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Tracelets are the intrinsic carriers of causal information in categorical rewriting systems. In this
work, we assemble tracelets into a symmetric monoidal decomposition space, inducing a cocommu-
tative Hopf algebra of tracelets. This Hopf algebra captures important combinatorial and algebraic
aspects of rewriting theory, and is motivated by applications of its representation theory to stochastic
rewriting systems such as chemical reaction networks.

1 Introduction

Double-Pushout (DPO) [13] and more generally compositional categorical rewriting systems [1, 7] pro-
vide a versatile and mathematically sound framework for modeling complex transition systems, with
a paradigmatic example the modeling of reaction systems in biochemistry [10] and in organic chem-
istry [6]. The specification of an individual rewriting operation (direct derivation) in essence amounts to
providing a rewrite rule, i.e., a span of monomorphisms, that acts as a sort of template for the operation,
together with a match, which permits to specify the location within a host object where the local replace-
ment operation is to be performed. In practical applications, it is often the case that the rewriting rules
themselves involve only comparatively small graph-like objects. In contrast, the host objects to which
the rewrites are applied could easily be several orders of magnitude larger, so that an enormous number
of matches may be possible for a given rule and a given host object.

A natural and powerful approach to overcome this fundamental problem consists in focusing on the
combinatorial, statistical and structural properties of interactions of rewriting rules within derivation
traces, and to aim for a classification of traces in terms of “interaction patterns”. Unlike in compositional
diagrammatic calculi such as in particular the theory of string diagrams, the key obstacle for such a
type of analysis in rewriting theories resides in the fact that two given rules may in general interact in
a multitude of ways, i.e., there does not exist a notion of deterministic rule composition. Instead, as
first demonstrated in [4] and further developed in [1, 9, 6, 7], it is necessary to define a notion of non-
deterministic rule composition via a form of recursive application of the concurrency theorem, which
then indeed permits to define tractable methods to reason statically about classes of rule compositions.
Taking inspiration from the notion of pathways in chemical reaction systems, this approach was then
further refined in [2] to the notion of tracelets, which in essence act as the carriers of causal information
in derivation sequences.

The main objective of the present paper consists in establishing a principled mathematical approach
to formalize the combinatorics of tracelets. Generalizing results of [5] on rewriting systems over directed
multi-graphs to the categorical rewriting theory setting, we will demonstrate that it is indeed the notion
of combinatorial Hopf algebras that naturally captures the rich structure of tracelets. Apart from a
rewriting-theoretic construction of the Hopf algebras (Section 5), we report on our original discovery
that this at first sight seemingly ad hoc construction is in fact interpretable in terms of the theory of
decomposition spaces (Sections 3 and 4). Our motivation for this approach has been the analogy between
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(a) A direct derivation sequence of length 5 (with edge creation/deletion rules, and where“wires” indicate matches).
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(b) Tracelet and shift equivalence example. (c) Defining property of tracelets (here of length 3).

Figure 1: An illustration of graph rewriting sequences (top) and of the tracelet picture (bottom).

the inductive definition of tracelets and the decomposition-space axioms in homotopy combinatorics.
The benefit of this ‘detour’ is to situate the tracelet Hopf algebra in a general framework covering most
combinatorial Hopf algebras, thereby exhibiting the constructions and proofs as general ideas.

Decomposition spaces were introduced in combinatorics by Gálvez, Kock and Tonks [16], [17] as
a far-reaching homotopical generalization of posets for the purpose of incidence algebras and Möbius
inversion, and independently by Dyckerhoff and Kapranov [12] in homological algebra and representa-
tion theory, motivated mainly by the Waldhausen S-construction and Hall algebras. Classically, since
the work of Rota [22] in the 1960s, incidence algebras were defined from posets through the process of
decomposing intervals. The construction can fruitfully be formulated in terms of the nerve of a poset.
However, a great many combinatorial co- and Hopf algebras are not of incidence type, meaning that they
are not the incidence coalgebra of a poset. The basic observation of [16] is that simplicial objects more
general than nerves of posets admit the incidence coalgebra construction, allowing most of the basic
features of the theory to carry over — and that most combinatorial Hopf algebras do arise as incidence
Hopf algebras of (monoidal) decomposition spaces.

2 Double-Pushout rewriting and tracelet theory

Consider a rewriting system of undirected multi-graphs such as the one depicted in Figure 1(a), with
some elementary rules that link and unlink vertices with edges. Starting from some initial graph X0,
each rewriting step (direct derivation) consists in choosing a rewriting rule together with an occurrence
(match) of the input motif (drawn at the bottom of the rule diagrams) within the graph that is rewritten.
It is intuitively clear that sequences of rewrites (derivation traces) have a rich intrinsic structure, since
the graph-like nature of the input and output interfaces of the rules as well as the internal structure of the
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rules entail that the nature of interactions between sequential rewriting steps is not easily encapsulated in
any simple form of composition structure. To wit, consider the diagram in Figure 1(b), which provides
a sort of movie-script depiction of the five-step derivation trace depicted in the top part of the figure.
For clarity, red wires are used to indicate inputs to rules that are present in the original configuration X0,
while blue wires indicate inputs to rules that have originated from outputs of preceding rules.

The main purpose of the theory of tracelets [2] then consists in rendering mathematically precise the
meaning of this intuitive picture. In particular, according to the Tracelet Characterization Theorem [2,
Thm. 2], each derivation trace of length n is uniquely characterized by a tracelet of length n (cf. the
sub-diagram consisting of the five rules and all blue wires in Figure 1(b)) and a match of the tracelet
into the initial configuration X0 (depicted as red “wires” in Figure 1(b)). Crucially, the compositional
structure of tracelets offers a form of statics causal analysis via algebraic relations such as commutator
relations. This type of analysis takes advantage of algebraic relations such as shift equivalence, which in
the example of Figure 1(b) amounts to the observation that the rules in the boxes highlighted in orange
may be freely moved “along the wires” so as to exchange their order (i.e., without changing the overall
effect of the rewriting sequence). Finally, as sketched via the highlighted triangle pattern that is produced
via the rewriting sequence in the example, tracelets permit to statically reason about the combinatorics of
pattern-counting problems in an efficient manner (cf. [3] for a prototype of such an analysis in the setting
of counting patterns in planar rooted binary trees).

As depicted in Figure 1(c), a tracelet of length 3 exhibits already quite a non-trivial compositional
structure, in that as sketched the internal structure of partial overlaps of rule inputs and outputs in such
a tracelet is not inherently of a purely sequential nature; to wit, the diagram encodes a special kind
of trace of length 3, with the defining property that it may be equivalently (up to isomorphisms) be
obtained via nested composition operations. It is in this particular sense that tracelets offer a minimal
causal presentation of the structure of rewriting sequences, since via the equivalences to nested pairwise
composition operations, they permit to efficiently express n-step sequences as just a special type of
derivation sequences.
2.1. Categorical rewriting theory. For simplicity, we will focus here on the variant of tracelet theory
for so-called double-pushout (DPO) rewriting, and for rewriting rules without application conditions
(referring to [2] for the general1 theory). Throughout this paper, let C denote an adhesive category [20]
that is finitary (in the sense of [11], i.e., with only finitely many subobjects for each object up to iso-
morphisms), and that possesses a strict initial object ∅ ∈ obj(C). Rewriting rules are defined as spans of
monomorphisms r = (O← o−K− i→ I), also denoted for brevity as r = (O ↼ I). In the tradition of
rewriting theory, we refer to such rules as linear rules (with “linear” referring to the nature of the span
as a span of monos), and denote the class of all such rules as Lin(C). For every r ∈ Lin(C) and object
X ∈ obj(C), let Mr(X) denote the set of (DPO-admissible) matches of r into X , where m ∈Mr(X) iff m
is a monomorphism and the pushout complement marked POC in the diagram below left exists:

O I O K I O I O K I

Y X Y K X V W V V W

r

m∗ m

rm

:= m∗ m

r

rm

r

n

r†
n

:=

r

r†
n

nDPO POCPO DPO† POC PO (1)

Note that in an adhesive category, pushouts along monomorphisms (here marked PO) are guaranteed to
exist; in contrast, pushout complements (here marked POC) may fail to exist, since not every composable

1Available generalizations include the type of rewriting (with Sesqui-Pushout semantics an alternative option), the choice of
base-categories (with M-adhesive categories [14] a more general option) as well as the inclusion of constraints and application
conditions into the compositional rewriting semantics (cf. also [7]).
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pair of arrow can be completed into a pushout square. Moreover, rm as well as Y = rm(X) are evidently
only defined up to universal isomorphisms. It is customary to refer to the data of the aforementioned
diagram as a direct derivation. For later convenience, taking advantage of the symmetry of the definition,
we mark by DPO† diagrams that arise as DPO-type direct derivations in the “opposite direction”, i.e.,
“against” the direction of rules (here, from left to right; cf. the diagram above right).

