXAMPLE.

(Set,x,1) Para(Set) SETS AND
PARAMETERIZED FUNCTIONS

(Smooth, x, 1)
Para (Smooth)

EUCLIDEAN SPACES AND PARAMETERIZED SMOOTH FUNCTIONS

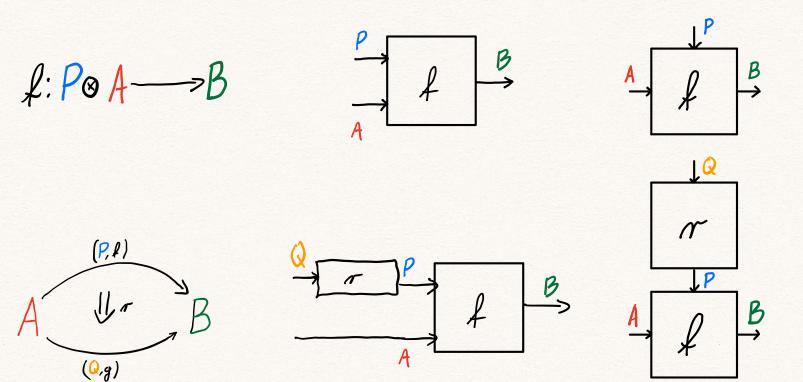
(Optic(C), &, 1) Para(Optic(C))

PAIRS OF OBJECTS AND PARAMETERIZED OPTICS

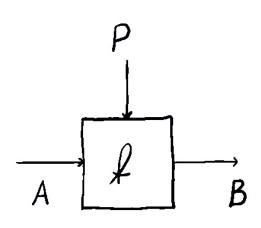
GRAPHICAL LANGUAGE

TEXTUAL NOTATION STANDARD STRING DIAGRAM

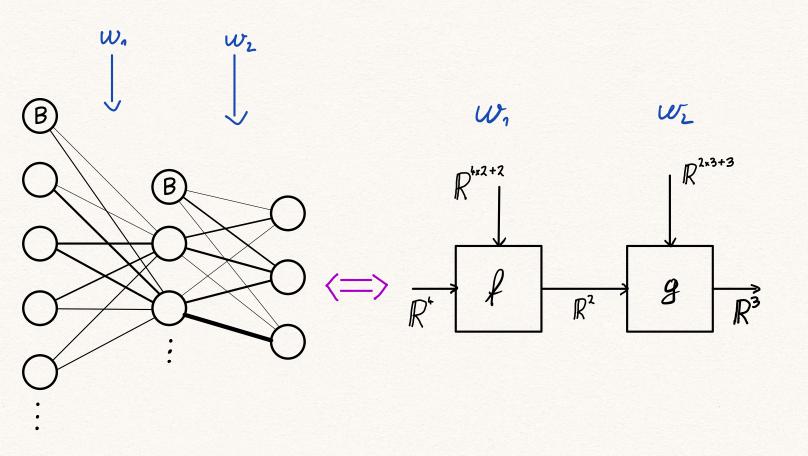
2D STRING DIAGRAM



HOW DOES COMPOSITION WORK?



RECAP



Para 15 NATURAL WITH RESPECT TO BASE CHANGE.

DEFINITION.

Let G:C-D be a symm. monoidal functor. We define

Para (6): Para (C)
$$\longrightarrow$$
 Para (D)
 $A \longmapsto GA$
 (P,P) (GP,P')
 $B \longmapsto GB$

where f' is the composite

$$G(P)\otimes G(A) \xrightarrow{\mathcal{M}_{P,A}} G(P\otimes A) \xrightarrow{G(\mathcal{L})} G(B)$$

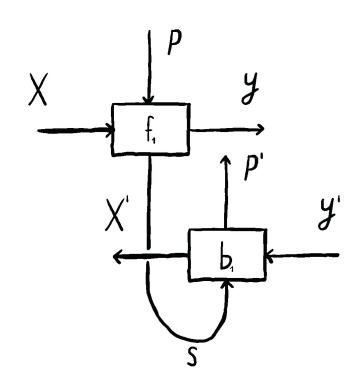
+ MORE.

