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Graphical Regular Logic: the complete 2-dimensional picture

Regular logic is the fragment of first order logic generated by equality, true, conjunc-

tion, and existential quantification. In this talk we will summarise the recent revamping

and completion of the project to rigorously and completely understand the connection

between regular logic – manifest as the internal language of regular categories – and

general regular calculi – those objects capturing regular theories: contexts, predicates in

those contexts, and supporting the regular fragment of logic thereupon. The connection

between these two notions is mediated by a graphical formalism, and by our main the-

orem we may understand this graphical formalism as expressing the natural rules and

operations of regular logic.

In contrast to earlier work on the topic we give here a fully 2-dimensional treatment

of the matter, and significantly generalise the earlier objects of study. In this way we

are no longer obstructed by the technicalities imposed by working 1-dimensionally, and

are able to successfully prove our desired comparison theorem, which we will state and

understand in this talk: the 2-category of relational po-categories is “pseudo-reflective”

in the 2-category of regular calculi. In addition, owing to the new generality we obtain

the novel corollary that taking the regular category of internal functions in relational

po-category is a 2-dimensionally represented 2-functor RlPoCat→ RgCat.
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Draft of Graphical Regular Logic I: Regular Calculi

1 Introduction

Regular logic is the fragment of first order logic generated by equality (=), true (true),

conjunction (∧), and existential quantification (∃). A defining feature of this fragment is

that it is expressive enough to define functions and composition of functions, or more

generally composition of relations: given relations R ⊆ X × Y and S ⊆ Y × Z, their
composite is given by the formula

R # S = {(x, z) | ∃y.R(x, y) ∧ S(y, z)}.

Indeed, regular logic is the internal language of regular categories, which may in

turn be understood as a categorical characterisation of the minimal structure needed to

have a well-behaved notion of relation.

While regular categories put emphasis on the notion of binary relation, the presence

of finite products allows them to handle n-ary relations—that is, subobjects of n-fold

products—and their various compositions. To organise more complicated multi-way

composites of relations, many fields have developed some notion of wiring diagram.

A good amount of recent work, including but not limited to control theory [BE15;

BSZ14; FSR16], database theory and knowledge representation [BSS18; Pat17], electrical

engineering [BF18], and chemistry [BP17], all serve to demonstrate the link between

these languages and categories for which the morphisms are relations.

In [FS19b], the authors took an important step in unifying the notions of wiring

diagrams and regular logic. To make rigorous the idea of wiring diagrams, the authors

first extended the work of [FS19c] to the context of symmetric monoidal po-categories
– those symmetric monoidal categories enriched over poset. They then utilised the

notion of “supply” for a “po-prop” to transfer the wiring language dictated by the “po-

prop for wiring W” to any symmetric monoidal po-category supplying this po-prop.

Furthermore, in terms of such a supply forW and some additional structure, they were

able to axiomatise those symmetric monoidal po-categories arising as the po-categories

of relations of a regular category – the so-called “relational” po-categories. Finally the

authors showed that there is a 2-dimensional equivalence of the 2-categories of regular

categories and relational po-categories, thereby successfully introducing a graphical

formalism for regular categories.

Theorem ([FS19b, Theorem 7.3]). The assignment R 7→ RelR of a regular category to its
po-category of relations is a 2-functor Rel : RgCat → RlPoCat. The assignment R 7→ LAdjR
of a relational po-category to its regular category of left adjoints forms an opposed 2-functor
LAdj : RlPoCat→ RgCat. Moreover, these 2-functors form an equivalence of 2-categories.
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In this paper and its companion [cFS21], our goal is to complete this work by con-

necting the now equivalent concepts of regular categories and relational po-categories,

to the here novel notion of regular calculi – structures which house regular theories. A

regular calculus (CP , P ) comprises the data of a symmetric monoidal po-category CP
which supplies the po-prop for wiring W, as well as a “right ajax” po-functor P from

CP to posets. We think of the objects of Γ ∈ ObCP as contexts for predicates in some

regular theory, each poset P (Γ) as the poset of predicates in the context Γ ordered by

implication, and each morphism f : Γ → Γ′ as a method for converting formulas in the

context Γ to formulas in the context Γ′ by using, among other things, equality (=), true