2.2. Tracelets. The class of tracelets T for DPO-type type rewriting over C is defined recursively:

• Tracelets of length 1: for every rule r = (O ↼ I) ∈ Lin(C), define T (r) ∈ T1 as a diagram

O I O K I

O I O K I

r

r
:=

o I

o I

r

r

. (2)

• Tracelets of length n+ 1: denoting by Tn (for n > 1) the class of trecelets of length n, the class
Tn+1 is defined to consist of diagrams as below, where rk = (Ok ↼ Ik) ∈ Lin(C) are linear rules
(for k = 1, . . . ,n+ 1), where the top right part of the diagram encodes a tracelet T ∈ Tn of length
n, where µ = (In+1←M→ On···1) is a span of monos, with the cospan In+1→ Y (n+1)

n+1,n ← On···1 its
pushout, and such that the direct derivations marked DPO and DPO† exist:

On+1 In+1 M On In O2 I2 O1 I1

On+1 In+1 On···1 Y (n)
n,n−1 . . . Y (n)

3,2 Y (n)
2,1 In···1

On+1···1 Y (n+1)
n+1,n Y (n+1)

n,n−1 · · · Y (n+1)
3,2 Y (n+1)

2,1 In+1···1

rn+1

rn+1

DPO

rn r2 r1

DPO† DPO† DPO†

PO (3)

Then this data defines a tracelet T (rn+1)
µ∠ T of length n+1 (the tracelet composition of T (rn+1)

with T along µ) uniquely up to universal isomorphisms (see comments below) as

T (rn+1)
µ∠ T :=

On+1 In+1 O1 I1

On+1···1 Y (n+1)
n+1,n · · · Y (n+1)

2,1 In+1···1

rn+1 r1

. (4)

For later convenience, we will sometimes speak of the commutative square below rule ri in a tracelet as
the i-th plaquette. Let T := ∪n≥1Tn denote the class of all (finite length) tracelets. For later convenience,
we also introduce the notations in(T ) := In···1 (“input interface” of T ∈ Tn), out(T ) := On···1 (“output
interface” of T ∈ Tn), MTT (rn+1)

(T ) (for “matches”, i.e., admissible partial overlaps µ of the length 1
tracelet T (rn+1) with the tracelet T ∈ Tn) and [[T ]] for the so-called evaluation of the tracelet T , which
for T ∈ Tn is defined with notations as in the top right of (4) as

[[T ]] := (On···1 ↼ In···1) = (On···1 ↼ Y (n)
n,n−1)◦ · · · ◦ (Y

(n)
2,1 ↼ In···1) . (5)

Here, ◦ denotes the operation of span composition (considered up to span-isomorphisms).

Up to this point, one might say that DPO-type tracelets are some form of data structure that encodes
a certain form of sequential compositions of rewriting rules. This point of view is augmented via the
following definition, which finally reveals tracelets as a particular notion of compositional diagrams.
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2.3. Tracelet composition. Let T ∈ Tm and T ′ ∈ Tn be two tracelets of length m and n, respectively (for
m,n > 0). Let µ := (Im···1 ← M→ O′n···1) be a partial overlap (of the “input interface” Im···1 of T with
the “output interface” O′n···1 of T ′) whose pushout Im···1→ Y (m+n)

n+1,n ← O′n···1 satisfies that in the diagram
below, all direct derivations marked DPO and DPO†, respectively, exist:

Om Im O1 I1 M O′n I′n O′1 I′1

Om···1 Y (m)
m,m−1 · · · Y (m)

2,1 Im···1 O′n···1 Y (n)′

n,n−1 . . . Y (n)′

2,1 I′n···1

Om+n···1 Y (m+n)
m+n,m+n−1 · · · Y (m+n)

n+2,n+1 Y (m+n)
n+1,n Y (m+n)

n,n−1 · · · Y (m+n)
2,1 Im+n···1

r1

DPO

r′n r′1

DPO† DPO†

rm

DPO

PO (6)

In this case, we write µ ∈MTT (T
′) to say that µ is a(n DPO-admissible) match of T into T ′, and we

denote the composition of T with T ′ along µ as

T µ∠ T ′ :=
Om Im O′1 I′1

Om+n···1 Y (m+n)
n+1,n · · · Y (m+n)

2,1 Im+n···1

rm r′1

. (7)

The definition of tracelets and their composition might appear somewhat ad hoc at first sight, yet
it is very natural if viewed in diagrammatic form. To this end, consider the example of a tracelet of
length 3 such as in Figure 1(c). The “wires” in the schematic diagram that link individual length 1
tracelets encode the partial overlaps; as indicated, the tracelet of length 3 may be realized recursively
via either determining the partial overlap of the first and the second sub-tracelet, composing, and then
determining the resulting overlap of the composite tracelet of length 2 with the third tracelet of length 1,
or (equivalently as it will turn out) computing the composition of the third and second tracelets of length
1, and of that composite with the first tracelet of length 1. This so-called associativity property of tracelet
compositions is at the heart of the algebraic properties of tracelets. It will be further illustrated when we
now pass to discuss tracelets in the framework of decomposition spaces.

3 The decomposition space of rewrite rules

In this section we describe a decomposition space X• of rewrite rules (for a fixed rewrite system in a
fixed adhesive category C as above), whose incidence algebra is the rule algebra.

3.1. Decomposition spaces. A decomposition space [12], [16] is a simplicial groupoid X• : ∆op→Grpd
satisfying a certain exactness property designed precisely to allow the incidence coalgebra construction,
classically defined for posets. (The nerve of a poset or a category is an example of a decomposition
space. Where categories encode composition, decomposition spaces owe their name to encoding de-
composition.) Many situations where compositionality is hard to achieve can be dealt with instead with
decompositions, as is often the case in combinatorics, where combinatorial structures can be split into
smaller ones without the ability to compose [18], [15]. Often non-deterministic composition structures
can be turned around and constitute instead a decomposition.

There are different ways to formulate the decomposition-space axioms. One (simplified) version
states that for any endpoint-preserving monotone map α : [2]→\ [n], defining a decomposition of any
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n-simplex into an n1-simplex and an n2-simplex, the natural square

Xn Xn1×Xn2

X2 X1×X1

⌟
long edges

short edges

(8)

is a pullback. It says that an n-simplex can be reconstructed from the two smaller simplices of the
decomposition together with the information of a gluing of the the long edges of the two simplices onto
the short edges of a base 2-simplex.

This condition is considerably weaker than the Segal condition (which characterizes categories,
hence composition rather than just decomposition), which says that a single-vertex overlap between the
two smaller simplices is enough to glue. In the decomposition-space case, the base 2-simplex is required
as a kind of context for the gluing.

3.2. Groupoids of tracelets. An isomorphism between two tracelets of length n is by definition a family
of object-wise isomorphisms between the involved objects in C making all squares commute. We denote
by Xn the groupoid of all tracelets of length n. (In particular, the only tracelet of length 0 is the empty
one (which evaluates to the trivial rule), so X0 = {∗}.)
Theorem 3.3. The groupoids Xn assemble into a simplicial groupoid X• : ∆op→Grpd (whose face and
degeneracy maps we proceed to describe below).

To describe the simplicial structure, we give the standard presentation in terms of face and degeneracy
maps, so that the data is a diagram in the category of groupoids of shape

{∗} X1 X2 X3 · · ·
d0

d1 s0 d1

d2

d0

s1

s0

d3

d2

d1

d0

s2

s1

s0

(9)

3.4. Description of the face maps. The top face map dn : Xn → Xn−1 (resp. the bottom face map
d0 : Xn→ Xn−1) is defined via (1) performing tracelet surgery (cf. Corollary A.7) to exhibit the tracelet
as a composition of the first (the last) rule with an (n−1)-tracelet, followed by (2) extracting the (n−1)-
length tracelet. This is illustrated in Figure 1(c) for the case of n = 3, with d0 (d3) defined to return the
tracelet shaded in light blue (in light yellow).