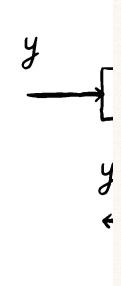
Para 15 RICH IN CATEGORICAL STRUCTURE.

- · Cokleisli category of a graded comonad
- · Double category
- · Actegorical Para

PARAMETERIZED OPTICS

Morphisms
$$\begin{pmatrix} x \\ x' \end{pmatrix} \xrightarrow{\begin{pmatrix} (p) \\ p' \end{pmatrix}} \begin{pmatrix} y \\ y' \end{pmatrix}$$
 where $f: \begin{pmatrix} p \otimes x \\ p' \otimes x' \end{pmatrix} \xrightarrow{P}$





· We automatically get two parameter ports

• A 2-cell
$$\begin{pmatrix} X \\ S \end{pmatrix} = \begin{pmatrix} Y \\ Q \end{pmatrix}$$
 is an optic $\begin{pmatrix} Z \\ W \end{pmatrix} = \begin{pmatrix} P \\ Q \end{pmatrix}$

THEOREM.

GRADIENT DE SCENT IS A 2-cell IN Para (Ontic (C)).

(Since it is a lens)

THEOREM.

APPLYING Para TO THE CRDC FUNCTOR

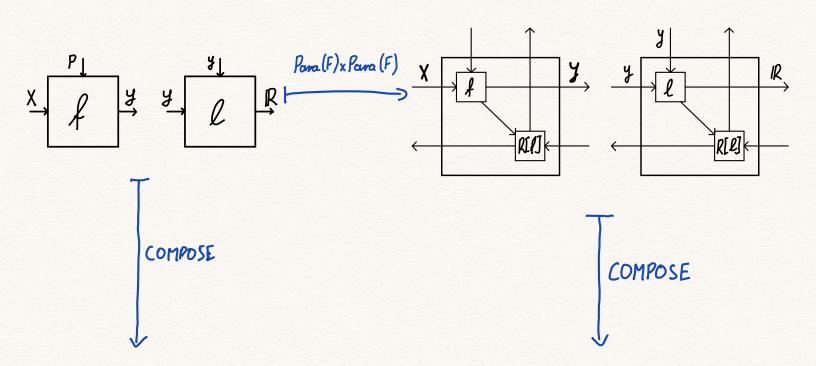
C—F— Optic(C)

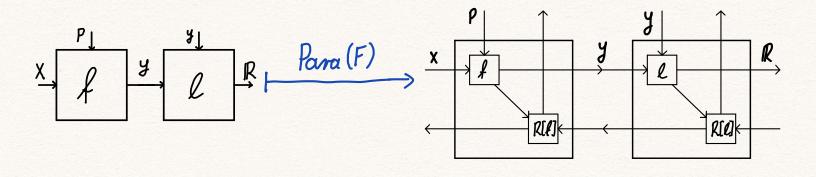
RESULTS IN A FUNCTOR



·FUNCTORIALITY IS IMPORTANT!

EXAMPLE. A NEURAL NETWORK + A LOSS FUNCTION





WE CAN PUT THE PIECES TOGETHER.