(true), conjunction (∧), and existential quantification (∃).
As the symmetric monoidal po-category of contextsCP of a regular calculus (CP , P )

supplies the po-prop for wiring W, we have automatically a graphical language for

describing predicates which arise by suchmanipulations. For instance, in a fixed context

Γ from which we draw variables, and from predicates θ1, θ2, and θ3 of arity 3, 3, and 4

respectively, we might wish to construct the formula ψ as

ψ(y, z, z′, x, x′, z′′) = ∃ x̃, ỹ,
[
θ1(x̃, ỹ, y) ∧ θ2(x′, x̃, x) ∧ θ3(y, ỹ, x′, x′) ∧ (z = z′)

]
.

By using the graphical notation for regular calculi we develop here, we will be able to

realise this formula as the below “graphical term” of the regular calculus.

θ3

θ1

θ2

We have already suggested that regular calculi provide a home for regular theories,

and an important class of such are the regular categories – equivalently the relational

po-categories. We will show that from a relational po-category R one may construct

a regular calculus PrdR through a process we call taking predicates. Given a regular

category R, viewed as its po-category of relations RelR, our construction yields the

regular calculus PrdRelR whose contexts are the objects of R and whose predicates

θ in context r are precisely the subobjects θ � r, exactly as we might have hoped.

This assignment of relational po-categories R 7→ PrdR to regular calculi we extend to a

2-functor Prd : RlPoCat→ RgCalc.

In the other direction, given a regular calculus (CP , P ) we are able to construct

a “syntactic po-category” Syn(CP , P ). This po-category has as objects pairs (Γ, θ) of

contexts Γ ∈ ObCP and predicates θ in context Γ, and so models the syntax of the

regular calculus closely. This construction has many desirable properties and we are

able to prove that the syntactic po-category of a regular calculus is relational, that is, it

may be viewed as the po-category of relations of a regular category.
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The assignment (CP , P ) 7→ Syn(CP , P ) of regular categories to their syntactic po-

categories we extend to a 2-functor Syn : RgCalc→ RlPoCat, and with this we prove our

first comparison theorem – appearing as part of Theorem 7.10 in this paper and whose

proof is elaborated in the companion.

Theorem A. The 2-functors Syn : RgCalc → RlPoCat and Prd : RlPoCat → RgCalc form a
bi-adjunction Syn abi Prd.

By a bi-adjunction here, we mean the appropriate notion of 2-dimensional adjunction

where the equations on theunit and co-unit nowhold onlyup to invertible 3-dimensional

morphisms, each of which satisfy some appropriate equation. As adjunctions transfer

a rich set of category-theoretic aspects, so too do bi-adjunctions by analogy – this bi-

adjunctions affords us a rich comparison of the 2-category theory of regular calculi

and relational po-categories. However, from the point of view of understanding the

connection between the graphical regular logic of regular calculi, and the traditional

formalism of regular categories it is as yet unsatisfactory.

Without a stronger theorem we cannot be sure that by working syntactically in

the regular theory carried by the regular calculus PrdR we are in fact working in the

relational po-categoryR itself. That is, wewish to know: is there an equivalence between

the syntax SynPrdR given by our graphical regular calculus approach and the relational

po-category R? To this end we prove as part of our main theorem the following general

answer to this question.

TheoremB. The co-unit of the bi-adjunction Syn abi Prd is an adjoint equivalence, so relational
po-categories are pseudo-reflective in regular calculi.

By pseudo-reflective here we mean the appropriate 2-dimensional version of the anal-

ogous ordinary category theoretic notion of a fully-faithful inclusion of sub-categories

which admits a left adjoint. Among other things, this result tells us that we may freely

embed relational po-categories and theirmorphisms into regular calculi by taking predi-

cates, and that all graphicalmanipulations and syntactical operations hold in the original

object: SynPrdR'R.
As [FS19b] proves that regular categories and relational po-categories have equiva-

lent 2-categories, we have in fact also obtained the following theorem, which appears as

Corollary 7.11 in our paper.

Theorem C. The 2-category of regular categories is pseudo-reflective in regular calculi.

Finally, we prove Theorem 7.4 below which, in concert with the above theorems,

allows us to prove the following, appearing as Corollary 7.5.

