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Motivated by recent developments in the foundations and applications of quantum

theory in which particular constraints on the behaviours of gates within a circuit-

based protocol are guaranteed to be satisfied, we introduce composable constraints as

a framework for expressing the compatibility of a set of constraints with the structure

of the category on which they are imposed. We show that the existence of a composable

constraint allows for the construction of a constrained category, featuring a calculus

of morphisms and their constraints in parallel. A subclass of such constraints is then

presented via a general construction from the notion of a route-category. We finish by

demonstrating the use of the induced constrained category by computing the spread

of decoherence through systems in a compact and scalable way.

Contents

1 Introduction 2

2 Compositional Constraints - Formally 5

3 Route categories – informally 8

4 Route categories – formally 10

4.1 Route faketors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Relation Between Route-Faketors and Standard Categorical Notions of Functors . 14

4.2.1 Route-Faketors as Oplax Functors . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Route-Faketors as Functors into Cartesian Monoidal Categories . . . . . . . 17

5 Relational and Index matching route categories 18

Matt Wilson: matthew.wilson2@exeter.ox.ac.uk, Both authors contributed equally to this paper; their ordering was
decided by the measurement of a superposed state, using the IBM Q machine. In the absence of any access to the IBM
Q machine, this measurement was in turn simulated via a classical coin flip, using a one-pound coin.
Augustin Vanrietvelde: a.vanrietvelde18@imperial.ac.uk

1

mailto:matthew.wilson2@exeter.ox.ac.uk
mailto:a.vanrietvelde18@imperial.ac.uk


5.1 Relational route categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Matching Route Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Routed categories 23

6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Inheritance of additional Categorical Structure . . . . . . . . . . . . . . . . . . . . 28

7 Calculations in Routed CPM categories 29

7.1 Completely Positive Matching Routes in CPM[C] . . . . . . . . . . . . . . . . . . . 30
7.2 Example Decoherence Calculation Using Completely Positive Index matching Routes 31

8 Conclusion 32

A Relation with CP* and the Karoubi envelope of CPM 36

B 2-Categorical Structure of Route-Faketors 37

C Symmetric Monoidal Structure of Routed Categories 38

C.1 Compact Structure of Routed Categories . . . . . . . . . . . . . . . . . . . . . . . . 42

D Existence of a route-faketor from fRel 43

1 Introduction

The aim of this work is to present a general categorical construction on a category C that 1)

captures the possibility to impose constraints on morphisms of C, and 2) allows to compose these

constraints, in a way that is compatible with the composition of the morphisms of C. By a set

of constraints on possible maps A
f→ B in C, we mean a piece of data λ singling out, among

the hom-set C(A,B), a subset Cλ(A,B), whose elements are said to be the maps that follow

these constraints. Now, given λ and another set of constraints σ on possible maps B
g→ C, it is

often the case that one can think of a sense in which σ and λ can be composed to form a set of

constraints ‘σ ◦ λ’ that is followed by g ◦ f whenever g follows σ and f follows λ. As we shall

see, formally capturing this kind of ‘structure of constraints’, compatible with the structure of

morphisms themselves, helps not only to model scenarios in which constraints have to be taken

into account, but also to unlock a handy ‘constraint calculus’: a calculus only performed on the

constraints that morphisms follow, allowing to deduce properties about their compositions while

‘bypassing’ the handling of the (usually more intricate) data about the morphisms themselves.

The need for a formal theory of constraints has recently arisen in different contexts. First,

constraints can appear in the description of physical, communicational or computational scenarios

in which some key operations can be freely chosen, yet can only be picked among a subset of

the possible operations between their domain and codomain, due to restrictions arising e.g. from

physical constraints or from the rules of a game. This is for instance the case for the study of

superpositions of channels in quantum theory [1–3] – and more generally for that of the coherent

control of gates and channels [4–13] –, a notion whose formal definition is a subtle matter, and
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for which a recently proposed formalism [14] makes a crucial use of so-called sectorial constraints

on morphisms. Introducing constraints can also be used as a way of enriching the structure of

a given category, in order to make it expressive enough to capture some notions in an elegant

and consistent way; this has been the case in the study of so-called causal decompositions, i.e.

diagrammatic decompositions of unitary channels that are equivalent to these channels’ causal

structure [15–18] (see in particular Ref. [17]). Indeed, some causal decompositions cannot be

written in terms of standard circuits, but only using more elaborate circuits (later called index-

matching circuits [14]), which relied on constraints and whose exact semantics remained unclear1.

Ref. [14] provided a well-defined formal account of the two examples cited above; the structural

and categorical features of this account, however, were toned down in order to make it suitable to

working physicists. The framework we will present here aims to be a way more general, and fully

structural, account, able to model the inclusion of, and reasoning about, constraints on morphisms

in various theoretical contexts. After formalising the notion of a compositional constraint as a lax

functor L with a particular domain, we show that any such lax functor can be used to construct a

new constrained category CL in which morphisms and their constraints are manipulated together

as pairs (λ, f) in which λ (in Con) is called the constraint, and f (in C) satisfies the constraint λ

– in the sense that f ∈ L(λ). Defining all operations pairwise, suitably monoidal (or † or compact

closed) properties of such a lax-functor L lift to properties of the constrained category. In the

constrained category, the whole calculus is thus doubled, and performed in parallel in C on the

one hand, and in Con on the other hand, e.g.:, guaranteeing a circuit language for morphisms

and their constraints:

f2 f3

f4λ4

λ1 f1

λ3λ2 =

λ1

λ3λ2

λ4

f1

f3f2

f4

We will then present a construction of a class of such compositional constraints based on a

generalisation of the constructions of Ref. [14], which will serve, throughout the present paper,

as a conceptual guideline and as a source of meaningful instances for the general categorical

construction we present. Let us present the outline of these specific constructions, so as to illustrate

and motivate our general strategy. The point of Ref. [14] is, in the context of the category FHilb

1In Appendix A, we also explain why other standard categorical constructions, CP*[FHilb ] and
Karoubi[CPM[FHilb ]], cannot be used either to model superpositions of paths and causal deocmpositions.
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of linear maps on finite-dimensional Hilbert spaces, to build a theory encompassing sectorial

constraints on these linear maps. Sectorial constraints express the fact that a given linear map

is forbidden to relate some sectors (i.e. orthogonal subspaces) of its domain with some sectors of

its codomain. For example, the set of arrows in the following figure expresses a set of sectorial

constraints on a map f ∈ FHilb(A,B), where A and B are partitioned into a direct sum of

sectors:

f:

A0 A1 A2

B0 B1 B2 B3

. (1)

In this figure, the sectorial constraints correspond to the absence of arrows between some

sectors. For instance, the absence of arrows fro A1 to B1, B2 and B3 means that, for a f following

these constraints, one has f(A0) ⊆ B0; the same goes with the other sectors.

However, as we already mentioned, when we talk about a framework ‘including constraints’, we

do not just mean to allow for the possibility to add these constraints ‘by hand’ on some morphisms;

what we want is a theory in which one can compose these constraints in various ways, compatibly

with the structure of the original category. An example will make this point clearer. For any two

linear maps A
f→ B

g→ C following some sectorial constraints, it is easy to deduce a set of sectorial

constraints which g ◦ f will necessary follow, as depicted in the following figure:

f

B0 B1 B2 B3

A0 A1 A2

:

g

C0 C1 C2

=

A0 A1 A2

C0 C1 C2

. (2)

In other words, the constraints themselves feature some structure (here, a composition), and,

crucially, this structure is compatible with that of the underlying category: if two maps each follow

a set of constraints, then their composition follows the composition of these sets of constraints.

In fact, sectorial constraints exhibit a whole dagger compact structure – that of finite relations –,

completely consistent with the dagger compact structure of FHilb. It is this kind of structural

compatibility that we want to describe and exploit fully, whenever some notion of constraints

features it.

The strategy we will follow here is to capture this structure using route categories. Given a

symmetric monoidal2 category C, a dagger compact category R will be called a route category

2As is done at several points in this paper, this strategy can be naturally extended to any structure shared, in a
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for C if there exists a suitably well-behaved (although, as we shall see, not functorial) embedding

E : R → C, where the ‘good behaviour’ of E means that it allows to think of the morphisms in R
as describing constraints on C’s morphisms3.

The structure of this paper is as follows. First, we present a very general notion of composable

constraint on a category. Then, in order not to lose the reader in the technicalities of our definition

of route categories, we introduce its core elements at the conceptual level (Section 3); then, we get

the formal work done (Section 4). We present three general classes of route categories, that one

can construct for large varieties of categories (Section 5). We explain how, from a category C and

a route category R for it, one can build a routed category featuring a ‘double calculus’ (Section

6). We study how our constructions interplay with the CPM construction, showing that, if R is

a route category for C, then CPM[R ] can be considered to be a route category for CPM[C ] in a

canonical way (Section 7). Finally, we show in an example how the structure of routed categories

can unlock a handy calculus bypassing the calculus of the target category C (Section ??). We

conclude in Section 8.

2 Compositional Constraints - Formally

In this section we present the concept of a compositional constraint category Con that may be

imposed on a category C. The notion of a constraint τ encoded as a subset of the morphisms

C(A,B) can be captured at its heart by the notion of a lax functor. From a category C one may

construct a power-set category P[C]:

Definition 1 (Power-Set Category). For any category C the category P[C] has objects given by
the objects of C and for morphisms

P[C](A,B) := {S| S ⊆ C(A,B)}

with identity given by {id} and composition given by

S ◦ T := {f ◦ g| (f, g) ∈ S × T}

P[C] may furthermore be viewed as a 2-Category with 2-Morphisms given by subset inclusion

P[C](S, T ) := {≤} if S ⊆ T

∅ otherwise

For any lax functor

L : Con −→ P[C]

the laxity condition implies precisely that L(τ) ◦ L(λ) ⊆ L(τ ◦ λ) meaning that if f ∈ L(τ) and

g ∈ L(λ) then the composition f ◦ g ∈ L(τ) ◦ L(λ) ⊆ L(τ ◦ λ), which is exactly the notion we

proposed as a “compositional constraint”4.

compatible way, by C and R. For instance, in this paper we also consider cases where C is a †-SMC or a †-compact
category.