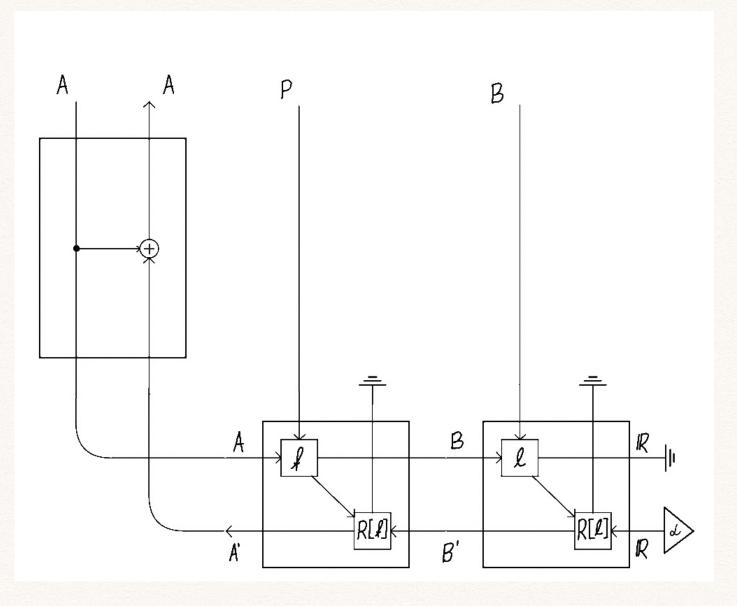
SUPERVISED LEARNING

INPUT

IMAGE



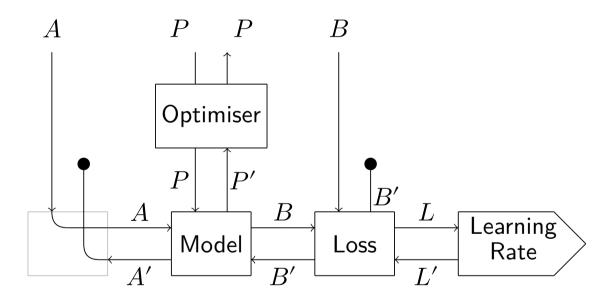
DEEP DREAMING



Categorical Foundations of Gradient-Based Learning

How to Build a Neural Network out of Lenses

Using Para and Lens we get a high level picture



Now we'll see some examples of what can be plugged into each of these boxes.

The Setting

- Each box in the diagram is a pair of maps
- Guiding example: Simple hidden layer neural network, basic gradient descent, MSE loss.
- ► We'll specify each pair of maps for each box
- Goal: you (roughly) understand how to translate this into code
- Implementation: github.com/statusfailed/numeric-optics-python/
 - examples include a convolutional image classifier for MNIST¹

¹Lecun et al., "Gradient-Based Learning Applied to Document Recognition."

Supervised Learning

In supervised learning, we want to learn a map

$$f:A\to B$$

from a dataset of examples

$$(a,b) \in A \times B$$

Now, based on our beliefs about the structure of A and B, we design a parametrised map:

$$\mathsf{model}: P \times A \to B$$

and we search for some $\theta \in P$ such that $\operatorname{model}(\theta,-)$ best represents the data.

Gradient-Based Learning

We want to use a datapoint $(a,b) \in A \times B$ to improve θ , so we need a map

$$???: P \times A \times B \rightarrow P$$

The reverse derivative is almost what we want. For a map $f: A \to B$,

$$R[f]: A \times B' \to A'$$

(while in an RDC A' = A and B' = B, it's useful think of the "primed" objects as representing **changes**)

So the reverse derivative of our model morphism has the following type:

$$R[\mathsf{model}]: P \times A \times B' \to P' \times A'$$

Updates, "Displacement" and Reverse Derivatives

This is not quite enough: we have two problems:

- 1. We have a "true" value $b \in B$ and a "predicted" value $\operatorname{model}(\theta,a) \in B$ but we need a B'
- 2. The reverse derivative gives us a P' and we want a P

This is exactly what the update and loss lenses are for:

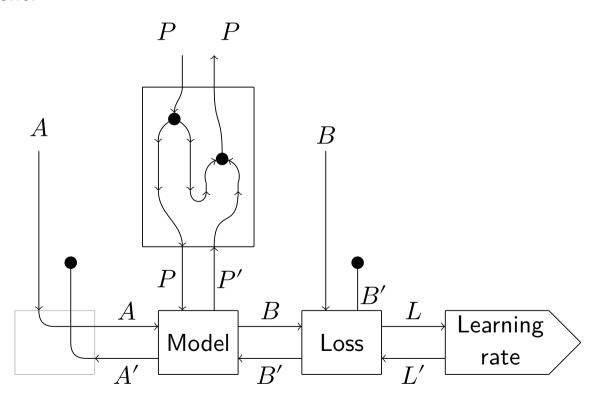
$$R[\mathsf{model}]: P \times A \times B' \to P' \times A'$$

$$loss_{put}: B \times B \rightarrow B' \times B'$$

$$\mathsf{update}_{\mathsf{put}}: P \times P' \to P$$

Updates

Updates are like "generalised addition": add a vector to a point. The most obvious choice is just to add! That's basic gradient descent:



where \longrightarrow is copying and \longrightarrow is addition

Updates 2

So basic gradient descent is comprised of this pair of maps:

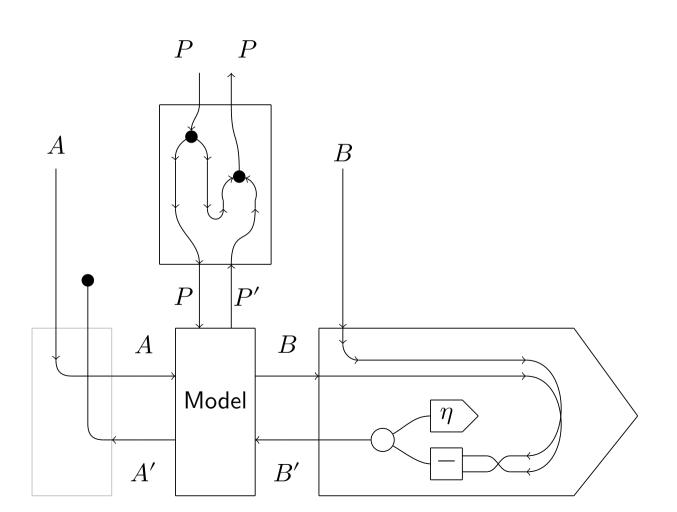
$$\gcd: P \to P$$
$$\theta \mapsto \theta$$

$$\operatorname{put}: P \times P' \to P$$

$$\theta \quad \theta' \mapsto \theta + \theta'$$

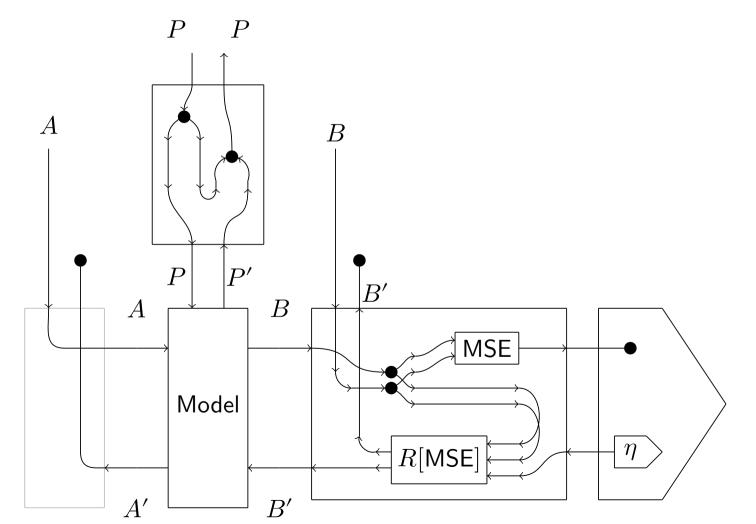
Loss + Learning Rate

Simple choice is just to subtract:



Loss + Learning Rate

This is just MSE Loss + fixed learning rate!



Loss + Learning Rate

We can think of MSE loss as the parametrised lens with maps

$$\mathrm{get}: B \times B \to \mathbb{R}$$

$$y \qquad \hat{y} \mapsto \frac{1}{2n} \sum_{i}^{n} \, (y_i - \hat{y})^2$$

$$\begin{aligned} \text{put} : B \times B \times \mathbb{R} &\to P \\ y \quad \hat{y} \quad l' \mapsto l'(\hat{y} - y) \end{aligned}$$

And the fixed learning rate as

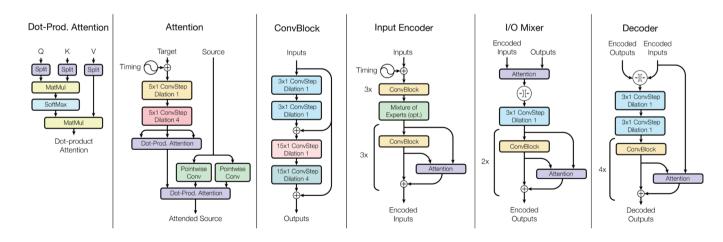
$$\mathsf{get}:\mathbb{R} o I$$
 $l\mapsto \langle
angle$ $put:\mathbb{R} imes I o\mathbb{R}$ $l\mapsto \eta$

Models, Architectures, and Layers

Two levels of detail in the model: "architecture" and "layers".