Theorem D. The 2-functor LAdj : RlPoCat → RgCat is bi-represented by the relational po-
category SynPrdW.
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By bi-representedherewemean that there is an appropriate 2-dimensional equivalence

of the 2-functors RlPoCat(SynPrdW,−) and LAdj. This says that taking left adjoints in a

relational po-category – the operation which extracts the underlying regular category –

is obtained by mapping out of SynPrdW. This latter object is the syntax of the graphical

regular logic of abstract wiring diagrams, and we see that it determines precisely the

equivalence between regular categories and relational po-categories.

1.1 Outline

We have striven, where reasonable, to render this paper as self-contained as possible.

Where we make use of results from the body of work of [FS19a; FS19b; FS19c] we are

careful to cite them or reprove them in our context. Nevertheless, we have still chosen to

defer certain proofs or developments to the companion paper [cFS21] wherewe felt their

contribution to the narrative of this paper was relatively minor, or would be outweighed

by their length or technical nature. With that in mind, this paper is organised as follows.

Section 2 presents the setting of symmetric monoidal po-categories and morphisms

thereof in which we will be working. Section 3 introduces po-prop for wiring W, the

notion of supply for a po-prop, and develops our graphical notation for W as well as

for symmetric monoidal po-categories which supply it. Then in Section 4 we define the

central structures of this paper, the regular calculi and their morphisms, by way of the

notions of right adjointmonoid and right ajax po-functor. In Section 5we finally develop

our graphical formalism for regular calculi by defining graphical terms and establishing

key lemmas which afford us intuitive means of graphical reasoning and manipulations.

Additionally in that section we sketch the construction of the syntactic po-category

of a regular calculus, and discuss some of the results and obstructions proven in the

companion. In Section 6 we recall the axiomatisation of relational po-categories, and

construct and study the 2-functor Prdwhich takes a relational po-category to its regular

calculus of predicates. Finally in Section 7we compare the 2-categories of regular calculi

and relational po-categories in several ways. In this section we state the main theorem,

Theorem 7.10, whose proof we defer to the companion, and using it we prove that

various characterisations and corollaries of interest.

1.2 Acknowledgements

The second- and third-named authors would like thank Paolo Perrone for comments

that have improved this article and Christina Vasilakopoulou for finding an error in a

previous version, which led us to this fully 2-dimensional formulation. The first-named

author would like to thank Emily Riehl for conversations which informed the present

structure of this paper and the companion. We acknowledge support from AFOSR
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2 Background on symmetric monoidal po-categories

To develop the theory of regular calculi and to state and prove our main results, Theo-

rems 7.4 and 7.10, we will make extensive use of the language of symmetric monoidal

po-categories and various higher morphisms thereof. In Section 2.1 below we recall

briefly the needed notions of oplax-natural transformation,modification, and adjunction in a
2-category. Readers familiarwith these notions are invited to omit this section. Following

this, in Section 2.2 we will observe the several significant specialisations of these notions

to the po-categorical setting and cement terminology therein. Finally, in Section 2.3 we

will recall the notion of symmetric monoidal po-category and various morphisms thereof.

Before we proceed with this background, let us pause a moment to record the salient

features of our notation in this paper. While we endeavour to be standard in most

aspects, it may nevertheless be useful to note the following.

• We typically denote composition in diagrammatic order, so the composite of

f : A → B and g : B → C is f # g : A → C. We often denote the identity mor-

phism idc : c → c on an object c ∈ C simply by the name of the object, c. Thus if

f : c→ d, we have (c # f) = f = (f # d).

• We may denote the unique map from an object c to a terminal 1 as ! : c → 1, and

we denote the top element of any poset P by true ∈ P .
• We denote the universal map into a product by 〈f, g〉 and the universal map out

of a coproduct by [f, g].

• Given a natural number n ∈ N, we write n for the set {1, 2, . . . , n} ∈ FinSet; in

particular 0 = ∅.