3Later in the paper, we will introduce a generalisation that allow for the constraints’ expressions to be expressed
in a third category V. What will then be required is a functor F : C → V, and a (not necessarily functorial)
embedding E : R→ V, interacting suitably.

4The authors are extremely grateful for the insight of an anonymous reviewer at ACT 2021 who pointed out the
phrasing of compositional constraints via lax-ness
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Definition 2 (Compositional Constraint). A compositional constraint for a category C is a lax
functor L : Con −→ P[C] from some any category Con into the power set category P[C]

Our second goal is to give the notion of a circuit theory in which formally the morphisms of C
and the constraints Con they satisfy live together in one category, so that the string diagrams of

such a category immediately capture a side-by-side calculus of morphisms and their constraints.

Firstly we note that for simple (non-monoidal) categories such a construction can easily be written

down.

Definition 3 (Category of Constrained Morphisms). Let L : Con −→ P[C] be a compositional
constraint, The constrained category CL has as objects the objects of Con and as morphisms

CL(a, b) := {(τ, f)|f ∈ L(τ : a→ b)}

with composition defined component-wise by (τ, f) ◦ (λ, g) := (τ ◦ λ, f ◦ g) and well-defined since
by laxity f ∈ L(τ) and g ∈ L(λ) =⇒ f ◦ g ∈ L(τ ◦ λ). The identity is given by (id, id) which is
well-defined since {id} ⊆ L(id).

To construct a circuit theory one must take a further step and consider a symmetric-monoidal

structure. For any symmetric monoidal category C the category P[C] can be viewed as a monoidal

category with S ⊗ T := {f ⊗ g|(f, g) ∈ S × T} and with coherence isomorphisms inherited

as singletons E.G αP[C] := {αC}. From this definition of the monoidal product it follows that

whenever S ⊆ S′ and T ⊆ T ′ then S ⊗ T ⊆ S′ ⊗ T ′ it is tedious but simple to check that P[C]
in-fact forms a symmetric monoidal 2-Category in the sense of being a suitably strict symmetric

monoidal bicategory. A monoidal composiitonal constraint is a compositional constraint such that

whenever (f, f ′) ∈ L(τ)× L(τ ′) then f ⊗ f ′ ∈ L(τ ⊗ τ ′).

Definition 4 (Monoidal Compositional Constraint). A monoidal compositional constraint for a
monoidal category C is a lax functor

L : Con −→ P[C]

equipped with an oplax natural transformation

φ : L(−)⊗ L(−)⇒ L(−⊗−)

a morphism with φo : I → L(I) and 2-Morphisms:

(L(A)⊗ L(B))⊗ L(C) L(A)⊗ (L(B)⊗ L(C))

L(A⊗B)⊗ L(C) L(A)⊗ L(B ⊗ C)

L((A⊗B)⊗ C) L(A⊗ (B ⊗ C))

α

φA,B⊗i i⊗φB,C

φA⊗B,C φA,B⊗C

L(α)

I ⊗ L(A) L(I)⊗ L(A) L(A)⊗ I L(A)⊗ L(I)

L(A) L(I ⊗A) L(A) L(A⊗ I)

φo⊗i

φI,A

i⊗φo

φA,Iλ

L(λ)

ρ

L(ρ)
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The reader may recognise the above as a significant weakening of the notion of a homomorphism

of monoidal bicategories, the statement of coherence conditions and the phrasing of 2-Morphisms

as modifications will be unnecessary for our purposes since all 2-morphisms are unique. We

refer to a monoidal compositional constraint as strong if the components of the oplax natural

transformation φA,B : L(A) ⊗ L(B) → L(A ⊗ B) and φo are isomorphisms, taken to its extreme

a strict monoidal compositional constraint is then one for which φA,B and φo are identities, the

strict case can be concisely rephrased by required that the oplax natural transformations φ be an

icon. The strict case is the most easily interpreted, it entails precisely the desired lax-ness of the

tensor product

L(τ)⊗ L(λ) ≤ L(τ ⊗ λ)

alongside the preservation of coherence isomorphisms up to inclusion λ ≤ L(λ), ρ ≤ L(ρ), α ≤
L(α) in direct analogy to preservation of the identity by standard lax functors.

It is expected by the authors that the above notion when equipped with the coherence condi-

tions of [] define the most-lax notion of morphism between monoidal bi-categories (crucially not

a homomorphism which would impose L(τ) ⊗ L(λ) ∼= L(τ ⊗ λ)), this phrasing is left for future

development, since the definition given will be adequate for our purposes, essentially because co-

herence conditions are guaranteed to be satisfied by the uniqueness of 2 morphisms in P[C]. We

now show that for every monoidal compositional constraint one can construct a monoidal category

(and so a circuit theory) of morphisms in parallel with their constraints.

Theorem 1 (Monoidal Category of Constrained Morphisms). Let L : Con −→ P[C] be a strong
monoidal compositional constraint, The constrained category CL is a monoidal category.

In the strict case it is easy to check that one can define a monoidal category by:

• (τ, f)⊗ (τ ′, f ′) := (τ ⊗ τ ′, f ⊗ f ′)

• All coherence isomorphisms defined component wise E.G: αCL := (αCon, αC)

crucially the proposed coherence morphisms are well-defined since αC ∈ {αC} = αP[C] ⊆ L(αCon)
and similarly for left and right unitors. The explicit proof will be given in further development.

By including the analogous conditions for additional structures on circuit theories such as

• Symmetric Monoidal: βP[C] ⊆ L(β)

• †-Monoidal: L ◦ †Con = †P[C] ◦ L

• Compact Closed: ∪P[C] ⊆ L(∪Con)

one can correspondingly construct symmetric, †, and compact categories of constrained morphisms,

meaning for example that whenever one has a theory of compact constraints over a compact cate-

gory, one may construct a new category in which the constraints may be computed in parallel with

the morphisms they constrain and the string diagram calculus for the parallelised category also

comes with caps, cups, and so a convenient diagrammatic language. We conclude by presenting

two basic examples of monoidal compositional constraints in quantum theory, sectorial constraints

and signalling constraint, both having constraints which are essentially relations.
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3 Route categories – informally

In this section, we provide an introductory description of our strategy to spell out the basic

structural requirements endowing a category R with the interpretation that it encodes constraints

for another category C. This section can be seen as a non-technical version of Section 4, allowing

the reader to grasp it conceptually before we go into the technicalities.

First, it is important to make a distinction between the morphisms in a route category R, and

the expression of the constraints they represent for morphisms in C, which will necessarily have

to be expressed within C. Let us focus on the latter. For morphisms A → B, it is natural to

express a set of constraints λ (in R) through a map ZA
E(λ)→ ZB between two auxiliary objects of

C, together with two maps A
µg→ ZA ⊗A and ZB ⊗B

µp→ B, and say that a map f follows λ if

f=

µg

E(λ)

µp

f . (3)

We use this condition because it nicely matches the standard practice of defining constraints

through projectors: here, we want the higher-order map formed by the µg, E(λ) and µp to act

essentially as a (higher-order) projector5. This leads to the following requirement on the structure

we can use, corresponding to the idempotency of a projector:

µg

E(λ)

µp

=

µg

E(λ)

µp

µg

E(λ)

µp

(4)

In addition, other requirements can be spelled out, to ensure that this representation of con-

straints interplays suitably with the dagger symmetric monoidal structure of maps in C. The

categorical structure which naturally satisfies all these requirements is that of updates structures

over special semigroups (SAs). More precisely – we will spell out these notions in detail later in

the paper –, ZA and ZB will each have the structure of a SA, and µg and µp will respectively

be the action and coaction of update structures on A ⊗ ZA and B ⊗ ZB . In lots of interesting

cases, such as that of sectorial constraints on FHilb, these can be taken to be stronger structures:

5Of course, whenever C is compact, we could also represent the set of constraints directly as a projector on the
object A∗ ⊗ B, whose states are in one-to-one correspondence with morphisms A → B. However, such a picture
is unsuitable if one wants to endow constraints with their own compositional structure, as it spoils the distinction
between their domain and codomain; this is why we rather frame them as maps ZA → ZB .
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dagger modules over dagger special commutative Frobenius algebras (†-SCFAs)6 [19–23]. In this

context, (4) will in particular translate to the condition that the E(λ) be so-called element-wise

idempotents, i.e.

E(λ) E(λ)

ZB

ZA

= E(λ) . (5)

There is an important point, however: the composition of routes, given by the composition

in R, does not in general correspond to the composition in C of the expressions E(λ) of their

constraints, i.e. one does not have E(τ ◦ λ) = E(τ) ◦ E(λ). The transformation E from R to C
will thus have the peculiar feature that it preserves all the structure of a dagger compact category

(identities, monoidal products, units and counits, adjoints...), except its composition. We will coin

the notion of a faketor in order to frame this behaviour.

Even though E will not preserve composition per se, there will still be a sense in which the

compositions of the two categories will be compatible. This sense corresponds to a loosening

condition: we want E(τ ◦ λ) to impose looser constraints than E(τ) and E(λ) taken together, so

that “f follows λ and g follows τ” implies “g ◦ f follows τ ◦ λ”.

f

µg

E(λ)

µp

f= and g

µg

E(τ)

µp

g= =⇒

µg

E(τ ◦ λ)

µp

g

=

f

g

f

(6)
Using the update structure, this loosening condition can be translated into the following one,

which we shall call the loosening condition:

ZC

ZA

=E(σ ◦ τ) ZB

E(σ)

E(λ)

ZB

E(σ)

E(λ)

. (7)

6Note, however, that the E(λ) will not necessarily be homomorphisms of Frobenius algebras.
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The loosening condition (7) actually implies the element-wise idempotency (5). Any faketor of

dagger compact categories (or of †-SMCs) satisfying (7) will thus meet our needs, and be called a

route faketor, the specification of which makes R a route category for C. Given a route faketor,

we can build a routed category with all the suitable structure; this is done in Section 6.

