Functorial Manifold Learning

Dan Shiebler

University of Oxford

July 14, 2021

Manifold Learning

- Suppose we have a finite set of points X sampled from some larger space ${\bf X}$ according to some probability measure $\mu_{\bf X}$ over ${\bf X}$.
- Manifold Learning techniques construct \mathbb{R}^m -embeddings for the points in X, which we interpret as coordinates for the support of $\mu_{\mathbf{X}}$.

Why Functoriality?

- Directly model which invariances algorithms preserve.
- Expose similarities and hierarchies between algorithms based on the categories they are functorial over.
- Derive new algorithms that satisfy functorial constraints.

Background: Finite Pseudo-Metric Spaces

- ullet We represent datasets as finite pseudometric spaces (X,d_X)
- The morphisms in PMet are non-expansive functions $f:(X,d_X) \to (Y,d_Y)$ where $d_Y(f(x_1),f(x_2)) \leq d_X(x_1,x_2)$.

Background: Clustering Functor

- The objects in the category \mathbf{Cov} are sets (X,\mathcal{C}_X) where \mathcal{C}_X is a (non-nested flag) cover of X
- Morphisms are **refinement preserving functions** $f:(X,\mathcal{C}_X) \to (Y,\mathcal{C}_Y)$ such that if S in \mathcal{C}_X there exists S' in \mathcal{C}_Y such that $f(S) \subseteq S'$.
- A clustering functor $\mathbf{PMet} \to \mathbf{Cov}$ maps a finite pseudometric space (X, d_X) to (X, \mathcal{C}_X) .

Background: Hierarchical Clustering Functor

- Sometimes it is useful to group data at different scales.
- A hierarchical clustering functor $\mathbf{PMet} \to \mathbf{Cov}^{(0,1]^{op}}$ maps (X,d_X) to the map $(0,1] \to (X,\mathcal{C}_X)$.

Manifold Learning

- A pairwise embedding optimization problem is a tuple $(n,m,\{l_{ii}\})$ that represents:
 - Find an $n\times m$ real valued matrix A in \mathbb{R}^{n*m} that minimizes $\sum_{\substack{i\in 1...n\\j\in 1...n}} l_{ij}(\|A_i-A_j\|).$
- Manifold learning algorithms map pseudometric spaces (X,d_X) to pairwise embedding optimization problems $(n,m,\{l_{_{ij}}\}).$

Example: Metric Multidimensional Scaling

Metric Multidimensional Scaling maps (X, d_X) to:

Find
$$A \in \mathbb{R}^{n*m}$$
 that minimizes $\sum_{\substack{i \in 1...n \\ j \in 1...n}} (d_X(x_i,x_j) - \|A_i - A_j\|)^2$

This is a search problem in \mathbb{R}^{n*m} that is parameterized by (X, d_X) .

Category FLoss of Manifold Learning Optimization Problems

- In the preorder category FLoss objects are pairwise embedding optimization problems
- **FL**oss is a multiscale extension of the simpler preorder **L** in which $(n,m,\{l_{ij}\}) \leq (n',m,\{l_{ij}'\})$ iff for any $x \in \mathbb{R}_{\geq 0}, i,j \in \mathbb{N}$ we have $l_{ij}(x) \leq l_{ij}'(x)$

Manifold Learning Taxonomy

We can classify manifold learning algorithms by the subcategory of \mathbf{PMet} over which they are functorial:

- $PMet_{isom}$: Invariant to isometries (e.g. UMAP)
- ullet PMet $_{bij}$: Invariant to bijections (e.g. k-Vertex-Connected Scaling)
- ullet PMet $_{sur}$: Invariant to surjections (e.g. IsoMap, MMDS)
- No functors out of PMet

Manifold Learning Factors Through Clustering

- Constructing a pairwise embedding optimization problem from a pseudometric space requires forming groups of points at different strengths.
- Every manifold learning functor $\mathbf{PMet} \xrightarrow{M} \mathbf{FLoss}$ factorizes through some hierarchical clustering functor $\mathbf{PMet} \xrightarrow{H} \mathbf{Cov}^{(0,1]^{op}} \xrightarrow{L} \mathbf{FLoss}$

Example: Metric Multidimensional Scaling

We can define a functor $MDS: \mathbf{Cov}^{(0,1]^{op}} \to \mathbf{FLoss}$ such that the composition $MDS \circ \mathcal{ML}$ maps (X,d_X) to the embedding optimization problem where $l_{ij}(a) = (d_X(x_i,x_j)-a)^2$.

Universality of Manifold Learning Algorithms

- The $\delta\text{-Vietoris-Rips}$ Complex of (X,d_X) contains the simplex $x_1,x_2,...,x_n$ if $d(x_i,x_{i+1})\leq \delta$
- \mathcal{SL} clustering functor maps (X,d_X) to the connected components of its δ -Vietoris-Rips Complex
- \mathcal{ML} clustering functor maps (X,d_X) to the maximal faces of its $\delta\text{-Vietoris-Rips}$ Complex

For any non-trivial manifold learning functor $M=L\circ H$ we have:

$$L \circ \mathcal{ML} \leq M \leq L \circ \mathcal{SL}$$

Manifold Learning Stability Properties

- Suppose we have a manifold learning functor M and the ϵ -isometric pseudo-metric spaces $(X,d_X),(Y,d_Y)$
- \bullet Suppose A_X,A_Y respectively minimize the loss functions $\mathbf{l}_{M(X,d_X)}$ and $\mathbf{l}_{M(Y,d_Y)}$
- \bullet We can use functoriality to bound $\mathbf{l}_{M(X,d_X)}\left(A_Y\right)$ in terms of $\mathbf{l}_{M(X,d_X)}\left(A_X\right)$

Functorial Recombination

- The functorial perspective on manifold learning provides a natural way to produce new manifold learning algorithms by recombining the components of existing algorithms.
- ullet For example, we can swap \mathcal{ML} with \mathcal{SL} in the Metric Multidimensional Scaling functor $MDS \circ \mathcal{ML}$ to form the new Single Linkage Scaling functor $MDS \circ \mathcal{SL}$ that encourages chained embeddings.

Functorial Recombination

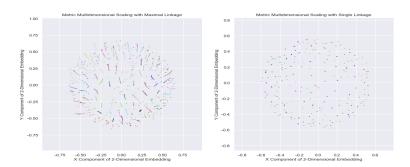


Figure: Each color indicates a unique DNA sequence at different mutation stages. Note that the $MDS \circ \mathcal{SL}$ objective (on the right) embeds sequences in the same mutation list more closely together than $MDS \circ \mathcal{ML}$ (on the left).

Thank You

Thank You