• We will write c⊗n in a monoidal category to denote the left-associated n-fold

iterated binary tensor product (· · · ((c⊗ c)⊗ c) · · · )⊗ c.
• Given a lax monoidal functor F : C → D, we denote the laxators by ϕ : I → F (I)

and ϕc,c′ : F (c)⊗′ F (c′)→ F (c⊗ c′) for objects c, c′ ∈ ObC. If F is strong, then we

will make use of the same notation, but refer to these maps as strongators instead.
• Where our arguments make use of more than one dimension, we will write the

morphisms with Latin letters, the 2-morphisms with Greek letters, and the 3-

morphisms with Hebrew letters. For instance, 2-functors will be denoted by F ,G,

. . . , oplax-natural transformations will be denoted by α, β, . . . , and modifications

will be denoted by ,א ,ב . . .

2.1 Background on 2-categories

Wewill take for granted the notion of 2-category and 2-functor, but briefly recall here the

definitions of higher morphisms between these. The reader already comfortable with

such notions is nevertheless encouraged to review the various specialisations obtained
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in the po-categorical setting in Section 2.2, and the later background on symmetric monoidal
po-categories in Section 2.3.

Definition 2.1 (Oplax-natural transformations &modifications). Given a pair of parallel

2-functors F,G : K → L, an oplax-natural transformation α : F ⇒ G comprises the

data of object components αc : Fc → Gc for each object c ∈ ObK, and morphism

components αh : (αc # Gh) ⇒ (Fh # αc′) for each morphism h : c → c′ of K. These

morphism components are required to be natural with respect to 2-morphisms of K,

and are required to be compatible with identity morphisms and composition in K. For

details see, for example, [JY20, Definition 4.2.1].

An oplax-natural transformation α is pseudo-naturalwhen each morphism compo-

nent αh is a 2-isomorphism, and is 2-natural when each morphism component αh is an

identity.

A modification א : α β between oplax-natural transformations α, β : F ⇒ G

comprises the data of object components cא : αc ⇒ βc in L(Fc,Gc) for each object

c ∈ ObK, which are required to be compatible with the morphism components of α and

β. For details see, for example, [JY20, Definition 4.4.1].

Recall that, given a 2-category K, an adjunction in K consists of a pair of objects

c, d ∈ ObK, a pair of morphisms l : c → d and r : d → c, and a pair of 2-morphisms

η : d ⇒ (l # r) and ε : (l # r) ⇒ c such that the following pair of diagrams, the triangle
equalities, are rendered commutative.

l lrl

l

η # l

l # ε

r

rlr r

r # η

ε # r

(1)

We are careful to avoid the ` symbol in this context; the symbol ` always means entailment.
One may verify that adjunctions compose, and so by LAdj(K) we denote the 1-category

with the same objects as K and whose morphisms are the data of left adjoints (l, r, η, ε)

in K.

For given data (l, r, η, ε) as above, the property of being an adjunction is expressed

equationally in the compositions of the ambient 2-category. As such, we obtain the

following lemma.

Lemma 2.2. Let F : K → L be a 2-functor. The assignment (l, r, η, ε) 7→ (Fl, Fr, Fη, F ε)

sends adjunctions inK to adjunctions in L, and so gives rise to a functor between the categories
of left adjoints, LAdj(F ) : LAdjK → LAdjL. Moreover, this assignment F 7→ LAdjF of
2-functors itself 2-functorial in 2-functors and so extends to a functor LAdj : 2Cat→ Cat.

In fact more is true, LAdj is a 2-functor when the 2-morphisms in 2Cat are themselves

required to be left adjoints, but we will not need this fact in this generality.
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2.2 Po-categories

The theory of 2-categories specialises significantly to the context of po-categories, and so

we recall briefly the appropriate definitions now.

Definition 2.3 (Po-category). A po-category C is a locally-posetal 2-category, that is, it

is an ordinary 2-category C for which the category C(c, c′) of morphisms between any

two objects is thin: there is at most a single 2-morphism between any pair of parallel

morphisms.

A po-functor F : C→ D between po-categories is an ordinary 2-functor, but we may

summarise this structure by requiring that F is an ordinary functor of the underlying

1-categories and that the functions Fc,c′ : C(c, c′) → D(Fc, Fc′) are monotonic for all

objects c, c′ ∈ C.
An oplax-natural transformation α : F ⇒ G between po-functors F,G : C → D is

an ordinary oplax-natural transformation between the 2-functors F and G. However,

all of the compatibility conditions are degenerate and so the data is merely a collection

of morphisms αc : Fc → Gc which satisfy F (f) # αc′ ≤ αc # G(f) for all morphisms

f : c → c′ of C. In particular, a 2-natural transformation of po-functors is merely a

natural transformation of the underlying functors.