If we go back to our introductory example of sectorial constraints in FHilb, these elements will

all find a natural meaning. In this case, one has C = FHilb and the route category R is (equivalent

to) the category FRel of finite sets and relations; we will use †-SCFAs, corresponding to preferred

bases of a Hilbert space, the †-module over them will correspond to orthogonal partitions of

Hilbert spaces, and E will map a relation to the linear map whose matrix (in the preferred bases

determined by the †-SCFAs) only contain 1’s and 0’s, determined by the relation. As we will

show, this particular manner of using FRel as a route category can actually be applied not only

to FHilb, but to any †-compact category enriched in commutative monoids – i.e. admitting sums

and zeroes on its hom-sets. We expand on this example and its generalisation to any †-SMC

enriched in commutative monoids in Section 5.1.

In addition, we will provide a second example of a route category, that of matching routes, which

can be built for any †-compact category, and whose route faketor maps to all the †-SCFAs of this

category. This construction also originates from the study of sectorial constraints in FHilb [14],

in which it appeared as a subcase of interest of the previous construction, giving rise to so-called

index-matching diagrams, which are used to write causal decompositions [17].

4 Route categories – formally

Having shown that from any monoidal composiitonal constraint over a category C one can construct

a new monoidal constrained category, and so a circuit theory of constraints, we now present a

construction for a class of such constraints generalising the motivating example of the consideration

of fRel as a theory of constraints for fHilb. This generalisation will include as special cases the

lax-functorial embedding of boolean matrices into complex matrices and then notion of a functor

into a Cartesian monoidal category.

4.1 Route faketors

As explained in the previous section, a crucial component of our constructions will be the mapping

E going from a route category R, in which the route morphisms live and get composed, to the target

category C, in which the images of these route morphisms by E serve to denote constraints on

morphisms7. E will have the peculiar feature that it preserves all of the structure of R (identities,

monoidal products, units and counits, adjoints...), except its composition. We will coin the notion

of a faketor – or a symmetric monoidal faketor, a dagger compact faketor, etc., depending on the

structure it preserves – to describe this behaviour. A route faketor will then be a dagger compact

faketor which additionally maps to a well-defined †-SCFA of C and satisfies the loosening condition

7Strictly speaking, E will not exactly map to C, but to its special semigroup splitting Sg[C]; we write E : R→ C
as a slight abuse of notation.
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(7) with respect to the latter8.

An intuitive way of understanding what we are building is to look at our main example, that

of the structure of sectorial constraints in FHilb [14]. In this example, the structure of the route

category R is essentially that of the category of finite relations FRel. E can then be loosely

described as the mapping which, to a relation represented by a boolean matrix λ, associates the

complex matrix E(λ) which is “the same matrix”, in the sense that the boolean scalars 0 and 1 of

λ are replaced, in E(λ), by the complex scalars 0 and 1, respectively. It is easy to see that E does

not preserve composition; yet it preserves all the rest of the dagger compact structure of FRel
into that of FHilb. We will thus in particular provide a sense in which Rel lives inside, can be

used inside, and can be built from FHilb through the use of faketors.

Definition 5 (Faketor). A faketor E : R −→ C is a map sending each object A of R to an object
E(A) on C, and a map sending each morphism f : A → A′ to a morphism E(f) : E(A) → E(A′)
such that E(1R) = 1C.

In general, we will use the term ‘structure-faketor’ in place of ‘structure-functor’ to signify that

a given mapping satisfies all of the defining constraints of the functor, barr that of composition

preservation. For instance, in order to capture the functorial nature of just the parallel composition

structure of the two categories, we introduce the notion of being a monoidal faketor.

Definition 6 (Strong Monoidal Faketor). A Strong Monoidal Faketor (E , θ, φ) : R −→ C between
Symmetric Monoidal Categories is

• A faketor E : R −→ C

• An isomorphism φ : IC → E(IR)

• A family of isomorphisms θA,A′ : E(A)⊗ E(A′)→ E(A⊗A′)

which together satisfy all of the standard coherence conditions for a Strong Monoidal Functor [24]
including the naturality square for θ. (E , θ, φ) is furthermore a †-Strong Monoidal Faketor between
†-Symmetric Monoidal Categories if θ and φ are unitary.

Similarly, we can talk about faketors that preserve a †-compact structure.

Definition 7 (†-Compact Faketor). A †-Compact Faketor E between †-Compact categories is a
†-Strong Monoidal Faketor such that

• θA∗,A ◦ E(∪) ◦ φ = ∪

Now that we have defined dagger compact faketors, the next step on our way to route faketors is

to define where they go. Indeed, they don’t exactly map to C, but rather to an equivalent category

Sg[C] in which special semigroups over the objects of C are hardcoded into those objects. In the

sense in which we embed FRel into FHilb this captures the notion that each relation will be

encoded into a particular basis. Let us first define special semigroups.

8In Section 4.2, we will also show that in some (though not all) cases, the structure of route faketors can be
more neatly described as corresponding to a 2-category with poset enrichment.
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Definition 8. A special semigroup (A,Zg : A ⊗ A → A,Zc : A → A ⊗ A) is a (co)-associative
(co)-magma pair over an object A

=
Z

Z

Z

Z = Z

Z

Z

Z

, (8)

which is furthermore special in the sense that

Z

Z

= . (9)

The structure of a special (c is sufficiently general to capture some quite distinct behaviours.

An example is that of dagger special commutative (semi-)algebras.

Example 1 (†-SCFsA). A †-Special Commutative Frobenius semi-Algebra (†-SCFsA) is a magma
Z on an object A in a †-Symmetric Monoidal Category such that (A,Z,Z†) defines a special
semigroup which furthermore satisfies the frobenius laws,

Z

Z

=
Z

Z

Z

Z

= , (10)

and such that Z is commutative, i.e.

=Z Z
. (11)

If m also has a unit, in the sense that there exists some state i satisfying

Z

i

= , (12)

then the word semi is dropped and Z is referred to as a †-Special Commutative Frobenius Algebra
†-SCFA.

For instance, the †-SCF(s)As with [21] and without [23] units can be used to characterise

orthonormal bases in FHilb and Hilb respectively. Another example, in which the algebras are

merely special, can be found in the case of cartesian monoidal categories.

12



Example 2 (Delete-Copy Algebra). The right-delete magma and copy co-magma which come for
free in any cartesian monoidal category [24] can be used to define the delete-copy algebra:

:=Z Z :=Z
. (13)

When the meaning is clear we will use the symbol Z interchangeably for the magma, co-

magma, and the object on which they are defined. We will require a relabelling of the category C
by the special semigroups of C, generalising the notion of a hyper-graph category [?, 25–30]. The

re-labelled category Sg[C] is equivalent to a full subcategory of C, and only serves to hardcode

the special semigroup structure into its objects.

Definition 9 (Sg[C]). The special semigroup-splitting (Sg[C],⊗Sg[C], ISg[C]) of a symmetric
monoidal category (C,⊗, I) is the symmetric monoidal category such that

• The objects of Sg[C] are the special semigroups of C

• Sg[C](Z,Z ′) = C(Z,Z ′)

• ◦Sg[C] = ◦C

• ⊗Sg[C] is the standard tensor product of special semigroups inherited from ⊗.

• ISg[C] is the unique frobenius algebra defined by the unitor of C

Furthermore the special semigroup splitting of a †-compact category (C,⊗, I, †,∪) is the †-Compact
category (Sg[C],⊗Sg[C], ISg[C], †Sg[C],∪Sg[C]) such that ∪Sg[C] = ∪C.

The inheritance of a compact structure in the above sense requires that the existence of a

special semigroup on an object A garuntees the existence of a special semigroup on the dual

object A∗, such a special semigroup on an object A∗ can indeed be constructed from a special

semigroup on A by applying cups and caps to all wires converting the magma of A into a co-magma

on A∗ and vice-versa. For any †-Symmetric Monoidal Category C we furthermore denote the sub-

category defined by including only †-SCFsAs of C by FsA[C] and the sub-category including only

the †-SCFAs of C by FA[C]. A well behaved mapping of a category into the Special-SemiGroup

splitting of another category is one in which the structure morphisms are homomorphisms with

with respect to the labelling of objects by their algebras

Definition 10. A special semigroup homomorphism h : (A,Zg, Zc)→ (A′, Z ′g, Z ′c) is a morphism
h : A→ A′ such that h is both a magma homomorphism h : Zg → Z ′g:

and simmillaraly a co-magma homomorphism h : Zc → Z ′c.

encoding that the structural morphisms of a monoidal functor be special semigroup homomor-

phisms essentially generalises the notion of a hyper-graph functor.

Definition 11. An Sg-†-Strong-Monoidal-Faketor from R to Sg[C] is a †-Strong-Monoidal-
Faketor (E , θ, φ) : R −→ Sg[C] such that each θ : Z → Z ′ and φ : X → X ′ are special-semigroup
homomorphisms from Z to Z ′ and from X to X ′ respectively.

13



Finally, as the faketor we will manipulate needs to express sets of constraints, we will introduce

a loosening condition, which will ensure that the set of constraints encoded by E(σ ◦ λ) is at most

as tight as that expressed by E(σ) and E(λ) taken together. This will conclude our definition of

route faketors.

Definition 12 (route faketor). A route faketor E : R  C between †-symmetric monoidal (or
†-compact) categories is an Sg-Frobenius-†-symmetric monoidal (or †-compact) faketor E : R  
Sa[C] such that the following loosening condition is satisfied for any τ and λ:

E(C)

E(A)

=E(τ ◦ λ) E(B)

E(τ)

E(λ)

E(B)

E(τ)

E(λ)

. (14)

In the motivating case of relations in FHilb, the image of any relation is a boolean matrix in

a particular basis, in general we will not need the entire Sg splitting, instead just the closure of

the boolean matrices, that is - the element-wise idempotents.