Recall from Section 2.2 that a plaquette in position i of a given tracelet is defined as the i-th direct
derivation, i.e., the commutative subdiagram of the tracelet involving the i-th rule (read from the right).
Then the inner face maps di : Xn → Xn−1 (for 0 < i < n) replace the two plaquettes pi and pi+1 in the
chain with a single new plaquette p′ with the same starting point as pi and the same endpoint as pi+1, by
applying the “synthesis” part of the concurrency theorem (cf. Theorem A.2) to convert the sub-sequence
of plaquettes pi+1 after pi into a one-step direct derivation along the composite rule p′i+1,i. The result
of this operation is guaranteed to be a tracelet of length n− 1. Referring once again Figure 1(c) for an
illustration of the case n = 3, d1 (d2) are defined to return the tracelet shaded in green (in pink).

The degeneracy maps si : Xn→Xn+1 (for 0≤ i≤ n) insert a copy of the trivial rule /0← /0→ /0 in the
tracelet at position i.

In the form stated, X• is only a pseudo-simplicial groupoid. This means that the simplicial identities
only hold up to (specified) isomorphism, and that there are coherence issues to deal with. The reason
for this pseudo-ness is that composition of rules and tracelets, as involved in the face maps, is only well
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defined up to isomorphism, relying as it does on pushouts and pullbacks. To actually get well-defined
face maps, it is necessary to make choices of these universal constructions, and these choices screw up
the strict simplicial identities. (A well-known example of this phenomenon is how composition of spans
by means of pullbacks defines a bicategory, not an ordinary category.)

This pseudo-ness is not at all a problem for the sake of decomposition-space theory, designed to be
up to homotopy, and it does not affect the incidence algebra we construct from this decomposition space
(which in any case is spanned by iso-classes of rewrite rules). Nevertheless it is very fruitful to provide
also a strict model of X•. The standard technique for constructing this (which goes back to insight from
algebraic topology from the 1970s (notably Quillen,2 Waldhausen, and Segal)) is to beef up the groupoid
of n-simplices to something equivalent that contains all the (redundant) data involved in the face maps.

Specifically, a 2-simplex should not just be a 2-tracelet, but rather a 2-tracelet together with a choice
of composite rule. In this way the middle face map d1 : X2→X1 does not have to compute any composite
by means of choices; it can simply return the choice already built in. The fact that these choices are
unique up to universal isomorphisms say precisely that this bigger groupoid is equivalent to the original,
and hence that the homotopy properties of the bigger simplicial groupoids are the same. In Figure 2(b) we
see such a fully specified 2-simplex. The two short edges (01 and 12) are the two rules in a 2-tracelet, and
the squares marked PO and POC are the plaquettes constituting altogether the 2-tracelet. The pullback
square (blue, marked as PB) is not part of the data of the tracelet, but it is included in the fully specified
notion of 2-simplex.

In degree 3 we arrive at the first point where there is an interesting simplicial identity to establish,
namely commutativity of the square

X3 X2

X2 X1,

d2

d1

d1

d1

(10)

which in essence states that a sequential composition of three rules may be recovered equivalently from
two steps of pairwise rule compositions in either of the nesting orders.

For the groupoids of bare tracelets, this simplicial identity cannot be strict, due to the choices of
pushouts and pullbacks involved in composition of rules and tracelets. That the equation holds up to
natural isomorphism is a nontrivial statement which involves the concurrency theorem (in the particular
form called associativity theorem [9, 4, 5]). We explain how the same theorem implies the strict equation
for the fully specified 3-simplices. This exhibits the beautiful geometry inherent in the associativity
theorem. As always, the idea is that a fully specified 3-simplex should contain all information about all
choices. In particular (in order for the four face maps to be forgetful) it should contain four 2-simplices
of the form of Figure 2(b). A full picture of such a subdivided tetrahedron is given in Figure 2(e). One
can chase through how this is built up from composition of tracelets, over specified overlaps: Consider
the diagram depicted in Figure 2(c), which is formed by (1) a 2-simplex encoding a composition of
two rules r21 and r10 into some rule r20, and (2) another 2-simplex of which one “short edge” is the
rule r20, and which contains another rule r32 and the data of the composition of r32 with r20 into some
rule r30. Upon closer inspection, it is possible (via a number of somewhat intricate steps) to construct

2Historical remark: Bénabou (1963) had described a bicategory spans. Quillen used the techniques of big redundant n-
simplices to exhibit the same structure as a strict simplicial groupoid, now called Quillen’s Q-construction. Instead of having
simply chains of n composable spans in degree n, he defined it to be diagrams of shape , that is composable spans,
together with all the relevant pullbacks. Similar constructions were given in related situation by Waldhausen and Segal, and
today the technique is standard in algebraic topology.
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from this data the interior and the other two faces of a tetrahedron. To this end, one first invokes the
“analysis” part of the DPO-type concurrency theorem (cf. Theorem A.2 in Appendix A) in order to obtain
from the sub-diagram that encodes the one-step direct derivation of the object I03 along the composite
rule O20 ← K20 → K20 the data of a sequence of two direct derivations along the “constituent” rules
O21← K21→ I21 after O10← K10→ I10. This construction in particular delivers an object Z located in
the interior of the tetrahedron. Over several further steps (involving pushout and pullback operations), it
is then possible to fill the remaining two faces of the 3-simplex with the structure of two sequential rule
compositions, ultimately resulting in the diagram of Figure 2(e). The fact that all these constructions are
given by universal properties (pushouts and pullbacks, together with the axioms of adhesive categories),
ensures that the groupoid of such fully specified 3-simplices is equivalent to the groupoid of bare 3-
tracelets. The face maps are now obvious (or even tautological) and all the simplicial identities are
clearly strict for this reason: they merely return data already contained in (the beefed-up version of) X3.

The higher simplices are increasingly cumbersome to describe, due to our limited vision of geometry
in dimension higher than 3, but the principle is easy to follow: just include all information about all
possible composites, and the overall geometric shape is always a geometric n-simplex whose edges
are rules, whose 2-dimensional faces are as in Figure 2(b) and whose 3-dimensional faces are as in
Figure 2(e).

The fact that in each dimension the bare tracelets contain information necessary and sufficient to
reconstruct the full specified simplex is an expression of the the central result of [2] that it is indeed
tracelets that provide the minimal carriers of causal information in sequential rule compositions.

We proceed to establish that X• is a decomposition space. Since this is a homotopy invariant property,
we may work with the simple version of groupoids of n-tracelets. Before the check, let us just note that
X• is not a Segal space (a category), because of the non-deterministic nature of composition. Specifically,
a 2-simplex cannot be reconstructed from knowing its two short edges.

Theorem 3.5. X• is a decomposition space. This means that for all 0 < i < n the two squares

Xn+1 Xn

Xn Xn−1

dn+1

di di

dn

Xn+1 Xn

Xn Xn−1

d0

di+1 di

d0

(11)

are (homotopy) pullbacks.

To check this, it is enough to show that the fibers of the maps pictured vertically are equivalent. We
shall see that indeed all fibers of inner face maps are canonically identified with the fiber of d1 : X2→X1).

3.6. Fiber calculations. Consider d1 : X2→ X1 which sends a pair of composable rules with minimal
gluing (r2,w,r1) to the composite rule r′. The fiber over r′ ∈X1 is thus the groupoid of all (r2,w,r1) that
compose to r′. We denote this groupoid (X2)r′ . Notice that the objects of X2 are composable pairs of
plaquettes with the property that the intermediate point between the two plaquettes is a minimal gluing
(of the output of rule r1 with the input of rule r2; said otherwise, the middle cospan in the two-step direct
derivation sequence is a pushout of its own pullback).

Lemma 3.7. The (homotopy) fiber of di : Xn→ Xn−1 (for 0 < i < n) over a tracelet which in position i
has a plaquette with rule r′ is equivalent to the groupoid (X2)r′ . In particular, it does not depend on the
whole plaquette p′ under r′, and it does not depend on the context in any way. (Proof: cf. Appendix B.1)

One can now unpack the general construction of incidence algebras of decomposition spaces (cf.
Appendix C.4) to establish:
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Proposition 3.8. The incidence algebra is the rule algebra of [9].

This algebra is not our main focus in this work. Rather do we regard the decomposition space X• as
a stepping stone towards more interesting decomposition spaces and Hopf algebras, notably the tracelet
Hopf algebra.

4 Decomposition spaces of tracelets

So far we have defined the decomposition space X• of rules, whose incidence algebra is the rule algebra
of [9]. We now proceed towards Hopf algebras spanned by tracelets.