Modifications are especially degenerate. Given parallel oplax-natural transforma-

tions α, β : F ⇒ G, we write α ≤ β if for each c ∈ C there is an inequality αc ≤ βc
in D(Fc,Gc) between c-components. Thus we are motivated in writing [C,D] for the

po-category of po-functors, oplax-natural transformations, and modifications; we call it

the po-category of po-functors from C to D.

Notation 2.4 (Po-categories). To distinguish po-categories from 1-categories we will

write the former with double-struck letters, as in C,D, . . ., and reserve script for the

latter, as in C,D, . . .

Note that in any 2-category, any two right adjoints to a given morphism are isomor-

phic, so in a po-category, a given morphism has at most one right adjoint.

Definition 2.5 (Left adjoint oplax-natural transformation). LetC andD be po-categories.

A left adjoint oplax-natural transformation is a left adjoint in the po-category [C,D] of

Definition 2.3.

As a consequence of the posetal nature of the po-category of po-functors [C,D] we

may freely pass the condition of left adjointness between oplax-natural transformations

and their components, in the following sense.

Lemma 2.6. Let F,G : C → D be po-functors, and let λ : F ⇒ G and ρ : F ⇒ G be opposed
oplax-natural transformations. Then λ is left adjoint to ρ if and only if for each c ∈ C the
components λc : Fc→ Gc are left adjoint to ρc : Gc→ Fc in D.
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Proof. The forward direction is true even for 2-categories that aren’t locally posetal; the

backwards direction holds since the uniqueness of 2-morphisms in a po-category implies

that the triangle equalities (1) hold trivially.

Observe that an invertible modification whose eventual codomain is a po-category

is necessarily an equality. As such, between po-categories the notions of 2-dimensional

and 1-dimensional equivalence coincide.

Definition 2.7. An equivalence of po-categories is an equivalence in the 1-category of

po-categories andpo-functors. We say that apo-functorF : C→ D is fully-faithfulwhen

the morphism Fc,c′ : C(c, c′) → D(Fc, Fc′) is an isomorphism of posets. Furthermore,

a splitting for essentially surjectivity of F is a specified function sending d ∈ ObD to

a pair (c ∈ ObC, F c∼= d). We may abbreviate this situation by saying that F is split
essentially surjective to mean an implicit, specified function as before.

We will take for granted the following extension of the classical result relating fully-

faithful split essentially surjective functors and equivalences.

Lemma 2.8. Given a po-functor F : C→ D, the data of an equivalence on F is equivalently the
data of a splitting for essential surjectivity of F and the property of fully-faithfulness for F .

2.3 Symmetric monoidal po-categories

We will have a great deal of use for symmetric monoidal po-categories. These objects

may be viewed as 3-categories which are “petite” in two dimensions: they are locally

po-categorical, and they have only one object. However, it is conceptually simpler to

think of symmetric monoidal po-categories instead as symmetric monoidal 1-categories

with extra structure: hom-sets are equipped with an order, and the monoidal operation

is monotonic on morphisms.

Definition 2.9 (Symmetric monoidal po-category). A symmetricmonoidal structure on
a po-categoryC consists of a symmetric monoidal structure (⊗, I, λ, ρ) on its underlying

1-category, such that ⊗ is a additionally a po-functor. That is, (f1 ⊗ g1) ≤ (f2 ⊗ g2)

whenever f1 ≤ f2 and g1 ≤ g2. Recall that this means λ and ρ are automatically

2-natural (Definition 2.3).

A strong symmetric monoidal po-functor (F,ϕ) : (C,⊗, I) → (D,⊗′, I ′) is a po-

functor F : C→ Dwhose underlying functor is strong symmetric monoidal. Recall that

this means that the strongators ϕc,c′ : Fc⊗′ Fc′ → F (c⊗ c′) are automatically 2-natural.