Definition 13. A morphism f : Z → Z ′ in Sg[C] is an element-wise idempotent from Z to Z ′ if

f f

Z′

Z

= f . (15)

Corollary 1 (Routes are element-wise idempotents). For any morphism τ ∈ R(A,B) the image
E(τ) is an element-wise idempotent from E(A) to E(B).

Proof. Follows by insertion of σ = 1A = 1ZA
into eq (2), followed by specialness.

4.2 Relation Between Route-Faketors and Standard Categorical Notions of Functors

We expect that the notion of a faketor might be perceived as unwieldy and not structural enough.

In this section we present two restricted classes of examples in which route-faketors reduce to

standard categorical notions of functors. We show that in some cases, such as that of sectorial

constraints on FHilb, the existence of route faketors can be recast in a more mainstream way, in

terms of a 2-categorical structure. We furthermore show that in the context of cartesian monoidal

categories, route functors who images are copy-delete algebras are exactly functors. In this sense

the notion of a route functor actually puts a certian class of (non-functorial) oplax functors and

a certian class of functors under the same umberella.
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4.2.1 Route-Faketors as Oplax Functors

A subcategory of the special semigroup splitting of FHilb is given by the element-wise idempo-

tents, concretely given by keeping only those objects that represent bases and and keeping only

matrices generated by boolean matrices in those bases. This subcateegory can be equipped with

2-Morphisms, which capture a partial order on the matrices, in terms of those components which

are non-zero. We now generalise the above story by examining the categorical properties of the

closure EW[C] of the element-wise idempotents in the subcategory FsA[C], which inherits the ∪
and † of FsA[C].

Definition 14. The category EW[C] of element-wise idempotents on C is the subcategory of
FsA[C] generated by for each Z,Z ′ ∈ o(FsA[C]), the element-wise idempotents f ∈ FsA[C](Z,Z ′)

Similarly the sub-category of FA[C] generated by element-wise idempotents is denoted

EWu[C] (in which the u stands for unital). We finish by noting some additional properties of

the special case of route faketors from Rel to FHilb which generalise to 2-categorical properties

of a general class of route faketors. First we introduce a generalisation of the notion of being able

to re-scale the elements of a matrix to a matrix of ones.

Definition 15. A morphism l is invertible wrt Z,Z ′ if there exists a morphism such that

l x

Z′

Z

=

Z′

Z

The above diagram with open holes is not formal, it should be interpreted by extending all

downwards pointing legs to the bottom of the page and all upwards pointing legs to the top of the

page, the informal expression is given for readability, it makes clear that x rescales l to produce

a matrix which behaves like a matrix of ones in the sense that it trivially rescales any matrix

placed into the slot to itself. Note that in the special case of a pair of †-SCFAs this condition is

equivalent to

l x

Z′

Z

=

Z′

Z

Next we introduce some basic additional conditions on element-wise idempotents of a category C,

Definition 16. The category EW(C) has loosened re-normalisation if
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• For every morphism f : Z → Z ′ there exists a unique element-wise idempotent fR : Z → Z ′

such that there is an invertible morphism l ∈ C satisfying

f l

Z′

Z

=fR

• For every pair of morphisms f, g such that f ◦ g is well typed, (f ◦ g)R satisfies

Z′′

Z

=(f ◦ g)R Z′

fR

gR

Z′

fR

gR

We now have the terminology in place to explore the 2-categorical structure of EW[C].

Lemma 1. Any category EW[C] with loosened-re-normalisation can be viewed as a 2-category by
poset enrichment of each EW[C](Z,Z ′) via the relation

f ≤ f ′ ⇐⇒ fR
1 fR

2

Z′

Z

= fR
2

Proof. Given in appendix

In the case of †-SCFAs route functors become oplax functors [24].

Lemma 2. let EWu[C] have loosened re-normalisation, then any route faketor E : R −→ Sg[C]
defines an oplax functor E : R −→ EWu[C].

Proof. All that is required is to check that E(f ◦ g) ≤ E(f) ◦ E(g) which follows immediately by
the loosening condition for route functors.

Two versions of the loosening condition have appeared in capturing two separate notions of

constraint-like composition

• For constraints of one category to be imposed on another, we shall find that the loosening

condition on route faketors is the crucial component.
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• For the guarantee that the images of constraints have a partial order structure, a notion of

coarse graining of constraints which is consistent with composition, the loosening condition

is again crucial.

It is for these reasons that we propose the loosening condition is the key ingredient that one should

expect to introduce when working with compositional constraints.

4.2.2 Route-Faketors as Functors into Cartesian Monoidal Categories

For a cartesian monoidal category C any strong monoidal functor Ē : R → C defines a route

faketor.

Theorem 2 (route faketor Induced by Functor). Let Ē : R → C be a strong monoidal functor
into a Cartesian monoidal category C; for each choice of a copy cA : A → A ⊗ A and delete
dA : A→ I the induced assignment E given on objects by

E(A) := (cA, dA)

and on morphisms by E(f) := Ē(f) defines a route faketor E : R ⇀ C.

Proof.

E(C)

E(A)

E(τ ◦ λ) E(B)

E(τ)

E(λ)

E(B)

E(τ)

E(λ)

:= E(τ ◦ λ)

E(τ)

E(λ)

=
E(λ) E(λ)

=

E(τ)

.

(16)

We will find that route faketors among those induced by functors in this way essentially specify

the behaviour of morphisms on ⊗-subsystems. We also note that every route faketor E : R → C
into a Cartesian monoidal category C who’s image consists only of copy-delete algebras is in fact

a functor. In this sense one can interpret a route faketor as a generalisation of the notion of a

functor into a cartesian monoidal category. We will define by cd the set of copy-delete algebras

on C.

Theorem 3. Every route faketor E : R ⇀ C into a cartesian monoidal category C defines a
functor Ē : RE−1(cd) → C.

Proof. For each object A of RE−1(cd) then E(A) ∈ cd, define Ē(A) to be the object over which
the copy-delete algebra E(A) is defined. On morphisms define Ē(A) := E(τ), for each λ ∈
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RE−1(cd)(A,B) and τ ∈ RE−1(cd)(B,C) it follows that:

E(C)

E(A)

E(τ ◦ λ)

E(B)

E(τ)

E(λ)

E(B)

E(τ)

E(λ)

=E(τ ◦ λ)

E(τ)

E(λ)

=E(τ ◦ λ) =
E(τ)

E(λ)

= .

(17)

The notion of route-faketor hence reduces, in two rather different settings, to two standard

categorical notions of functor between categories.

5 Relational and Index matching route categories

We will now present two particular cases of route categories. Our first example, in which the route

category essentially corresponds to relations, can be built for any †-SMC enriched in commutative

monoids. Our second example, in which the category essentially corresponds to finite corelations,

can be built for any dagger compact category. Our third example, in which the routes faketor

is in fact a functor, can be defined for the case of copy/delete structures in cartesian monoidal

categories.

5.1 Relational route categories

Our first example of a route faketor E : R → C is one in which the domain category R is

(essentially) bRel, the category of bounded relations between finite sets.

Definition 17 (bRel). The category of bounded relations bRel is the †-sub-symmetric monoidal
category of Rel such that for each R ∈ bRel(X,Y ) there exists a bound B which R respects in the
sense that for each x ∈ X there are less than B elements y such that xRy and similarly for each
y there are less than B elements x such that xRy. The sub-category of bounded relations between
countable sets is denoted bRelc.

This intuitively corresponds to the case where the objects of C can be partitioned into “sec-

tors”, and in which a route expresses the constraints that a map cannot connect some given sectors

of its domain and codomain. In this example, E will not map to all of the objects in Sg[C], but

only to †-SCFAs characterise orthonormal bases [21], a result which generalises to a special class

of †-SCFsAs in Hilb [23]. For concreteness, we start by describing this construction in the case

of FHilb: this corresponds to the study of sectorial constraints in finite-dimensional quantum

theory [14].

Theorem 4 (Route Faketor). There is a route faketor E : FRel→ FHilb.
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Proof. To each set X ∈ o(Rel) a †-SCFA E(X) on the object C|X| is assigned, furthermore a
bijection κ between X and the copyable states of E(X) is defined. To each relation τ : X → Y

a linear map is defined by E(τ) =
∑
ab τ

b
a |κ(b)〉 〈κ(a)| where τ ba = 1 ⇐⇒ aτb and otherwise

τ ba = 0 ⇐⇒ ¬aτb. The route functor condition amounts to the requirement that for every a, b, c

〈κ(c)| E(τ ◦ λ) |κ(a)〉 〈κ(c)| E(τ) |κ(b)〉 〈κ(b)| E(λ) |κ(a)〉 = 〈κ(c)| E(τ) |κ(b)〉 〈κ(b)| E(λ) |κ(a)〉

which is equivalent to
τ caτ

b
aτ

c
b = τ baτ

c
b

which in turn is satisfied since τ ca 6= 1 =⇒ τ baτ
c
b = 0.

We now show that this example can be extended to infinite-dimensional Hilbert spaces, using

bounded relations.

Theorem 5. There is a route faketor E : bRelc → Hilb.

Proof. On objects E is defined in the same way for finite sets as above, for any countable set X
define E(X) to be a †-SCFsA whos copyable states are an orthonormal basis of l2 (the seperable
Hilbert space of square summable functions). Such a †-SCFsA always exists [23]. To each bounded
relation define E(τ) to be the continuos linear extension of the following assignment

E(τ) |κ(x)〉 :=
∑
y|xτy

|κ(y)〉

which is bounded since τ is a bounded relation. The route functor condition reduced to the same
form as in the previous theorem, and is satisfied for the same reason.

Now that we have an intuition of what to do, let us generalise this construction; we find that

it can be achieved whenever C is enriched in commutative monoids.

We denote the set of †-SCFsAs whose copyable states form an orthonormal set as Z⊥C, and

we denote the set of copyable states of a frobenius algebra Z by C(Z) and finally we denote

C⊥C := {C(Z) | Z ∈ Z⊥C} .