The Hopf algebra of tracelets should be spanned by iso-classes of tracelets. Furthermore, we now
impose one more restriction on tracelets, namely that they should be non-degenerate as simplices of X•.
This means that the rules involved are not allowed to be the trivial rule.3 The non-degenerate simplices
of X• do not form a simplicial object, since inner faces of non-degenerate simplices are not always non-
degenerate, but the outer face maps survive (as a consequence of the decomposition-space axioms), so
as to define a presheaf

X⃗• : ∆op
inert→Grpd .

Left Kan extension along the inclusion functor j : ∆inert→ ∆ defines a new simplicial groupoid:

Y• := j!X⃗• : ∆op→Grpd .

This is a general construction that makes sense for any (complete) decomposition space, and by a result
of Hackney and Kock [19] it always produces a decomposition space again. Furthermore, one can expand
explicitly what its simplices are:

Yk = ∑
α:[k]→\[n]

X⃗n.

(The sum is over active maps, cf. Appendix C.2.) In particular

Y0 = X0 and Y1 = ∑
n∈N

X⃗n.

So the new 1-simplices are the non-degenerate tracelets of any length. The higher simplices are ‘subdi-
vided tracelets’. To see this, recall that the decomposition space axioms can be written (cf. [16, Prop.
6.9]) as saying that for any active map α : [k]→\ [n] the canonical square

Xn Xn1×·· ·×Xnk

Xk X1×·· ·×X1

⌟
(12)

is a pullback. Here the vertical maps are active and the horizontal maps are combinations of inert maps.
What the condition says is that it is possible to glue together k simplices (of different dimensions ni) if
just one has available a ‘mould’ to glue them together in, namely a k-simplex whose k principal edges
match the long edges of the k simplices. (This is also the essence of the very definition of tracelet.)

3By imposing this condition, we account directly for an equivalence relation imposed in [2] called ‘equivalence up to trivial
tracelets’ (cf. Definition 5.2).



10 Tracelet Hopf algebras and decomposition spaces

An example of such a composition is depicted in Figure 2(c), in which a length 2 tracelet (depicted
as the 2-simplex 012) is composed along the short edge 02 of the 2-simplex 023 with a tracelet of length
1 (here depicted as the edge 23). Figure 2(d) then depicts the method for computing the resulting tracelet
of length 3, which itself is depicted in Figure 2(f).

Since non-degeneracy in a decomposition space can be measured on principal edges (cf. [17]), we
also have the pullback

X⃗n X⃗n1×·· ·× X⃗nk

Xk X1×·· ·×X1.

⌟
(13)

We see that a k-simplex in Y• is the data of a tracelet τ of length k (not necessarily non-degenerate) to-
gether with a non-degenerate tracelet σi glued onto each of the principal edges of this base tracelet along
their evaluation. (That is, the rule given by evaluating the tracelet σi must match the rule corresponding
to the ith principal edge of τ .)

The corresponding algebra, given by the standard incidence algebra construction (cf. Appendix C.4),
is spanned by isomorphism classes of non-degenerate tracelets, and the product of two tracelets is given
by summing over all possible tracelet composites.

We now proceed to extend this structure into a Hopf algebra. This is not straightforward, because it
is easy to see that the decomposition space Y• is not monoidal under sum. A monoidal structure exists
in degree 1, by declaring the product of two tracelets to be the composite along trivial overlap:

T ⊙T ′ := T /0∠ T ′.

But this definition is not compatible with higher simplices.
Our task is now to explain how this is fixed in a canonical way. The solution amounts to imposing the

so-called shift equivalence relation on tracelets, an equivalence relation already important in the theory.
In the graphical interpretation it is about saying that for tracelets that are not connected, it should make
no difference in which order they are applied. After passing to this equivalence relation, the monoidal
structure ⊙ will be well defined in all simplicial degrees. This final symmetric monoidal decomposition
space of tracelets up to shift-equivalence will be denoted Z•. We shall go deeper into the notion of shift
equivalence in Section 5 (and interested reader are referred to [8, 1, 7] for the full background information
and details). Here we just state the following proposition, which gives an alternative approach to shift
equivalence.

A splitting vertex of a tracelet is an inner vertex for which the corresponding rule overlap is trivial.
This property is invariant under precomposition with active maps. (That is, if σ ′ = g(σ) for g an active
map not eliminating vertex v, then v is splitting for σ ′ if and only if it is splitting for σ .) Second, there
are expected transitive properties in connection with ‘stages’ in the sense of higher-order simplices of
Y•. Note that this transitive property does not imply that irreducibility is compatible with inert maps
(outer face maps).

A non-degenerate tracelet T ∈ Y1 = ∑n X⃗n is primitive if it does not admit any splitting. (A higher-
dimensional simplex σ ∈ Yk (that is a subdivided tracelet) is primitive if its long edge is primitive in
Y1 = ∑n X⃗n (that is, its underlying tracelet is primitive).)

Lemma 4.1. Every maximal splitting of a given simplex has, up to isomorphism and permutation, the
same primitive pieces.
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Proposition 4.2. Tracelets are shift-equivalent in the restricted sense of trivial overlaps if and only if
they have the same factorization into primitives.
Proposition 4.3. Shift-equivalence is compatible with the simplicial structure. This defines a simplicial
groupoid Z• with Zk = Yk/∼. This simplicial groupoid is a (locally finite) decomposition space.

Note that if Ỹn denotes the groupoid of shift-equivalence classes, then we have

Zk = ∑
[k]→\[n]

Yk×Xk
1

(
Ỹn1×·· ·× Ỹnk

)
This makes sense: in the fiber product, the maps from the factors Ỹni return the long edge, which is
invariant under shift-equivalence.
Theorem 4.4. There is a level-wise equivalence of groupoids

Zk ≃ S(Yirr
k ),

assembling into an equivalence of simplicial groupoids. In particular, Z• is symmetric monoidal under
⊙.

Note that the primitive tracelets themselves do not form a simplicial groupoid. Only the active maps
are well defined. The outer face maps applied to an primitive tracelet is not necessarily primitive. (Said
in another way, a splitting vertex of a face might not be splitting for the whole simplex.) But after we
apply S (the free-symmetric-monoidal-category monad), which is just a fancy way of saying ‘monomials
of’ or ‘families of’, it does work.4

The upshot is now that the standard incidence algebra construction (cf. Appendix C.4) yields a Hopf
algebra H of tracelets up to shift equivalence. This is the Hopf algebra we are really interested in, and
towards which the previous ones were preliminary constructions. By Poincaré–Birkhoff–Witt, H is the
enveloping algebra of the Lie algebra of primitive tracelets. In the next section we spell out the structure
maps of this Hopf algebra in details.

5 The Hopf algebra of tracelets

Independently of the constructions of decomposition spaces presented in the preceding sections, it is
possible to construct the tracelet Hopf algebra via an extension of the rule diagram Hopf algebra con-
struction of [5] (which was based upon relational calculus) into the category-theoretical setting provided
by tracelet theory. The readers more familiar with rewriting theory might appreciate however that the
constructions presented in this section, while perhaps somewhat ad hoc at first sight, have a clear inter-
pretation from decomposition space theory. Throughout this section, we fix a field K that will typically
be chosen as either R or C (or, possibly, Q). An essential prerequisite for our Hopf algebra construction
is given by the following notions of equivalence relations.
5.1. Shift equivalence (cf. [2]). Let ≡S denote the equivalence relation on T defined as the reflexive
symmetric transitive closure of the relation on pairwise composition operations on tracelets: let T =
TB

µ∠ TA (for some admissible match µ = (IB ← M → OA)), and denote by [[TB]] = (OB ← KB → IB)
and [[TA]] = (OA ← KA → IA) the evaluations of TB and TA, respectively. Suppose [[TB]] and [[TA]] are
sequentially independent in the composition along µ , which entails that M is isomorphic to both the
pullbacks of the cospans KB→ IB←M and M→ OA← KA, respectively. In this situation we define the
composite tracelet T = TA

µ∠ TB (for µ = IA←M→OB) to be shift equivalent to the tracelet T = TB
µ∠ TA.