Wewill frequentlywish to apply the qualifier “monoidal” to various forms of natural

transformations; by amonoidal ‘adjective’ natural transformationwewill alwaysmean

an ‘adjective’ natural transformation whose components additionally obey the monoidal

natural transformation conditions strictly. For example, a monoidal left adjoint oplax-
natural transformation α : (F,ϕ)⇒ (G,ψ) is a left adjoint oplax-natural transformation
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α : F ⇒ G whose components αc : Fc → Gc additionally obey the monoidal natural

transformation conditions strictly – for instance ϕI # αI = ψI .

Notation 2.10 (Symmetry isomorphisms). If (C,⊗, I) is a symmetric monoidal po-

category, m,n ∈ N are natural numbers, and c : m × n → C is a family of objects in

C, then there is a canonical natural isomorphism

σ :
⊗
i∈m

⊗
j∈n

c(i, j)
∼=−−→

⊗
j∈n

⊗
i∈m

c(i, j) . (2)

Wewill refer to these σ as the symmetry isomorphisms, though note that generally such

isomorphisms involve associators and unitors too.

As additional background for these structures and for the coming definitions, we

will assume that the reader has some familiarity with the content of [FS19a; FS19b;

FS19c]. Nevertheless we will endeavour to explicitly recall specific results and details

from these papers when we make use of such.

3 Supplying wires

Our work toward understanding graphical regular logic begins with the establishment

of the supporting machinery which was developed in [FS19b; FS19c] and whose salient

details we recall here. In order to render our graphical terms, we will need already the

more primitive notion of wiring diagram. The somehow prototypical case of these is the

generic structure supporting a basic graphical calculus, viz., the po-prop for wiring W.

Once we have gained some proficiency in this context, we will see how the notion of

supply for a po-prop allows us to understand wiring diagrams in any po-category which

supplies W.

3.1 The po-propW for wiring

Definition 3.1 (Po-prop). Apo-prop is a symmetric strictmonoidal po-categoryPwhose

monoid of objects is isomorphic to (N, 0,+). A po-prop functor F : P→ Q is a bĳective-

on-objects symmetric strict monoidal po-functor.

The first, and indeed most important example we intend to consider is the po-prop

for wiring. Consider the symmetric monoidal 2-category (Cspnco,∅,+), i.e. the 2-dual

of cospans between finite sets.

Definition 3.2 (W). The po-prop for wiring, W, is the local poset reflection of the full

and locally full sub-2-category of (Cspnco,∅,+) spanned by the finite ordinals n.

In Proposition 3.5 we shall give a more explicit description of the hom posets of W,

after which we will exhibit the generating morphisms and relations for W graphically.
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Note thatW is almost the prop of equivalence relations, also known as corelations—see

[CF17]—but without the “extra” law, which would equate the cospans 0 → 0 ← 0 and

0→ 1← 0.

Remark 3.3. One can motivate the definition of W as follows. A regular category R
has finite products, and thus each object r is equipped with morphisms εr : r → 1 and

δr : r → r ⊗ r. The category FinSetop is the free finite product category, and—in a sense

that we will soon make precise—the theory of comonoids.

In the po-category of relations Rel(R), morphisms coming from R are precisely the

left adjoints. Itwas shown in [Her00, TheoremA.2] that the span construction freely adds

right adjoints, subject to the condition that pullbacks in R are sent to Beck-Chevalley

squares. Since all of our categories are po-categories, we are using the local posetal

reflectionW of Span(FinSetop).

Remark 3.4. In this paperweprefer towork in the po-categorical setting as the uniqueness

of 2-morphisms simplifies many of the coherence conditions. For implementation on

computers, however, quotients by equivalence relations are often a source of strife. In

that case, one can use Cspnco in place of W throughout. Though Cspnco is not a po-

category, all the results go through. Roughly the reason is that the only time W is used

is for maps W → Poset, and since Poset is itself locally posetal, the 2-category of (right

ajax) functorsW→ Poset is equivalent to that of (right ajax) po-functorsCspnco → Poset.

Proposition 3.5. The hom-posets ofW admit the following explicit description:

W(m,n) ∼=

{
{0 ≤ 1}op ifm = n = 0

ERop(m+ n) ifm+ n ≥ 1

where {0 ≤ 1} is the poset of booleans, and ER(p) is the poset of equivalence relations on the set
p, ordered by inclusion.