The function C : Z⊥C → C⊥C is defined by C : Z 7→ C(Z). In anticipation of a critical property

of categories enriched in commutative monoids we define the following, where a bounded family of

scalars τ : X×Y → {0C, 1C} is a function such that the relation defined by xRy ⇐⇒ τ(x, y) = 1
is a bounded relation.

Definition 18 (Component-full). A subset S ⊆ C⊥C is component-full if for all SA, SB ∈ S

and for every bounded family of scalars τ : SA × SB → {0C, 1C} in C there exists a morphism
τ ∈ C(o(SA), o(SB)) such that

〈b| τ |a〉 = τ(a, b)

where o(SA) is the object on which that states of SA exist.

A component-full set S of orthonormal sets is such that one can make any (possibly infinite

- with bounded-size rows and columns) matrix of scalars with respect to any pair of orthonor-

mal bases of S. Enrichment in commutative monoids is enough to ensure that the set of finite

orthonormal sets makes component-full sets.
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Definition 19 (Enrichment in Commutative Monoids). A category C is enriched in commutative
monoids if for each homset C(A,B) there exists a map +A,B : C(A,B) × C(A,B) → C(A,B)
which is commutative, associative, has a unit uAB, and is compatible with composition in the sense
that

• uBB ◦ f = uA,B = f ◦ uA,A

• (f + f ′) ◦ g = f ◦ g + f ′ ◦ g

• f ◦ (g + g′) = f ◦ g + f ◦ g′

The existence of a summing operation allows one to build up any matrix using scalars and

orthonormal elements.

Lemma 3. Let C be enriched in commutative monoids, the subset CF⊥C ⊆ C⊥C of finite cardi-
nality orthonormal sets is component-full

Proof. For any pair of finite cardinality orthonormal sets {a},{b} ∈ CF⊥C and set of scalars
τ : {a} × {b} → {0, 1} define

τ :=
∑
ab

τ(a, b)a ◦ b†

We denote by ×S the set of cartesian products of sets in S and by DS the full subcategory of

D such that O(DS) = S.

Lemma 4 (fRel×S Is †-Symmetric Monoidal). Let C be a †-Symmetric Monoidal Category with
a 0 object, for any component-full S ⊆ C⊥C such that E(Zλ) ∈ S the category fRel×S is a
†-Symmetric Monoidal Category.

Proof. Zλ is the trivial †-SCFA defined by the unitor λ. Clearly 1 is a copyable state of Zλ, the
orthonormality condition then implies that for any other copyable state m then m = m•1 = 0. It
follows that the only normalised copyable state of Zλ is 1 and so C(λ) = {1} has unit cardinality
meaning it may be used as a tensor unit in fRel. The full subcategory fRel×S of fRel defined by
restriction to objects in S must then be a symmetric monoidal subcategory.

Now that we have a suitable route category fRel×S we are ready to define a route faketor into

C.

Theorem 6. Let C be a dagger-SMC with a 0 object. For every component-full subset S ⊆ C⊥C

such that E(Zλ) ∈ S there exists a route faketor

E : fRel×S −→ Sg[C]

Proof. Given in Appendix D.
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5.2 Matching Route Categories

Another example of a route category is that of matching routes; this example can be defined for

any dagger compact category C, and yields a route category Match[C] which contains (objects

corresponding to) all †-SCFMs of C.

The idea is to restrict oneself to E(λ)’s which can be built out of the sole spiders between

Frobenius algebras - that is, out of the multiplication, comultiplication, unit and counits of theses

algebras. The E(λ)’s will have to be restricted to be somewhat “normalised”, in order to satisfy

the loosening condition (17). This normalisation condition will take a particularly simple form: it

will correspond to the absence of “legless spiders”.

E(λ) ∈

{ . . .

. . .

}
−

{ }
Accordingly, the composition of Match[C] will have to differ from that in C in that, when seen

in C, it includes writing off any zero-legged spider produced. As we shall see, this is sufficient to

yield a route category satisfying the loosening condition (17), out of any dagger compact category.

Because of this absence of legless spiders, the dagger special commutative Frobenius algebras of C
will, in Match[C], correspond to dagger extraspecial commutative Frobenius algebras, where the

“extra” means that their legless spiders are equal to the unit scalar. This entails that Match[C]
can be characterised as essentially consisting of corelations, which are the proper tool to describe

the algebraic structure of dagger extraspecial commutative Frobenius algebras.

For an introduction to corelations, their structure, their use, and their connections to extraspe-

cial commutative Frobenius algebras, we refer the reader to the excellent presentation of Ref. [31].

In short, a corelation between two finite sets XA and XB is a partition of their disjoint union

XA t XB ; it can be seen as a collection of non-empty and non-overlapping bubbles covering all of

XA t XB ,

χB

χA

with the composition with a corelation XB → XC given by bubble merging. (Finite) corelations

owe their name to the fact that they are dual objects to (finite) relations: where relations can be

obtained as the category of isomorphism classes of jointly monic spans in the category of finite sets

and functions, corelations correspond to isomorphism classes of jointly epic cospans in the same

setting. Finite corelations form a dagger compact category FCoRel, with monoidal product given

by the disjoint union. In [31], it is shown that finite corelations are (equivalent to) the PROP for

extraspecial commutative Frobenius algebras.

To define Match[C] formally, we characterise its objects as finite sequences of †-SCFAs of

C, and its morphisms as corelations between the sets of indices of such sequences, such that, if

two indices are in the same equivalence class, then their corresponding Frobenius algebras are the

same. The corelations tell us which of the Frobenius algebras will be connected by a same spider.
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Definition 20. Given a dagger compact category C, Match[C] is the dagger compact category
defined in the following way:

• The objects are of the form (n, (Zk)1≤k≤n) where n ∈ N and the Zk’s are †-SCFAs in C;

• Morphisms from (n, (Zk)1≤k≤n) to (m, (Z ′k)1≤k≤m) are corelations κ from J1, nK to J1,mK
such that, if k, l ∈ J1, nKt J1,mK are in a same equivalence class of κ, then one has Zk = Z

′

l

• the dagger compact structure is the standard one on corelations (see [31]).

As an example, a morphism in Match[C] could be expressed in the following way (corelations

can only connect numbers whose corresponding frobenius algebras match):

(m, (Z ′k)1≤k≤m)

(n, (Zk)1≤k≤n)

1 2 3

1 2 3

Z ZZ Z̄

4

Z Z Z̄

κ =

The route faketor will send each bubble of instances of a frobenius algebra to the spider made

from that frobenius algebra which connects all members of the bubble. C

E(κ) Z Z̄Z=

.

Theorem 7. For any dagger compact category C, there is an f-faketor of dagger compact cate-
gories E from Match[C] to C, which:

• to an object (n, (Zk)1≤k≤n) of Match[C], associates their tensor product in Frob[V],⊗
1≤k≤n Zk;

• to a morphism κ : (n, (Zk)1≤k≤n), associates the morphism in Frob[V] given by writing
down a spider for each of the equivalence classes in κ, connecting all the representatives of
this equivalence class.

Furthermore, this functor makes Match[C] a route category for C, i.e. it satisfies the loosening
condition (17).

Proof. First, E is consistently defined because of the requirement that the corelations in Match[C]
only match indices corresponding to the same †-SCFA. It is straightforward to prove that E satisfies
all the requirements to be a Frobenius-†-compact faketor.

Let us prove that it is satisfies the loosening condition (17). If we take two morphisms
(n, (Zk)1≤k≤n) κ→ (n′, (Z ′k′)1≤k′≤n′)

κ′→ (n′′, (Z ′′k′′)1≤k′′≤n′′) in Match[C], we have, from the
definition of the composition of corelations, that two elements of (Zk)1≤k≤n t (Z ′′k′′)1≤k′′≤n′′)
are connected by κ′ ◦ κ if and only if they can be connected via a path made of iterations of the
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connections of κ and κ′. This is exactly the same rule as that of spider fusion; therefore, in C,
E(κ′ ◦κ) connects two Frobenius algebras via spiders if and only if E(κ′) ◦ E(κ) connects them. In
addition, these connections between Frobenius algebras of its domain and codomain fully specify
E(κ′ ◦ κ), as it is only made of non-legless spiders. Thus, if we look at the left-hand side diagram
in (17), the spiders displayed by the left-hand arm of the diagram are fully redundant and can be
absorbed in those displayed in the right-hand arm. This leads to this diagram being equal to the
right-hand side of (17).

A typical application is the study of index-matching routes in FHilb [14]. Here we see that

this specific example can in fact be extended to any dagger compact category.

6 Routed categories

Now that we have a notion of route categories, we are in a position to define routed categories. The

core idea is simple: once we have a route faketor R E→ C between a category R in which constraints

are expressed and a category C in which constraints are intended to be implemented, what remains

is the structure capturing of implementation of constraints. From a route faketor R E→ C we can

build a routed category Routed[E ], whose morphisms are pairs of a route morphism in R and a

morphism in C which follows it, and we define all operations on morphisms pairwise. First, to

define the objects, we will need update structures [32,33]; which generalise the notion of a partition

of an object of C via the specification of a †-module for it over a †-SCFA. [22].

Definition 21 (Update structures). An update structure µ : Z  A from a special semigroup
Z to an object A is a tuple (µP , µG) such that µP (µG) is a (co)-module over the (co)-algebra of
Z:

µp
=

µp µp

Z
,

µg
=

µg µg

Z

(18)

and such that the following two additional laws named PutGet and GetPut hold.

µp

=

µg

, =
µp

µg µp

Z

(19)

Two distinct classes of update structure are identified in [32], orthogonal partitions and lenses.

Inuitively lens-like updates represent replacements [34–37] whilst partition-like updates represent

projections into subspaces.