4Note how this is analogous to the decomposition space of forests [18]: every forest is of course a disjoint union of trees,
but the top face of a tree is not in general a tree, only a forest.
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5.2. Normal form equivalence (cf. [2]). Let≡A denote an equivalence relation on T (so-called abstrac-
tion equivalence) whereby T ≡A T ′ iff T and T ′ are tracelets of the same length, and if moreover there
exists an isomorphism T

∼=−→ T ′ (induced from isomorphisms on objects so that the resulting diagram
commutes). Let≡T be defined as the reflexive symmetric transitive closure of a relation whereby for any
T ∈ T, we let T ≡T T ⊎T∅ ≡T T∅⊎T (with T∅ := T (∅←∅→∅) ∈ T1, and where ⊎ := µ∅∠ denotes
tracelet composition along trivial overlap). Then we define the tracelet normal form equivalence relation
as ≡N := rst(≡A ∪ ≡T ∪ ≡S), i.e., as the reflexive transitive closure of the union of the aforementioned
three relations.
Definition 5.3 (Primitive tracelets). Denote by Prim(TN) the set of primitive tracelets, defined as

Prim(TN) := {[T ]≡N |T ̸= T∅∧ ̸ ∃TA,TB ̸= T∅ : T ≡N TA⊎TB} . (14)

Primitive tracelets play a central role in our construction, since they are in a certain sense the smallest
“indecomposable” building blocks of tracelets with respect to (de-)composition (just as primitive rule
diagrams in [5]).
Proposition 5.4 (Tracelet normal form). Every tracelet T ∈ T is≡N-equivalent to a tracelet normal form
in the sense that T∅ ≡N T∅, and5 ∀T ̸= T∅ : T ≡N

⊎
i∈I Ti, where Ti ∈Prim(TN) for all i ∈ I, and with

I a (finite) index set. (Proof: cf. Appendix B.2)
Definition 5.5 (Tracelet K-vector space T̂). Let T̂ be the K-vector space spanned by a basis indexed by
≡N-equivalence classes, in the sense that there exists an isomorphism δ : TN

∼→ basis(T̂) from the set6

of ≡N-equivalence classes of tracelets TN := T⧸≡N to the set of basis vectors of basis(T̂). We will use
the notation T̂ := δ (T ) for the basis vector associated to some class T ∈ TN . We denote by Prim(T̂)⊂ T̂

the sub-vector space of T̂ spanned by basis vectors indexed by primitive tracelets.
Definition 5.6 (Tracelet algebra product and unit). Let ⊗ ≡ ⊗K be the tensor product operation on the
K-vector space T̂. Then the multiplication map µ and the unit map η : K→ T̂ are defined via their action
on basis vectors of T̂ as follows:

µ : T̂⊗ T̂→ T̂ : T̂ ⊗ T̂ ′ 7→ T̂ ⋄ T̂ ′ , T̂ ⋄ T̂ ′ := ∑
µ∈MTT (T ′)

δ
([

T µ∠ T ′
]
≡N

)
(15)

η : K→ T̂ : k 7→ k · T̂∅ . (16)

Both definitions are suitably extended by (bi-)linearity to generic (pairs of) elements of T̂.
Proposition 5.7. The morphisms µ and η give rise to an associative, unital K-algebra (T̂,µ,η), which
we refer to as tracelet algebra. (Proof: cf. Appendix B.3)
Definition 5.8 (Tracelet coproduct and counit). Fixing the notational convention ⊎i∈ /0Ti := T∅ for later
convenience, let T ≡N ⊎i∈ITi be the tracelet normal form for a given tracelet T ∈ T (where Ti ∈Prim(TN)
for all i ∈ I if T ̸= T∅). Then the tracelet coproduct ∆ and tracelet counit ε are defined via their action
on basis vectors T̂ = δ (T ) of T̂ as

∆ : T̂→ T̂⊗ T̂ : T̂ 7→ ∆(T̂ ) := ∑
X⊂I

δ
(
[⊎x∈X Tx]≡N

)
⊗δ

([
⊎y∈I\X Tx

]
≡N

)
(17)

and ε : T̂→K : T̂ 7→ coe f fT̂∅(T̂ ). Both definitions are extended by linearity to generic elements of T̂.
5We chose to make the case distinction explicit in order to emphasize that the normal form of a non-trivial tracelet T ̸= T∅

does itself not contain trivial sub-tracelets, such that manifestly Ti ∈Prim(TN) in T ≡N ⊎i∈ITi. This is clearly the case, since
invoking ≡T on ⊎i∈ITi would in effect remove any trivial constituent Ti = T∅.

6Here, we tacitly assume that the ≡N -equivalence classes indeed form a proper set, which is in all known applications the
case since abstraction equivalence ≡A is part of the definition of ≡N . For example, it is well known that isomorphism classes
of finite directed multigraphs indeed form a set.
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Proposition 5.9. The data (T̂,∆,ε) defines a coassociative, cocommutative and counital coalgebra.

Proof. Since the construction of ∆ and ε is the standard construction for a deconcatenation coalgebra
(cf. e.g. [21]), the proof is omitted here for brevity.

The algebra and coalgebra structures on T̂ are compatible in the following sense:

Theorem 5.10 (Bialgebra structure). The data (T̂,µ,η ,∆,ε) defines a bialgebra. (Proof: cf. Appendix B.4)

By virtue of the definition of the tracelet normal form, it is evident that both composition and decom-
position of tracelets is compatible with a filtration structure given by number of “connected components”
in the following sense:

Theorem 5.11. The tracelet bialgebra (T̂,µ,η ,∆,ε) is connected and filtered, with connected compo-
nent T̂(0) := spanK{T̂∅}, and with the higher components of the filtration given by the subspaces

∀n > 0 : T̂(n) := spanK
{

T̂1⊎ . . .⊎ T̂n
∣∣ T̂1, . . . , T̂n ∈ Prim(T̂)

}
, (18)

where in a slight abuse of notations T̂1⊎ . . .⊎ T̂n := δ (T1⊎ . . .⊎Tn) (Proof: cf. Appendix B.6)

Utilizing results from the general theory of Hopf algebras (cf. e.g. [21] for an excellent review), we
finally obtain one of the central results of the present paper:

Theorem 5.12 (Compare [5], Sec. 3.4 and Thm. 3.2). The tracelet bialgebra (T̂,µ,η ,∆,ε) admits the
structure of a Hopf algebra, where the antipode S, which is to say the endomorphism of T̂ that makes the
diagram below commute,

T̂⊗ T̂ T̂⊗ T̂

T̂ K T̂

T̂⊗ T̂ T̂⊗ T̂

ε η

∆

∆

S⊗Id

µ

Id⊗S

µ

e

(19)

is given by S := Id⋆−1
. The latter denotes the inverse of the identity morphism Id : T̂ → T̂ under the

convolution product ⋆ of linear endomorphisms on T̂. More concretely, letting e := η ◦ ε denote the unit
for the convolution product ⋆,

S(T̂ ) = Id⋆−1
(T̂ ) = (e− (e− Id))⋆

−1
= e(T̂ )+ ∑

k≥1
(e− Id)⋆ k(T̂ ). (20)

It might be instructive to compute the action of the coproduct and of the antipode on tracelets of low
filtration degree. To this end, in the equations below let T̂i ∈ Prim(T̂) denote primitive elements of T̂.

∆(T̂∅) = T̂∅⊗ T̂∅ S(T̂∅) = T̂∅
∆(T̂1) = T̂∅⊗ T̂1 + T̂1⊗ T̂∅ S(T̂1) =−T̂1

∆(T̂ = T̂1⊎ T̂2) = T̂∅⊗ T̂ + T̂ ⊗ T̂∅+ T̂1⊗ T̂2 + T̂2⊗ T̂1 S(T̂1⊎ T̂2) = T̂1 ⋄ T̂2 + T̂2 ⋄ T̂1− T̂1⊎ T̂2

(21)

Finally, yet again taking inspiration from [5], one may demonstrate that the tracelet Hopf algebra is
isomorphic to a Hopf algebra that is well-known in the setting of the Heisenberg-Weyl diagram Hopf
algebra and the Poincaré-Birkhoff-Witt theorem for “normal-ordering” of elements of the Hopf algebra:

Theorem 5.13. Let LT := (Prim(T̂), [., .]⋄) denote the tracelet Lie algebra, where [T̂ , T̂ ′]⋄ := T̂ ⋄ T̂ ′−
T̂ ′ ⋄ T̂ is the commutator operation (w.r.t. ⋄). Then the tracelet Hopf algebra is isomorphic (in the sense
of Hopf algebra isomorphisms) to the universal enveloping algebra of LT .
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(a) 1-simplices (b) 2-simplices

(c) From adjacent 2-simplices. . . (d) . . . via the Concurrency Theorem. . .