Proof. For anym,n, may identifyW(m,n)op with the poset reflection of Cspn(m,n). But

Cspn(m,n) is the coslice categorym+ n/FinSet, consisting of finite sets S equippedwith

functions m+ n → S. If m + n = 0, then the poset reflection is that of FinSet, namely

{0 ≤ 1}; otherwise it may be identified with the poset of equivalence relations onm+ n.

Indeed, every functionm+ n→ S factors as an epi followed by amono, and everymono

out of a nonempty set has a retraction.

The proof just given suggests two further results on the structure of W which we

record here.

Corollary 3.6. Everymorphismω : n→ m inWwithm+n > 0 admits a unique representation
as a jointly surjective cospan of finite sets n→ nw ← m.

Remark 3.7. At this point we have succeeded in showing that there are in fact canoni-
cal choices of representative cospans for every morphism of W. When the domain or
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codomain are inhabited, then the above corollary uniquely determines a jointly epimor-

phic cospan, and in the remaining case we choose 0 → 0 ← 0 and 0 → 1 ← 0 as our

representatives for the two distinct elements ofW(0, 0). Moreover, observe that between

these canonical representatives there is always at most a single morphism of cospans

and so we needn’t concern ourselves with representatives at this level.

Corollary 3.8. The two distinct elements of W(0, 0) both serve as monoidal identities for
morphisms. That is,

ω + (0→ 0← 0) = ω = ω + (0→ 1← 0) : n→ m

for all morphisms ω : n→ m in W.

Now that we have explicated the structure of the hom posets of W, let us turn

our attention to its morphisms, and for this purpose introduce a graphical notation

prototypical of those to come. Wmay be generated by fourmorphisms, andwe list these

generatingmorphisms, their canonical cospan representatives inCspnco (seeRemark 3.7),

and their graphical icons in the table below.

Morphism inW Corresponding cospan Icon

ε : 1→ 0 1→ 1← 0

δ : 1→ 2 1→ 1← 2

η : 0→ 1 0→ 1← 1

µ : 2→ 1 2→ 1← 1

(3)

These generators satisfy the following equations and inequalities involving additionally

the symmetry 2→ 2 ofW, andwe render these constraints graphicallywith composition

indicated via horizontal juxtaposition and tensor indicated via vertical juxtaposition.

= = =

= = =

= = =

≤ ≤ id0 ≤

(4)

We refer to the composites η # δ and µ # ε as the cup and the cap; they are denoted

cup and cap and are depicted as follows:

:= and := (5)

12
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It follows from (4) that cap and cup satisfy the “yanking” or adjunction identities

= =

(6)

The equations in the first and second lines of (4) are known as the (co)commutativity,
(co)unitality, and (co)associativity equations for comonoids and monoids, respectively.

The equations in the next line are known as the special law and the frobenius law. We

refer to the inequalities in the last line as the adjunction inequalities, because they show
up as the unit and co-unit of adjunctions, as we see next in the following proposition.

Proposition 3.9. With notation as in (3), there are adjunctions

1 0
ε

η

a and 1 2
δ

µ

a
. (7)

Proof. The inequalities id1 ≤ (ε # η), (η # ε) ≤ id1, id2 ≤ (µ # δ), and the equation

id1 = (δ # µ) are all shown in (4), which itself is proved via computations in Cspnco. The
required equalities (1) are automatic in a po-category.

Remark 3.10. The perhaps surprising half of the “special law”, i.e. the inequality (δ #µ) ≤
id1 not arising from adjointness, is in fact derivable from the rest of the structure:

= ≤ =

More generally, if f : m � n is any surjective function then f † # f = id, where f † is the

transpose (left adjoint) of f .

Definition 3.11 (Subprops of W). The prop W contains several other important full

subprops:

• That generated by ε and δ is called the prop for cocommutative comonoids.
• That generated by η and µ is called the prop for commutative monoids.
• That generated by cup and cap (5) is called the prop for self-duals.

In fact these three props are equivalent to the monoidal category of finite sets, its

opposite, and the category of unoriented cobordisms, respectively. See also [FS19c,

Section 3].