Definition 22 (Partition). A partition is an update structure µ : Z  A such that Z is a †-SCFsA
and µg = µ†p

Partitions generalise projector valued spectra on FHilb as introduced in [22]; by not making

reference to a unit for the frobenius algebra, partitions allow for the expression of constraints on
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infinite dimensional Hilbert spaces. It is easy to check that partitions over †-SCFAs are exactly

projector valued spectra [32]. Indeed in FHilb, unital †-SCFAs ZM correspond to Hilbert spaces

with a preferred basis (with the co-multiplication being the copying operation in this basis), and

†-modules of an object A over ZM correspond to partitions of A into orthogonal sectors, with

the states of the preferred basis of ZM serving to label these sectors. The second type of update

structure are Lens-like updates, those for which the special semigroup is a copy-delete algebra,

Definition 23. A vwb-lens L : V  S in a cartesian monoidal category is a tuple (p : V × S →
S, g : S → V ) such that the following equations are satisfied.

p
=

p p

,

p

=g , =
p

g

g

Every vwb-lens defines an update structure U : Z  S by taking Z to be the copy delete

algebra and for the module and co-module taking up = p and ug = (g ⊗ id) ◦ c.
Categories in which each morphism is supplemented by a constraint, a piece of data that

is imposed upon it can be constructed using two basic ingredients, route-functors and update

structures.

Theorem 8. Let R E→ C be a route faketor, then one can define a constraint category Con[E ]
such that:

• Objects of Con[E ] are tuples (A,B, µ) such that (A,B) ∈ O(R)×O(C) and µ : E(A) B

is an update structure in C;

• Morphisms are given by Con[E ](A,A′) := R(A,A′) and composition inherited from R

One can then defined a compositional constraint L[E ] : Con[E ] −→ C by taking L((A,B, µ)) := B

L(λ : (A,B, µ)→ (A′, B′, ν)) ⊆ C(B,B′) to be the set of all f such that λ is a route for f , i.e the
set of all morphisms f such that:

f=

µg

E(λ)

νp

f (20)

Proof. To prove lax-ness we must show that whenever λ, τ are routes for f, g then τ ◦ λ is a route
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for g ◦ f . First consider the insertion of the routing conditions for f and g

E(τ ◦ λ)

µg

g

ηp

=
f

µg

ηp

E(τ)

νg

g

ηp

f

E(τ ◦ λ) =

µg

ηp

E(τ)

νg

g

ηp

E(λ)

µg

f

νp
E(τ ◦ λ) (21)

Then we use two defining properties of partitions, recording information from a system twice is
equivalent to recording once and copying, imposing a condition on a system and then recording
it from the system is equivalent to making a copy of the condition prior to imposing it on the
system.

µg

ηp

E(τ)

νg

g

ηp

E(λ)

µg

f

νp
=

µg

ηp

E(C)

E(A)

E(τ)

νg

g

E(λ)

f

νp
E(τ ◦ λ) E(τ ◦ λ) =

µg

ηp

E(C)

E(A)

E(τ)
g

E(λ)
f

νp

E(B)
E(τ ◦ λ)

(22)

Finally the fact that E is a route faketor can be used to remove the condition E(σ ◦λ), after which
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the partition identities used previously can be reversed.

=

νg

ηp

E(τ) g

E(λ)

f

νp

E(B)

=

νg

ηp

E(τ)

νg

g

E(λ) f

νp
=

g

f

νg

ηp

E(C)

E(A)

E(τ)
g

E(λ)
f

νp

E(B)
E(τ ◦̃λ)

= F(g ◦ f) (23)

That idR is a route for idC follows from the GetPut law for update structures.

6.1 Examples

The motivating example for this work was the construction of routed quantum circuits [14], in

which the route functor E : FRel → FHilb embeds finite relations as constraints in FHilb and

the category of morphisms to be constrained is also FHilb, that is: C = fHilb. In [14] a theory

of completely positive routed circuits was furthermore constructed. The update structures used

are the projector valued spectra, which are sums of projectors indexed by a basis.

µp
=

∑
i i πi (24)

The routing condition then reads:

µp

=
∑
ij

πj

µp

f fτ =

πi

fτ ji (25)

The route functor E : bRelc → Hilb can be used to express conditions with respect to infinite

partitions of infinite dimensional quantum systems. First for any Hilbert space H1 a basis B can

be chosen and furthermore a partition into subsets can be chosen, that is, a countable partition

Si for B can be chosen, that is, a family of sets Si such that
⋃
i Si = B and Si ∩ Sj 6= =⇒ i = j.

Given a separable Hilbert space H2 equipped with a particular basis E one can fix a bijection

e : S ∼= E. Given such a choice a countable spectrum of projectors into the partition can be

defined by their action on members of the basis µG(b) := b ⊗ e(b) where e(b) := e(Si) for the i

such that b ∈ Si. The linear extension of µG is bounded and so lifts to a bounded linear operator
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on H1 → H2 ⊗H1. The update structure equations between µG and µ†G are easy to check on the

above bases.

Our final example which does not suit an interpretation in terms of families of projectors is

the notion of a route faketor E induced by a strong monoidal functor Ē into a Cartesian monoidal

category C, and the notion of an object (A,B, µ) of Con[E ] such that µ is a vwb-lens. For example

the vwb-lens defined by:

=p , =g (26)

Essentially defines the replacement of the action of f on a particular subsystem with the action

of λ. The morphism (λ, f) encodes the constraint that the effect of f on its right hand input is

completely determined by λ,

E(λ)

=

p

f =

f

g

f
E(λ) (27)

this in turn entails that the morphism f forbids signalling from any other system into the privileged

system of the put p. Whilst replacement and projective constraints are very different in nature,

we have found that they may be put under the same umbrella, via the key notions of a route

faketor and an update structure.

6.2 Generalisation

To address the fact that there are many constructions for building physical theories from raw-

material categories, but that the realisation of constraints for physical theories may only be ex-

pressible within the raw material category, we introduce a generalisation in which there is a

separation between the category C in which a constraint is implemented, and the category V
of morphisms which are interpreted as being constrained. This is simply captured by a strong

monoidal (or compact, or †-compact, etc., depending on the structure at hand) functor F : V→ C.

C

R V

E F

it is easy to check that the routed construction can be generalised, the objects of Con[E ,F ] are

tuples (A,B, µ) in which µ : E(A)  F(B) is an update structure from E(A) to F(B). The
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compositional constraint L[E ] is defined by taking L[E ,F ](λ) to be the set of all f such that

F(f)=

µg

E(λ)

νp

F(f) (28)

As a result one can immediately define routed categories based from the many physically inspired

categorical constructions on FHilb, for example:

• There is a Strong †-Compact Functor F : CPM[C]→ C

• There is a Strong Monoidal Functor F : Caus[C]→ C from the higher order causal category

[38] of processes built from a raw material category C.

In particular the use of a functor from Caus[FHilb] into FHilb is essential for imposing con-

straints on the causal higher order processes over quantum theory since non-trivial projectors and

†-SCFAs are typically non-causal and so must be expressed inside FHilb.

6.3 Inheritance of additional Categorical Structure

Not only is L[E ] a compositional constraint, but it inherits a symmetric monoidal structure when-

ever it exists in E . By the algebra-homorphism property of route faketors is follows that the image

E(IR) of the unit object in R is the special semigroup defined by the following magma and its

inverse co-magma.

φ−1
E φ−1

E

φE

(29)

The definition of a symmetric monoidal structure for Con[E ] requires a notion of parallel compo-

sition of update structures, as well as a notion of unit object (IR, IC, µ) in which µ must be an

update structure over the above algebra E(IR).

Theorem 9 (Con[E ] is Symmetric Monoidal). The category Con[E ] is a symmetric monoidal
category with

• (A,B, µ)�(A′, B′, ν) := (A⊗A′, B ⊗B′, µ�ν), with (µ�ν)p given by

µp νp

θ−1
A,A′,E

(30)

and similarly for (µ�ν)g.
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• Unit object (I, I, µI) where µI is given by

φ−1
E

(31)

Proof. All that needs to be shown is that the above objects are well-defined in Con[E ], otherwise
all symmetric mnoidal structure is inhertied directly from R, proof is given in the Appendix, in
which the result is show to hold for the generalised case of categories of the form Con[E ,F ].

Theorem 10 (Monoidal Constraints from Monoidal Route-faketors). The compositional con-
straint L[E ] is monoidal whenever E is monoidal.

Proof. Given in the appendix, again generalised to L[E ,F ]

Furthermore the compositional constraint L[E ] actually inherits the entirety of the †-Compact

structure of E whenever it exists.

Theorem 11 (L is Compact). For every †-Compact route faketor E the sub-category of Con[E ]
given by restriction to partitions is a †-Compact category with the Dual (A,B, µ)∗ of (A,B, µ)
defined by (A∗, B∗, µ∗) where µ∗ is defined by:

µ∗

µ†
=

(32)

Furthermore the induced compositional constraint L[E ] satisfies ∪ ⊆ L[E ](∪).

Proof. Given in the Appendix, again generalised to L[E ,F ] where F and E are †-Compact.

7 Calculations in Routed CPM categories

The CPM construction [39] is a well-known universal construction on dagger compact categories,

which, for instance, can serve to build mixed quantum theory from pure quantum theory. From

any †-compact category C, one can build a †-compact category CPM[C] whose objects are those

of C and whose maps A → B are the completely positive maps A∗ ⊗ A → B∗ ⊗ B in C. From

our perspective, we already understand how to express constrains on the morphisms of CPM[C]
inside of the morphisms of C via the †-Compact Functor from CPM[C] into C. We however

would like to construct an alternative in which there is a guarantee of co-ordination between the

cpm construction of the route-category and the category of morphisms that will be routed.