(e) . . . to 3-simplices. (f) Tracelets of length 3 and evaluation

Figure 2: Elements of Tracelet Decomposition Space theory (Note: in order to allow for a more in-detail
inspection, the figures are hyperlinked to on-line interactive 3D views of the respective diagrams).

http://nicolasbehr.com/files/asymptote3d/RDS1simplex.html
http://nicolasbehr.com/files/asymptote3d/RDS2simplex.html
http://nicolasbehr.com/files/asymptote3d/RDS2to3simplexA.html
http://nicolasbehr.com/files/asymptote3d/RDS2to3simplexB.html
http://nicolasbehr.com/files/asymptote3d/RDS3simplex.html
http://nicolasbehr.com/files/asymptote3d/Tracelet-3simplex-and-evaluation.html
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A Background material

A.1. Double-Pushout (DPO) rewriting theory. An important ingredient in analyzing rewriting theories
based upon DPO semantics over adhesive categories is the following theorem, which is a central result
of categorical rewriting theory [13], and which we state here in the variant used in [2]. Note that while
the following statement is formulated for rules, which in the present context represent the special case
of length 1 tracelet, applying the theorem repeatedly leads precisely to the notion of tracelets of arbitrary
length (compare Section 2.2). Referring to [8] for the full details of the categorical rule-based calculus,
suffice it here to quote the theorem, and inviting the readers to inspect the relevant commutative diagrams
in (24) and (25) below:

Theorem A.2 (Concurrency theorem [8]). There exists a bijection ϕ : A
∼=−→B on pairs of DPO-admissible

matches between the sets A and B,

A = {(m2,m1) | m1 ∈MR1
(X0) , ;m2 ∈MR2

(X1)}
∼= B = {(µ21,m21) | µ21 ∈MR2

(R1) , m21 ∈MR21
(X0)} ,

(22)

where X1 = R1m1
(X0) and R21 = R2

µ21◁R1 such that for each corresponding pair (m2,m1) ∈ A and
(µ21,m21) ∈ B, it holds that

R21m21
(X0)∼= R2m2

(R1m1
(X0)) . (23)

The importance of this theorem with regard to the rule decomposition spaces constructed in the
present paper resides in the fact that from any two-step sequence of direct derivations, one can con-
struct (uniquely up to universal isomorphisms) a one-step direct derivation along a composite rule, which
amounts to the “synthesis” part of the concurrency theorem:

O2 K2 I2 O1 K1 I1

O21 K2 J21 K1 I21

X2 X̄1 X1 X̄0 X0

K21

K̄21

x1x̄1

m∗
2

o2 i2

j2 j1

j21

m2 m∗
1

m̄2

x̄0

o1

m̄1

i1

x0

m1

∃!

(5)

(6)

PB

PB

(72) (71)

(22)

PO

(12)

PO

(11)

(21)

PO

(32)

(42)

PO

(31)

(41)

PO PO

PO PO

(24)

Conversely, given a direct derivation along a composite rule, one may construct (again uniquely up
to isomorphisms) a two-step sequence of direct derivations along the constituent rules, which amounts
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to the “analysis” part of the theorem:

O2 K2 I2 O1 K1 I1

O21 K2 J21 K1 I21

X2 X̄1 X1 X̄0 X0

K21

K̄21

m∗
2

o2 i2

j2 j1

o1 i1

m1

(5)
PB

(82)
(81)

PO
PO

∃! ∃!

PO
(92)

PO
(91)

∃!

(12)

(22) (21)

PO

(32)

PO

(31)

PO PO

(131)PO

(10)

(11)(132)

(25)

The concurrency theorem may be used to derive the following technical result, which is useful for
interpreting the notion of tracelet composition as well as the internal structure of three-simplices as
depicted in Figure 2(d):

Corollary A.3 (Cf. [2], Cor. 2). Let rn···1 = (On···1 ↼ In···1) be a span of monomorphisms, and let
(Y (n)

j+1, j ↼ Y (n)
j, j−1) be n spans of monomorphisms (for 0 ≤ j ≤ n) with Y (n)

n+1,n = On···1, Y (n)
1,0 = In···1, and

such that
(On···1 ↼ In···1) = (On···1↼ Y (n)

n,n−1)◦ . . .◦ (Y
(n)
2,1 ↼In···1) .

Then for each object X0 and for each DPO-admissible match (In···1 ↪→ X0) ∈MRn···1(X0) (for Rn···1 =
(rn···1), the direct derivation of X0 by Rn···1 to X0 along this match

On···1 In···1

Xn X0

DPO (26a)

uniquely (up to isomorphisms) encodes an n-step DPO-type derivation sequence of the following form,
and vice versa:

On···1 Y (n)
n,n−1 · · · Y (n)

2,1 In···1

Xn Xn−1 · · · X1 X0

DPODPO (26b)

A.4. Partial overlaps and minimal gluings. An interesting property of adhesive categories concerns
gluings of objects:

Lemma A.5. For every cospan of monomorphisms A a→ X b← B, there exist a span A α← I
β→ B of

monomorphisms, a cospan A a′→ X ′← B of monomorphisms and a monomorphism X ′ x→ X such that

• [α,β ] is a pullback of ]a,b[

• ]a′,b′[ is a pushout of [α,β ], and in particular a jointly epimorphic cospan

• a = x◦a′ and b = x◦b′
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We refer to the span [α,β ] as a partial overlap and to the cospan ]a′,b′[ as a minimal gluing of A and B.
Partial overlaps and minimal gluings are unique up to isomorphisms in X ′.

Proof. The statement follows from the property of so-called effective binary unions [20], i.e., in an
adhesive category binary unions of subobjects are computed as pushouts of their intersection (which is
itself computed via pullback). Uniqueness up to isomorphisms then follows from the universal property
of pushouts.

Minimal gluings of objects are a key concept for constructing tracelets, as they model partial inter-
actions of rules in sequences of rewriting steps.

A.6. Tracelet surgery. For several of the constructions presented in this paper (such as in particular for
the definition of face maps in tracelet decomposition spaces), it is necessary to consider the following
type of operation that permits to extract information from tracelets. The basis for this type of reasoning
is once again the concurrency theorem (cf. Theorem A.2).

Corollary A.7 (Tracelet surgery; [2], Cor. 1). Let T ∈ Tn be a tracelet of length n, so that it consists of n
sequential direct derivations tn, . . . , t1 (written in the following as T ≡ tn| . . . |t1). Then for any consecutive
direct derivations t j|t j−1 in T , one may uniquely (up to isomorphisms) construct a diagram t( j| j−1) and a
tracelet T( j| j−1) of length 2 as follows (where⇝ amounts to an application of the “analysis” part of the
concurrency theorem):

O j I j O j−1 I j−1

Y (n)
j+1, j Y (n)

j, j−1 Y (n)
j−1, j−2

r j r j−1

DPO DPO ⇝

M j| j−1

O j I j O j−1 I j−1

O j| j−1 Y (2)
j| j−1 I j| j−1

Y (n)
j+1, j Y (n)

j, j−1 Y (n)
j−1, j−2

r j r j−1
PO

DPO†DPO

DPO DPO

(27a)

t( j| j−1) :=
O j| j−1 I j| j−1

Y (n)
j+1, j Y (n)

j−1, j−2

DPO , T( j| j−1) := T (r j)
µ∠ T (r j−1) (27b)

Here, µ := (I j ←↩ M ↪→ O j−1) is the span of monomorphisms obtained by taking the pullback of the
cospan (I j ↪→ Y (n)

j, j−1 ←↩ O j−1), and this span is (by virtue of the concurrency theorem) an admissible
match. By associativity of the tracelet composition, this extends to consecutive sequences t j| . . . |t j−k of
adjacent direct derivations in T inducing diagrams t( j|...| j−k) and tracelets of length 1, denoted T( j|...| j−k),
where for k = 0, t( j) = t j and T( j) = T (r j).