- Architecture: the whole program as a collection of subroutines (a composition of parametrised lenses)
- Layer²: an individual subroutine (a parametrised lens / pair of maps)

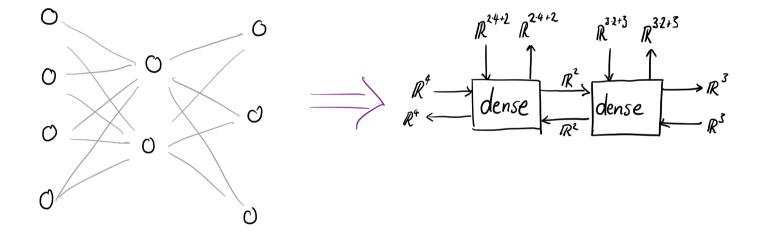
Example of a complicated architecture³:



²ambiguous terminology warning

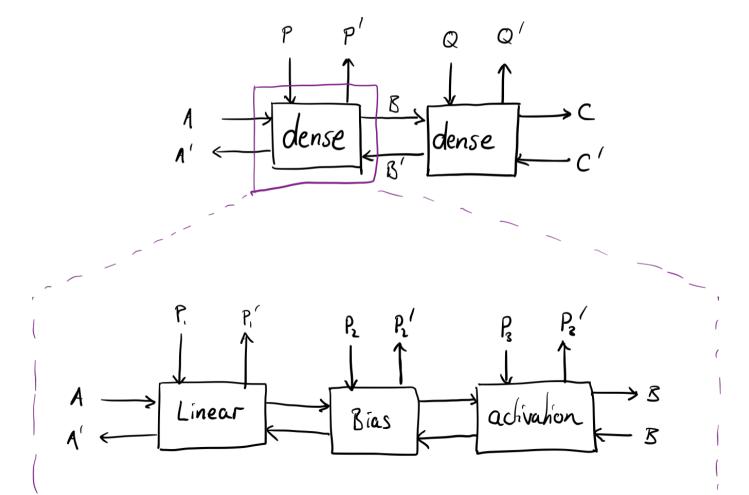
³Kaiser et al., "One Model to Learn Them All."

The Old Ways

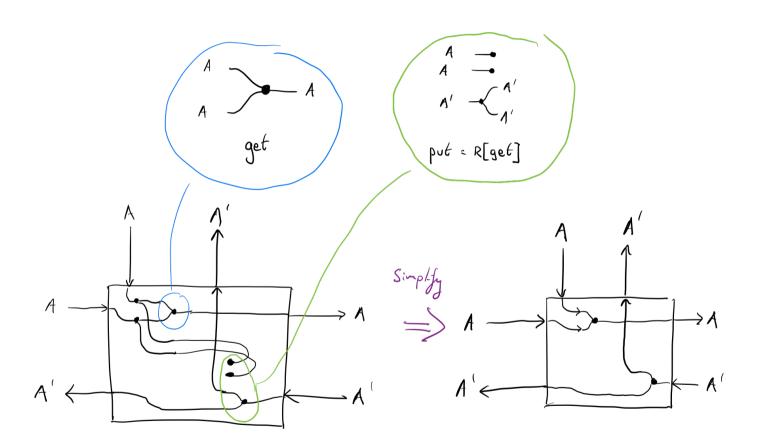


Dense Layers

A simple hidden layer neural network is a composition of two dense layers. Let's unpack a dense layer and see what's inside...