Definition 24 (Completely Positive Route Construction). For every route functor between †-
compact categories, the category ConCPM is defined by having objects (A,B, µ) where µ : E(A) 
B. Morphisms and their composition are inherited from CPM[R] by

ConCPM((A,B, µ), (A′, B′, µ′)) := CPM[R](A,A′)
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which can be considered monoidal by (A,B,M)�(A′, B′,M ′) := (A⊗A′, B⊗B′, µ�µ′) furthermore
the compositional constraint LCPM : ConCPM[R] −→ CPM[C] is defined by LCPM((A,B,M)) :=
B and taking L(Λ) to be the set of all F ∈ CPM(B,B′) such that:

J(F )

µ∗

E(J̃(Λ))

ν∗

J(F )=

ν

µ

θA∗,A

θA∗,A

θB∗,B

θB∗,B

θB∗,B

θB∗,B

(33)

, (34)

In particular, there are two important comments to be made on what CPM[C]LCPM[E] is

not equivalent to. First, it is not equivalent to CPM[CL[E]]; second, it is not equivalent to

CPM[C]L[E◦JR,JC ]. These two facts can be seen for example in the construction of relational

routes for FHilb.

7.1 Completely Positive Matching Routes in CPM[C]

The calculus in a constrained category is a double one: in the case of constraints constructed

from route-faketors it is performed in parallel on the ‘route’ parts of the morphisms (living in R)

on the one hand, and on the ‘actual map’ parts (living in C) on the other hand. One can often

take advantage of this situation because the structure of R is usually much simpler than that

of C; performing elementary calculus in R thus allows to directly deduce interesting properties

about the result of the parallel calculus in C, ‘bypassing’ the latter. Here, we show an elementary

example of this bypassing move, applied to the study of decoherence in the presence of index-

matching routes. We shall see that the simple graphical calculus of CoRel allows one to witness

the spread of decoherence in theories in a direct and intuitive way, without the need to compute

anything in the category C itself.

Our example will be in the case of matching route categories, as introduced in Section 5.2; we

recall that a matching route category Match[C] and matching route faketor EMatch is defined

for any dagger compact category C. One can use the construction of Section 7 to define a
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category W := CPM[C]LCPM[EMatch] of routed completely positive maps (Λ, F ), with Λ living in

CPM[Match[C]] and F living in CPM[C]. As Match[C] embeds into CoRel, the ‘route part’ of

W can be understood as a corelation; the very simple calculus that the corelations are endowed

with is what will unlock a simple decoherence calculus.

Let us introduce this calculus. Whereas the category of corelations CoRel captures the con-

cept of perfect connections, the category of completely positive corelations CPM[CoRel] allows

for a distinction between perfect decohered (or ‘classical’) and perfect coherent (or ‘quantum’)

connections. The morphisms of CPM[CoRel] are generated by 1) the embedding of morphisms

CPM(f) = f∗ ⊗ f ,

:= CPM

. . .

. . .

1 n

1 m

=

. . .

. . .

1 n

1 m

. . .

. . .

1 n

1 m

. . .

. . .

1n

1m

, (35)

and 2) a discarding process, the cap from the †-compact structure of CoRel,

:=
x xx

. (36)

Introducing an additional generic notation for ‘decoherent spiders’,

:=

. . .

. . .

1 n

1 m

. . .

. . .

1 n

1 m

. . .

. . .

1n

1m

, (37)

the composition of any two morphisms of CPM[CoRel] can then be computed using ‘bastard

spider fusion’:

. . .

. . . . . .

. . .

. . .

. . .

. . .

=

. . .

. . . . . .

. . .

. . .

. . .

. . .

=

. . .

. . . . . .

. . .

. . .

. . .

. . .

=

(38)
The soundness of each rule is easy to check; the crucial point is that decoherent spiders (i.e. the

unbolded ones) always ‘eat’ bolded spiders.

7.2 Example Decoherence Calculation Using Completely Positive Index matching
Routes

Let us now show in an example how this calculus can be used to reveal properties in CPM[C]. We

will prove the following intuitive result: suppose that two parallel wires, with given partitions (in

analogy with the case of FHilb, we interpret them as corresponding to partitions into subspaces),

feature perfect and non-decohered correlations between these partitions (i.e., a state is in the

k-th subspace of the left wire if and only if it is in the k-th subspace of the right wire); then
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tracing out one of these wires leads to the loss of any coherence between the subspaces in the

other one. This property’s interpretation is particularly nice in the context of quantum theory:

copying an information and discarding one of the copies leads, in the other copy, to a complete loss

of coherence between the alternatives that encode this information (including the case in which

these alternatives correspond, not to states, but to subspaces). The proof of this fact in W is the

following9:

F G

U

= F

U

= F

U

G
G

(39)

As we can see, the proof of this intuitive yet non-trivial result has become completely straight-

forward; furthermore, it is now seen to be valid for any †-compact category C. These two facts

find their origin in our ability to directly use the graphical calculus of CoRel and bypass the need

for any computation in C itself.

The above example is elementary, but it scales up nicely to more general situations involving

perfect correlations. Implementing constraint calculus in the case of non-perfect correlations is

also possible, using relational route categories. This constraint calculus would then amount to

calculus in Rel, which is not necessarily graphical, but is still in general way easier to handle than

calculus in C itself.

8 Conclusion

In this work, we described constraint categories, a general structure that allows to endow a †
symmetric monoidal (or †-compact) category R with the interpretation of representing constraints

for the morphisms of another †-symmetric monoidal (or †-compact) category C. We constructed

several general examples of a sub-class denoted routed categories: these are relations-like examples

that exist for any †-SMC enriched in monoids; corelations-like ones that exist for any †-compact

category; and examples based on delete-copy algebras, defined in cartesian monoidal categories.

We showed that, given a category C and a route category R for it, one can combine them into

a routed category that features a parallel calculus, taking place both in R and in C. Extending

slightly the definition of a route category, we showed that, given a route category R for a category

C, there exists a canonical way of taking CPM[R] to be a route category for CPM[C]. Finally,

we showed on a simple example how the parallel calculus happening in routed categories can have

practical applications, by allowing one to bypass some of the calculus of an intricate category (C)

by doing calculus in a simpler one (R) instead.

9The ground symbol represents the trace [40,41] which exists in CPM[C] for any †-compact category C [39].
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A first outcome of this work is to give a neat formal background to the constructions introduced

by Ref. [14] to describe sectorial constraints in FHilb. A second outcome is to extend them in

terms of their range of application: we provided an abstract framework that allows to describe

such constraints for any SMC, using special semigroups rather than the much more stringent

†-special commutative Frobenius algebras that were required in the case of sectorial constraints.

This allowed us, for instance, to connect our constructions to apparently unrelated structures,

such as lenses. A third outcome is to have shed some new light on the structural connections

between well-known categories, such as Rel and Hilb.

A future direction of investigation would be to apply our constructions to the modelisation

of constraints in other contexts. Another one, more focused on the study of quantum theory,

would be to take advantage of their general nature in order to model more quantum scenarios.

The fact that we have been describing route categories for Hilb, for instance, opens the way for

a formalisation of sectorial constraints in infinite-dimensional Hilbert spaces. Another direction

would be to study both the relation of these constructions with, and their applications to, the

study of causality in quantum theory. Besides causal decompositions, whose description requires

the use of matching routes, indefinite causal order, that has recently been the subject of a lot of

investigation, has deep connections with routed circuits [18]; it could thus be fruitful to apply the

idea of routes to recent categorical investigations into causal structure [38], following the comments

made in Section 6.2 on the application of constraints to Caus[C].

Acknowledgments

It is a pleasure to thank Bob Coecke, James Hefford, Aleks Kissinger, Hlér Kristjánsson, and Vin-

cent Wang for helpful discussions, advice and comments. Furthermore the authors are extremely

grateful for the valuable insight of an anonymous reviewer from ACT 2021, who suggested the

categorical phrasing of the concept of a constraint as a lax functor. AV is supported by the

EPSRC Centre for Doctoral Training in Controlled Quantum Dynamics. MW was supported by

University College London and the EPSRC [grant number EP/L015242/1]. This publication was

made possible through the support of the grant 61466 ‘The Quantum Information Structure of

Spacetime (QISS)’ (qiss.fr) from the John Templeton Foundation. The opinions expressed in this

publication are those of the authors and do not necessarily reflect the views of the John Templeton

Foundation.

33



References

[1] Giulio Chiribella and Hlér Kristjánsson. Quantum Shannon theory with superpositions of

trajectories. Proceedings of the Royal Society A, 475, 2019.

[2] Hlér Kristjánsson, Wen-Xu Mao, and Giulio Chiribella. Single-particle communication

through correlated noise. arXiv preprint arXiv:2004.06090, 2020.

[3] Hlér Kristjánsson, Giulio Chiribella, Sina Salek, Daniel Ebler, and Matthew Wilson. Resource

theories of communication. New Journal of Physics, 22(7):073014, jul 2020.
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Appendix

A Relation with CP* and the Karoubi envelope of CPM

In this Appendix, we discuss how our constructions relate to two previous categorical constructions:

the CP* construction, and the Karoubi envelope of the CPM construction. More precisely, our

aim is, in the light of discussions with colleagues, to provide a reply to worries that the structures

we capture might have been formalised already by these earlier frameworks, or might be relatively

straightforward to formalise when taking them as a starting point. For concreteness, we will here

take C = FHilb.

It might be argued, for instance, that the CP* construction, when applied to FHilb, al-

ready provides a way of modelling orthogonal partitions of Hilbert spaces (or equivalently, finite-

dimensional C*-algebras)10, and that it could thus provide a sufficient basis for the formalisation

of our two main examples of practical applications (superpositions of paths and causal decompo-

sitions). However, CP*[FHilb] does not include a large portion of the maps about which we wish

to express sectorial constraints.

Indeed, suppose we take a first object A in CP*[FHilb] corresponding to a non-partitioned

Hilbert space HA, and another object B that corresponds to a Hilbert space with a non-trivial

decomposition into sectors, HB = ⊕kHkB . Then, the maps A → B in CP*[FHilb] are those CP

maps from L(HA) to L(HB) whose outputs are completely decoherent with respect to the partition

of HB . On the contrary, it is crucial for our purposes to be able to write CP maps A→ B whose

output feature coherence between B’s sectors; such maps are for example those that ‘create an

index’ at the bottom of the diagrams for superpositions of paths and causal decompositions in

Ref. [14]11.