B Proofs

B.1. Proof of Lemma 3.7. We already noted that di operates entirely within the pair of consecutive
plaquettes, and that it does not modify the outer feet. The fiber thus consists of pairs of composable
plaquettes (pi+1, pi) with some middle foot y, but with fixed outer feet (the same as the feet of p′). By
definition of di, we should first construct w as the pushout of the pullback and then compose the two
rules along w, and this is required to be r′. That is precisely the description of the fiber (X2)r′ . It remains
to see that the rest of the data is uniquely reconstructible. But this follows via the “analysis” part of
the concurrency theorem, whereby if r′ is realized as a composition of rule ri+1 with rule ri along some
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admissible match into rule r′, the direct derivation along r′ may be equivalently expressed as a two-step
sequence of direct derivations along ri followed by ri+1 (cf. Theorem A.2 of Appendix A.1).
B.2. Proof of Proposition 5.4. For the case T = T∅, since ∅ is by assumption a strict initial object,
there exists precisely one inhabitant in the isomorphism class of T∅ (i.e. T∅ itself). Moreover, as T∅ is a
tracelet of length 1, neither ≡S nor ≡T may be invoked non-trivially, thus proving the claim in this case.
For the case T ̸= T∅, invoking≡N repeatedly in order to compute the≡N-equivalence class of T in effect
removes any occurrence of sub-tracelets containing the trivial rule; since by assumption T ̸= T∅ and
since T is of finite length, the process returns an ≡N-irreducible class of minimal representatives T ′ ≡ T
with T ′ ̸= T∅. Such a T ′ could then itself be obtainable by repeated operations ⊎ on shorter tracelets (all
non-trivial), which by invoking≡A and≡S yield manifestly equivalent “permutations” of ⊎ composants,
thus proving the claim.
B.3. Proof of Proposition 5.7. Due to linearity, it suffices to verify the claim on basis vectors of T̂.
Associativity of µ follows from the associativity of tracelet composition (cf. [2, Thm. 1]):

µ ◦ (µ⊗ id)[T̂ ⊗ T̂ ′⊗ T̂ ′′] = (T̂ ⋄ T̂ ′)⋄ T̂ ′′ = T̂ ⋄ (T̂ ′ ⋄ T̂ ′′) = µ ◦ (id⊗µ)[T̂ ⊗ T̂ ′⊗ T̂ ′′] .

Unitality is established via

µ ◦ (η⊗ id)[T̂ ] = µ[T̂∅⊗ T̂ ] = T̂ = µ[T̂ ⊗ T̂∅] = µ ◦ (id⊗η)[T̂ ] .

More precisely, we have invoked the natural isomorphism 1⊗ T̂ = T̂ = T̂ ⊗1 in several steps.
B.4. Proof of Theorem 5.10. It is necessary to provide proofs of all four axioms of bialgebras in order
to verify the claim. Due to linearity, one may again focus on calculations in terms of basis vectors only.

Axiom I:
ε ◦η [1K] = ε[T̂∅] = 1K = id[1K] . (28)

Axiom II:
∆◦η [1K] = ∆[T̂∅] = T̂∅⊗ T̂∅ = (η⊗η)[1K] . (29)

Axiom III: The verification of the following property

ε ◦µ[T̂ ⊗ T̂ ′] = ε[T̂ ⋄ T̂ ′] !
= (ε⊗ ε)[T̂ ⊗ T̂ ′] (30)

requires a little additional work. We have to prove that T̂ ⋄ T̂ ′ contains the summand T̂∅ (with coefficient
1) if and only if T̂ = T̂ ′ = T̂∅. The proof follows from the fact that T̂∅ is the unit element for ⋄ – for all
T̂ ̸= T̂∅,

T̂ ⋄ T̂∅ = T̂∅ ⋄ T̂ = T̂ ̸= T̂∅ , (31)

which proves the claim for all cases but for the case T̂ ̸= T̂∅ and T̂ ′ ̸= T̂∅. However, it is straightforward
to verify from the precise definition of tracelets and of the tracelet composition operations that it is not
possible to obtain a tracelet ≡N-equivalent to T∅ by composition of tracelets not themselves equal to T∅,
which completes the proof of the Axiom III property.

Axiom IV: The most difficult to prove property is the compatibility of product and coproduct, which
must be verified on arbitrary basis vectors T̂ , T̂ ′ ∈ T̂:

∆◦µ[T̂ ⊗ T̂ ′] !
= (µ⊗µ)◦ (id⊗ τ⊗ id)◦ (∆⊗∆)[T̂ ⊗ T̂ ′] . (32)

Here, τ : T̂⊗ T̂→ T̂⊗ T̂ is the interchange morphism, defined to act as τ[T̂ ⊗ T̂ ′] := T̂ ′⊗ T̂ . While the
property is straightforward to prove for the case where either both or one of T̂ or T̂ ′ is equal to T̂∅, the
general case requires an intricate case study. Let us first introduce some auxiliary notations.
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Definition B.5. Given two spans si := (Ai
ai← Xi

bi→ Bi) (i = 1,2), denote by

si⊎ s j := (A1 +A2
[a1,a2]←− X1 +X2

[b1,b2]−→ B1 +B2)

their disjoint union (i.e., the pushout of s1← s∅→ s2 over the span s∅ := (∅←∅→∅) in the category
span(C) of spans over C). Given a span s = ∑k A′k← ∑ℓ Xℓ→ ∑m Bm (where all objects of the span are
finite disjoint unions of objects), a minimal presentation of s is defined as a disjoint union of spans of the
form

s =
⊎
γ

sα , sα = (Aγ ← Xγ → Bγ) (33)

which satisfies that sα ̸= s∅ for all indices α . We furthermore define the format of s, denoted Φ(s), as

Φ(s) := ⊎γ{(|Aγ |, |Bγ |)} , (34)

where |Aγ | and |Bγ | denote the number of connected components of Aγ and Bγ , respectively. Finally, we
let Fm,n denote the set of all formats with the sum of first entries equal to m and the sum of second entries
to n.

Note that with the above definitions, the format of a span of the form

s = (⊎αAα)←∅→ (⊎β Bβ ) (35)

evaluates to

Φ(s) =

(⊎
α
{(1,0)}

)
⊎

⊎
β
{(0,1)}

 . (36)

Let T̂X :=
⊎

x∈X T̂x and T̂ ′Y :=
⊎

y∈Y T̂ ′y (for some finite index sets X and Y , and so that T̂x ̸= T̂∅ and
T̂ ′y ̸= T̂∅ for all indices x and y) denote two tracelets in normal form. Equipped with the notion of
formats of spans (which in our applications encode partial overlaps), we may refine the formula for the
composition of the two tracelets as follows:

T̂X ⋄ T̂ ′Y = ∑
µ∈MTTX

(T ′Y )
δ
(
TX

µ∠ T ′Y
)

= ∑
F∈F|in(TX )|,|out(T ′Y )|

∑
µ∈MTTX

(T ′Y )
Φ(µ)=F

δ
(
TX

µ∠ T ′Y
)
≡ ∑

F∈F|in(TX )|,|out(T ′Y )|

T̂X ⃝⋆ F T̂ ′Y
(37)

Here, we made use of the fact that MTTX
(T ′Y ) =M[[TX ]]

([[T ′Y ]]) (i.e., matches of tracelets are determined
by matches of their evaluations), as well as of the fact that each admissible match µ is in fact a span of
the form in(TX)←M→ out(T ′Y ), and thus a span of the format Φ(µ) ∈ F|in(TX )|,|out(TY )|.

To proceed, note that for a given class of contributions T̂X ⃝⋆ F T̂ ′Y , the number of connected compo-
nents is given by nX−nX

F +nY −nY
F + |F | (where nX and nY denote the number of connected components

of TX and TY , respectively, where nX
F and nY

F denote the sums of first/second entries in the elements of
F , and where |F | denotes the total number of pairs of integers F). Moreover, if we let π ∈ ΠF denote a
partition of F (into a part π and a part F \π), one may verify that for a given admissible match µ with
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Φ(µ) = F , if we let µ|π and µ|F\π denote the restrictions of µ to the sub-formats π and F \π , respec-
tively, then µ|π and µ|F\π are again admissible matches (of their respective domains and codomains).
We thus obtain the following intermediate result:

∆(T̂X ⋄ T̂ ′Y ) = ∆

 ∑
F∈F|in(TX )|,|out(T ′Y )|

T̂X ⃝⋆ F T̂ ′Y


= ∑

F∈F|in(TX )|,|out(T ′Y )|

∑
π∈ΠF

∑
V⊆X

∑
W⊆Y

(T̂V ⃝⋆ π T̂ ′W )⊗ (T̂X\V ⃝⋆ F\π T̂ ′Y\W )

(38)