Bias Layers



Linear Layers

- Parameters $P = \mathbb{R}^{b \cdot a}$ are the coefficients of a matrix
- Input $A = \mathbb{R}^a$ is an a-dimensional vector
- Forward pass multiplies the matrix by the vector:

$$\operatorname{get}:\operatorname{Mat}(A,B)\times\operatorname{Vec}(A)\to\operatorname{Vec}(B)$$

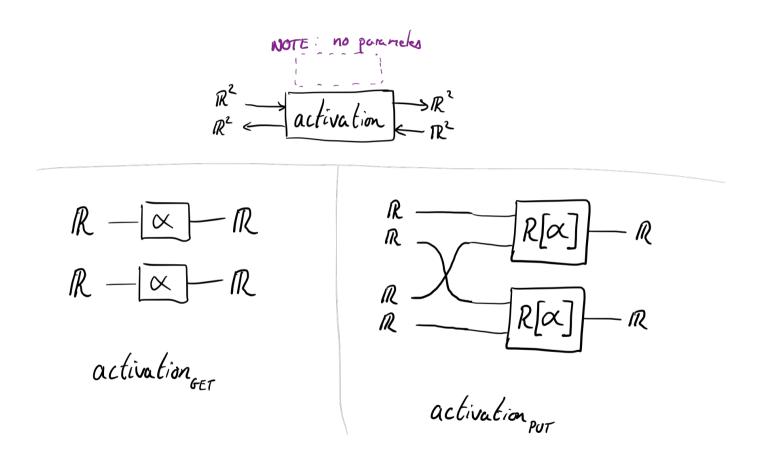
$$\operatorname{get}(M,x)\mapsto Mx$$

Reverse pass does this (note that it typechecks!):

$$\mathsf{put}: \mathsf{Mat}(A,B) \times \mathsf{Vec}(A) \times \mathsf{Vec}(B) \to \mathsf{Mat}(A,B) \times \mathsf{Vec}(A)$$

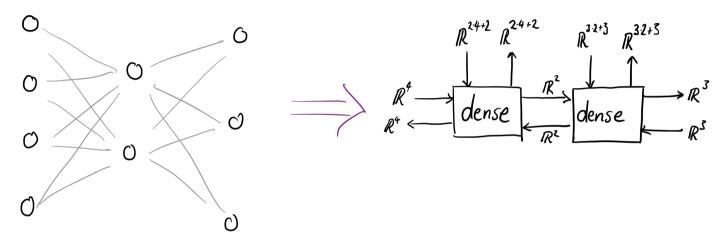
$$\mathsf{put}(M,x,y) \mapsto \langle y \otimes x, M^T y \rangle$$

Activation Layer

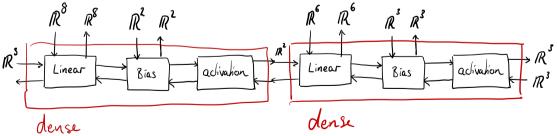


Hidden Layer Neural Network

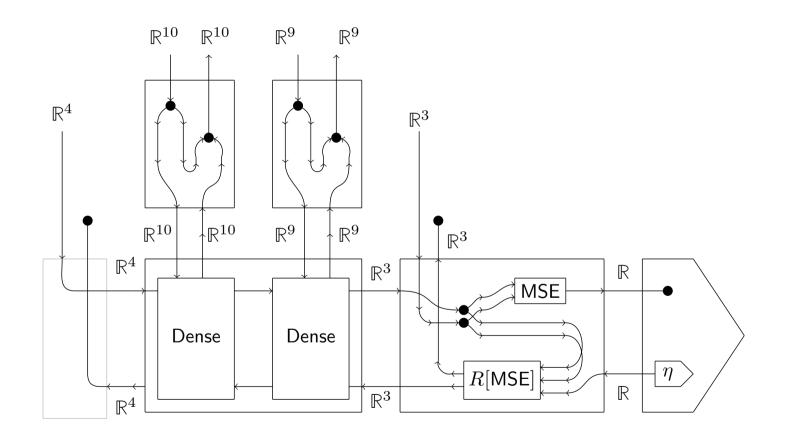
Returning to the "standard" picture of a neural network:



Expanding out "dense":