10Namely, any object in CP*[FHilb] can be characterised as a finite-dimensional C* algebra, or, equivalently, as
a Hilbert space HA with a preferred partition into sectors, HA := ⊕k∈KHk

A.
11In unitary scenarios, it could be argued that one could just write down a different formalisation, in which the

domain of such a map is also partitioned with ‘the same index’ as its codomain, so that the maps don’t need to
create the index anymore. However, this is not suitable for us as 1) these partitions of the domain will in general
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The same argument can be made about the use of the Karoubi envelope of CPM[FHilb ].

Indeed, the objects of the latter are able to encode orthogonal partitions of Hilbert spaces only

inasmuch as they forbid the presence of coherence between the sectors of said partitions.

B 2-Categorical Structure of Route-Faketors

To show that under certain conditions a route functor defines an oplax functor, it must first be

shown that a 2-Categorical structure emerges from those conditions.

Lemma 5. Any category EW[C] with loosened-re-normalisation can be viewed as a 2-category by
poset enrichment of each EW[C](Z,Z ′) via the relation

f ≤ f ′ ⇐⇒ fR
1 fR

2

Z′

Z

= fR
2

Proof. For vertical composition of 2-Morphisms to be defined translates to the requiremetn that

f1 ≤ f2 and f2 ≤ f3 =⇒ f1 ≤ f3

Which is easy to check.

fR
1 fR

3

Z′

Z

= fR
3fR

1 fR
3

Z′

Z

fR
2 = fR

2 fR
3

Z′

Z

=

For horizontal composition of 2-Morphisms to be defined translates to requiring that

f1 ≤ f2 and g1 ≤ g2 =⇒ (f1 ◦ g1) ≤ (f2 ◦ g2)

have no physical significance, 2) this will not generalise to the non-unitary case, and 3) even in the unitary case,
this will not be possible in general if the domain is a tensor product of several objects, as the wanted partition will
not necessarily intersect this factorisation nicely.
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This can be confirmed first by using the re-normalisation condition along with [f1 ≤ f2 and g1 ≤ g2

(f1 ◦ g1)R (f2 ◦ g2)R

Z′′

Z

= (f1 ◦ g1)R lf2◦g2

Z′′

Z

=
f2

g2

(f1 ◦ g1)R lf2◦g2

Z′′

Z

f2

g2

fR
1

gR
1

Z′

and using the loosening condition and undoing the previous steps

(f1 ◦ g1)R lf2◦g2

Z′′

Z

f2

g2

fR
1

gR
1

Z′ = lf2◦g2

Z′′

Z

f2

g2

fR
1

gR
1

Z′ = lf2◦g2

Z′′

Z

f2

g2

= (f2 ◦ g2)R

The coherence conditions required for the definition of a 2-category including the interchange law
are all immediately satisfied by the uniqueness of the defined 2-Morphisms.

C Symmetric Monoidal Structure of Routed Categories

Where appropriate we will often include dotted lines to represent identity systems for readability.

Theorem 12 (Con[E ] is Symmetric Monoidal). The category Con[E ] is a symmetric monoidal
category with

• (A,B, µ)�(A′, B′, ν) := (A⊗A′, B ⊗B′, µ�ν), with (µ�ν)p given by

µp νp

θ−1
A,A′,E

(40)

and similarly for (µ�ν)g.
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• Unit object (I, I, µI) where µI is given by

φ−1
E

(41)

Proof. A fully algebraic proof is simple but tedious, we give the reader the outline in terms of
string diagrams. We first show that the tensor product of two update structures is an update
structure of the required type. beginning with the module law.

µp νp

θ−1
A,A′,E

µp νp

θ−1
A,A′,E

θB,B′,F

θB,B′,F

µp νp

θ−1
A,A′,E

µp νp

θ−1
A,A′,E

=

θB,B′,F

θB,B′,F

θB,B′,F

θ−1
B,B′,F

(42)

By definition of a frobenius erstaz functor θ must be a special semigroup homomorphism

=

µp νp

θ−1
A,A′,E

E(A1 ⊗A2)

=

µp νp

θ−1
A,A′,E θ−1

A,A′,E

E(A1) E(A2)

θB,B′,F

θ−1
B,B′,F

θB,B′,F

θ−1
B,B′,F

(43)

The proof that the co-module equation is satisfied is identical, as are the proofs of the GetPut and
PutGet laws.

Theorem 13 (Monoidal Constraints from Monoidal Route-faketors). The compositional con-
straint L[E ,F ] is monoidal whenever E and F are monoidal.
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Proof. One can use the fact that E is a route faketor and that F is a functor to show that
λV ∈ L(λCon), αV ∈ L(αCon) and βV ∈ L(βCon). Since E is strong monoidal as a faketor:

=

φ

θI,A

E(λ)

λV
(44)

and similarly for F as a functor. In turn this coherence condition can be used to confirm that
λV ∈ L(λCon) I.E

=

φE
µp

µg

θI,A

E(λ)

µp

µg

=

φF

θI,A

F(λ)

φF

θI,A,F

θI,A,F

φF
F(λ)=

θI,A,F

φF

(45)

Next we consider the associator, similarly again since E is strong monoidal

=

θA1,(A2⊗A3)

E(α)

θA2,A3

θ(A1⊗A2),A3

θA1,A2

α (46)
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Which in turn implies that αV ∈ L(αCon) since using the fact that E and F are monoidal

=

θA1,(A2⊗A3)

E(α)

θA2,A3

θ(A1⊗A2),A3

θA1,A2

µ1p µ2p µ3p

µ1g µ2g µ3g

θB1,(B2⊗B3)

F(α)

θB2,B3

θ(B1⊗B2),B3

θB1,B2

θ(B1⊗B2),B3

θB1,B2

θB1,(B2⊗B3)

θB2,B3

µ1p µ2p µ3p

µ1g µ2g µ3g

θ(B1⊗B2),B3

θB1,B2

θB1,(B2⊗B3)

θB2,B3

(47)

and using the GetPut condition

=

θ(B1⊗B2),B3

θB1,B2

θB1,(B2⊗B3)

θB2,B3

F(α)=
(48)
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Finally since E is symmetric

θA2,A1

θA1,A2

E(γ) = (49)

Which entails that βV ∈ L(βCon) by the same steps as for unitors and associators. The last
condition to be checked is that when f follows λ and g follows τ then f ⊗ g indeed follows λ⊗ τ
in other words the monoidal laxity condition L(τ) ⊗ L(λ) ⊆ L(τ ⊗ λ). This in fact follows from
the naturality conditions for θE and θF and the same series of steps as for the above proofs.

C.1 Compact Structure of Routed Categories

Theorem 14 (L is Compact). For every †-Compact route faketor E the sub-category of Con[E ]
given by restriction to partitions is a †-Compact category with the Dual (A,B, µ)∗ of (A,B, µ)
defined by (A∗, B∗, µ∗) where µ∗ is defined by:

µ∗

µ†
=

(50)

Furthermore the induced compositional constraint L[E ] satisfies ∪ ⊆ L[E ](∪).

Proof. We begin by using the fact that E is †-Compact

µ∗pµp

θ−1
A,A∗,E =

µ∗pµp

=

(µ � µ∗)p

E(∪) F(∪)

E(∪) F(∪)

φE φF

φF

µI

θ−1
B,B∗,F

φF

θB,B∗,F

θB,B∗,F

(51)
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and then use the definition of µ∗ and †-module equations to show that ∪ ∈ L(∪)

µ†
µ

=

µ

µ†

=

φF φF

φF

θB,B∗,F

θB,B∗,F

θB∗,B,F

= F(∪)

(52)
The proof is identical for ∩ ∈ L(∩).

D Existence of a route-faketor from fRel

Theorem 15. Let C be a dagger-SMC with a 0 object. For every component-full subset S ⊆ C⊥C

such that E(Zλ) ∈ S there exists a route faketor

E : fRel×S −→ Sg[C]

Proof. A faketor E : fRel×S −→ Sg[C] on objects can be defined inductively using the function
E by

E : S1 × S2 7→ E(S1)⊗ E(S2)

Which is well defined since the cartesian product decomposition of any object in Rel is unique.
Each object SA is a cartesian product ×iSi and so each element a ∈ SA is a tuple of copyable states
a = ×i |i〉. From each element a one can uniquely define |a〉 by |a〉 = ⊗i |i〉 with the bracketing of
|a〉 inherited from the bracketing of a. For a relation λ : SA → SB , I.E a relation λ : {a} → {b}
then define E(λ) by

〈b| E(λ) |a〉 := 1 if a λ∼ b

〈b| E(λ) |a〉 = 0 if Else

Then E is a faketor since for all a, b:

〈b| E(1) |a〉 = δba = 〈b| 1 |a〉

and so since a, b are orthonormal bases E(1) = 1. E is Symmetric Monoidal since E({1}) = Zλ

and by definiion E(S1 × S2) = E(S1) ⊗ E(S2). Furthermore if C is †-Compact then its easy to
show that E(∪) = ∪. Finally using any orthonormal bases (or tuples there-of) {a}, {b}, {c} the
loosening condition reads

〈c| E(σ ◦ λ) |a〉 〈c| E(σ) |b〉 〈b| E(λ) |a〉 = 〈c| E(σ) |b〉 〈b| E(λ) |a〉
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By translating to definition of E we see that 〈c| E(σ ◦ λ) |a〉 = 0 =⇒ 6 ∃b such that 〈c| E(σ) |b〉 =
〈b| E(λ) |a〉 = 1 and so 〈c| E(σ ◦ λ) |a〉 〈c| E(σ) |b〉 〈b| E(λ) |a〉 = 0 = 〈c| E(σ) |b〉 〈b| E(λ) |a〉. Clearly
when 〈c| E(σ ◦ λ) |a〉 = 1 the condition is trivially satisfied, so indeed E is a route faketor.
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