Note that in the last step, we took advantage of the definition of .⃝⋆ F ., in that the factors T̂V ⃝⋆ π T̂ ′W cover
indeed all possibilities for connected components arising from composing some connected components
T̂V of T̂X with some connected components T̂W of T̂Y in the format π (and analogously for the other
tensor factors with compositions of the format F \ π). It is now straightforward to verify that since
we are summing over all possible formats F , and since .⃝⋆ F . by definition only retains the non-zero
contributions (i.e., those that come from admissible matches µ of format F), it follows that we are in
fact evaluating all possible formats F ′F|in(V )|,|out(W )| for the left and F ′′ ∈ F|in(X\V )|,|out(Y\W )| for the right
tensor factors, respectively, which finally leads to the proof of axiom IV:

∆(T̂X ⋄ T̂ ′Y ) = ∑
V⊆X

∑
W⊆Y

∑
F ′∈F|in(TV )|,|out(T ′W )|

∑
F ′′∈F|in(TX\V )|,|out(T ′Y\W )|

(T̂V ⃝⋆ F ′ T̂ ′W )⊗ (T̂X\V ⃝⋆ F ′′ T̂ ′Y\W )

= ∑
V⊆X

∑
W⊆Y

(T̂V ⋄ T̂ ′W )⊗ (T̂X\V ⋄ T̂ ′Y\W ) = (µ⊗µ)◦ (Id⊗ τ⊗ Id)
(
∆(T̂X)⊗∆(T̂ ′Y )

)
.

(39)

B.6. Proof of Theorem 5.11. By definition, the coproduct ∆ satisfies that for all n≥ 0 and T̂ ∈ T(n),

∆(T̂ ) ∈
n

∑
m=0

T̂(m)⊗ T̂(n−m) . (40)

Note in particular that T̂∅ is indeed the only basis element for which the coproduct is an element of
T̂(0)⊗ T̂(0). Finally, by definition of tracelet superposition and of tracelet composition, it is clear that for
all m,n≥ 0 and basis elements T̂ ∈ T(m) and T̂ ′ ∈ T(n),

T ⋄ T ′ ∈
m+n

∑
r=0

T(r) , (41)

since the trivial overlap µ∅ is always an admissible match (hence realizing T̂ ⊎ T̂ ′ ∈ T(m+n), i.e., the
contribution to T ⋄ T ′ with the highest possible filtration degree), and since non-trivial overlaps will
reduce the overall number of connected components in general.

C Glossary

C.1. Simplicial groupoids. Let ∆ denote the category whose objects are the nonempty finite orders

[n] := {0≤ 1≤ ·· · ≤ n}

and whose arrow are the monotone maps. A simplicial groupoid is a functor X• : ∆op→Grpd . The value
of X• on [n] is denoted Xn. Exploiting the generators-and-relations description of ∆, one can describe a
simplicial set as a diagram
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X0 X1 X2 X3 · · ·
d0

d1 s0 d1

d2

d0

s1

s0

d3

d2

d1

d0

s2

s1

s0

(42)

subject to the simplicial identities: disi = di+1si = 1 and

did j = d j−1di, d j+1si = sid j, dis j = s j−1di, s jsi = sis j−1, (i < j).

The indexing convention is that di deletes the ith vertex and si repeats the ith vertex.
C.2. Active and inert maps. Inside the simplex category ∆, we have the subcategory ∆inert of inert
maps: these are the maps that preserve distance, meaning φ : [m]→ [n] such that φ(i+1) = φ(i)+ 1.
While ∆ is generated by face maps and degeneracy maps, ∆inert is generated only by the outer face maps.
We also have the subcategory of active maps, which are precisely the endpoint-preserving maps in ∆ .
These two classes of maps form a factorization system on ∆: every map factors uniquely as an active
map followed by an inert map.

For a simplicial groupoid X• : ∆op → Grpd , we use the same terminology for simplicial operators
induced by active and inert maps in ∆. For example, the inert face maps are precisely the outer face
maps d0 : Xn → Xn−1 and dn : Xn → Xn−1 (for all n > 0), and the active maps are the inner face maps
di : Xn→ Xn−1 for all 0 < i < n. (All degeneracy maps are active.)
C.3. Decomposition spaces. It is a fact that active and inert maps in ∆ admit pushouts along each
other and that the resulting new maps are again active and inert. A simplicial simplicial groupoid X• :
∆op→Grpd is called a decomposition space [16] when it sends active-inert pushouts in ∆ to (homotopy)
pullbacks in Grpd . It turns out it is enough to check the following squares to be (homotopy) pullbacks
(for all 0 < i < n):

Xn+1 Xn

Xn Xn−1

dn+1

di di

dn

Xn+1 Xn

Xn Xn−1

d0

di+1 di

d0

(43)

Particularly important are the first two instances of this:

X3 X2

X2 X1

d3

d1 d1

d2

X3 X2

X2 X1

d0

d2 d1

d0

(44)

These conditions can be read as saying that a 3-simplex can be reconstructed by gluing two 2-simplices
along a 1-simplex: the long edge of one along a short edge of the other.

An equivalent way of stating the decomposition-space axioms is that for every active map α : [k]→\
[n], the square

Xn Xn1×·· ·×Xnk

Xk X1×·· ·×X1

⌟
(45)

is a (homotopy) pullback (cf. [16, Prop. 6.9]). This time the condition says that an n-simplex can
be reconstructed by gluing k simplices (of dimensions n1, . . . ,nk) onto the principal edges of a base
k-simplex, in close analogy with the tracelet axioms.
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C.4. Incidence coalgebras. The motivating property of decomposition space is that they allow the
incidence-coalgebra construction (and with it many algebraic constructions from combinatorics, such as
Möbius inversion). The incidence coalgebra of X has as underlying vector space Qπ0X1 (where π0X1 is
the set of iso-classes of 1-simplices), and the comultiplication law is defined as

∆( f ) = ∑
σ∈X2|d1(σ)= f

d2(σ)⊗d0(σ)

The decomposition-space axiom is designed to ensure that this comultiplication law is coassociative.
(The 3-simplices enter the proof of coassociativity, and the higher simplices are useful for various pur-
poses, as in the present case where tracelets are higher simplices.) If X• is monoidal (for this notion, see
[16]) then the incidence coalgebra becomes a bialgebra.

In the present paper, we are interested in the incidence algebra instead of the incidence coalgebra. It
can generally be derived from the coalgebra as a convolution algebra. Even if the sum defining the inci-
dence coalgebra is infinite, the corresponding sum in the convolution product becomes finite if restricted
to finitely-supported functions [17].
C.5. About groupoids and homotopy pullbacks. One technicality that complicates the framework of
decomposition spaces and combinatorial Hopf algebra is the necessity to work with groupoids instead of
sets. Even if ultimately the incidence bialgebra will be generated by iso-classes, it does not work with
decomposition ‘sets’ of iso-classes of objects (such as tracelets). The problem is that taking iso-classes
too early kills important symmetries which must be respected in order for the constructions to work.
This is explained in detail in [15]. Once this is understood it is actually a big simplification to work with
groupoids, because with sets of iso-classes there are many pitfalls in connection with symmetries. With
the groupoid formalism, all these issues are taken care of automatically.

In conclusion, one should always work with the naturally defined groupoids of objects, without trying
to take iso-classes of pick representatives. A large amount of conditions take the form of pullbacks
conditions. In the setting of groupoids, it is crucial to work with homotopy pullbacks instead of ordinary
pullbacks, as the latter are not invariant under homotopy equivalence. An ordinary pullback of sets

X×S Y Y

X S

q

p

(46)

is given by X×SY = {(x,y) | px= qy}. For the homotopy pullback of groupoids, an explicit isomorphism
is included as data:

X×S Y = {(x,y,σ) | x ∈ X ,y ∈ Y,σ : px≃ qy}
(These are the objects; the arrows are pairs of arrows compatible with the specified isos.) This can com-
plicate certain calculations, but very often it is actually universal properties and standard manipulations
that are important, and at that level of abstraction, homotopy pullbacks work very much like ordinary
pullbacks do for sets.

In spite of their complicated appearance, homotopy pullbacks are often much closer to actual math-
ematical practice. For example, when we say ‘glue together two 2-simplices along the long edge of one
and the short edge of the other’, it is unrealistic to assume that the long edge of one is literally equal
to the short edge of the other. What actually happens is that they are isomorphic, and that a specific
identification is employed (and must be referenced) in the constructions.

(We stress that homotopy pullbacks are used for groupoids, whereas inside ordinary categories, such
as our fixed adhesive category C, the notion of pullback is the ordinary 1-categorical one.)
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