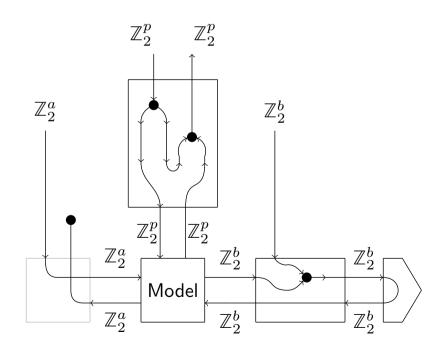
A Hidden Layer Neural Network as a Parametrised Lens



... with MSE loss, basic gradient descent, and fixed error rate

What else can we plug in?

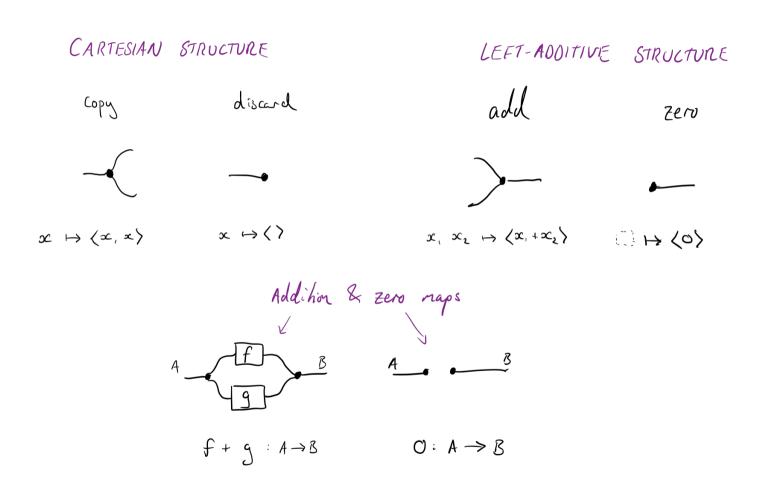
- So far we've only seen neural networks, where objects are \mathbb{R}^n for $n \in \mathbb{N}$.
- We can do learning with boolean circuits too, as in Reverse Derivative Ascent⁴:



⁴Wilson and Zanasi, "Reverse Derivative Ascent."

Questions?

Reverse Derivatives, Graphically



Reverse Derivatives, Graphically

$$A \xrightarrow{f}_{B} \Rightarrow A \xrightarrow{R[f]}_{A \times B'} \xrightarrow{A'}$$

$$R[A \xrightarrow{A}] = A \xrightarrow{A}_{A} \Rightarrow A$$

$$R[A \xrightarrow{A}] = A \xrightarrow{A}_{A} \Rightarrow A$$

$$R[A \xrightarrow{A}] = A \xrightarrow{A}_{A} \Rightarrow A'$$

$$R[A \xrightarrow{A}] = A \xrightarrow{A}_{A} \Rightarrow A$$

Reverse Derivatives, Graphically

$$A \xrightarrow{f} B \Rightarrow A \times B' \xrightarrow{R[f]} A'$$

$$R \xrightarrow{f} S \xrightarrow{g} C = A \xrightarrow{f} S \xrightarrow{R[g]} B'$$

$$R \xrightarrow{f} S \xrightarrow{g} B_{2}$$

$$R \xrightarrow{f} S \xrightarrow{g} B_{2}$$

$$R \xrightarrow{f} S \xrightarrow{g} R[g] \xrightarrow{g} A'$$

$$R \xrightarrow{f} S \xrightarrow{g} R[g] \xrightarrow{g} A'$$

References

- Kaiser, Lukasz, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and Jakob Uszkoreit. "One Model to Learn Them All," 2017. http://arxiv.org/abs/1706.05137.
- Lecun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-Based Learning Applied to Document Recognition." In *Proceedings of the Ieee*, 2278–2324, 1998. https://doi.org/10.1109/5.726791.
- Wilson, Paul, and Fabio Zanasi. "Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits." *Electronic Proceedings in Theoretical Computer Science* 333 (February 2021): 247–60. https://doi.org/10.4204/eptcs.333.17.