Notation 3.12 (General arity δ and µ). We will adopt the convention that for n ∈ N we

will write δn : 1 → n and µn : n → 1 for the maps associated to the cospans 1 → 1 ← n

and n → 1 ← 1 respectively. In particular we have δ0 = ε, µ0 = η, and δ1 = µ1 = id1

among other identities. Graphically we might render these morphisms as

m

... n

...and

for δm and µn respectively.
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3.2 Wiring diagrams forW

The po-category W forms the foundation of our diagrammatic language for regular

logic. We have already seen that morphisms in W can be given a graphical description

by depicting generating morphisms using special icons, and working in the usual Joyal–

Street string diagram language for morphisms in symmetric monoidal categories.

We now present an alternate way to depict morphisms in W; we call these wiring
diagrams for W. In this section we begin our exploration of graphical regular logic by

giving an explicit description of the objects, morphisms, 2-morphisms, and composition

in W in terms of wiring diagrams forW.

Notation 3.13 (Objects as shells). By definition, an object n ∈ W is a finite set. We

represent it graphically by a circle with n ports around the exterior.

n = .

.

.

}
n− 3 ports (8)

Our convention will be for the ports to be numbered clockwise from the left of the circle,

unless otherwise indicated. We refer to such an annotated circle as a shell.

Definition 3.14. A wiring diagram forW is a morphism ω : n1 + · · ·+ nk → nout.

Notation 3.15 (Graphical wiring diagrams for W). Suppose we have a wiring diagram

ω : n1 + · · ·+nk → nout inW. Recall that such a morphism admits a canonical represen-

tation as a cospan of finite sets

n1 + · · ·+ nk
[ω1,...,ωk]−−−−−−→ nω

ωout←−− nout (9)

by Remark 3.7. With this in mind, we depict ω as follows.

1. Draw the shell for nout.

2. Draw each object ni, for i = 1, . . . , k, as non-overlapping shells inside the nout shell.

3. For each i ∈ nω, draw a black dot anywhere in the region interior to the nout shell

but exterior to all the ni shells.

4. For each element (i, j) ∈
∑

i=1,...,k,out ni, draw a wire connecting the jth port on

the object ni to the black dot ωi(j).

For a more compact notation, we may also neglect to explicitly draw the object nout,

leaving it implicit as comprising the wires left dangling on the boundary of the diagram.

Example 3.16. Here is the combinatorial data of a wiring diagram ω : n1 +n2 +n3 → nout

in W, together with its depiction:

n1 = 3, n2 = 3, n3 = 4, nout = 6, nω = 7

ω1(1) = 4, ω1(2) = 2, ω1(3) = 1,

ω2(1) = 6, ω2(2) = 4, ω2(3) = 5,

ω3(1) = 1, ω3(2) = 2, ω3(3) = ω3(4) = 6,

ωout(1) = 1, ωout(2) = ωout(3) = 3

ωout(4) = 5, ωout(5) = 6, ωout(6) = 7.

3

1

2
6

7

1

5

3
4

2
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Example 3.17. Note that we may have k = 0, in which case there are no inner shells. For

example, the following has nω = 2.

Remark 3.18. When multiple wires meet at a point, our convention will be to draw a dot

iff the number of wires is different from two.

1 wire 2 wires 3 wires 4 wires

· · · etc.

Whenwires intersect and we do not draw a black dot, the intended interpretation is that

the wires are not connected: 6= .

The following examples give a flavor of how composition, monoidal product, and

2-morphisms are represented using this graphical notation.

Example 3.19 (Composition as substitution). Composition of morphisms is described by

nesting of wiring diagrams. Let ω′ : n′ → n1 and ω : n1 → nout be morphisms in W.

Then the composite relation ω′ # ω : n′ → nout is given by

1. drawing the wiring diagram for ω′ inside the inner circle of the diagram for ω,

2. erasing the shell representing n1,

3. amalgamating any connected black dots into a single black dot,

4. removing either

(i) all but one of the black dots not connected to a shell (if n′ = nout = 0) or

(ii) all black dots not connected to a shell (if n′ 6= 0 or nout 6= 0).

Note that step 3 corresponds to taking pushouts in FinSet, while step 4 corresponds to

taking the poset reflection.

As a shorthand for composition, we simply draw one wiring diagram directly sub-

stituted into another, as per step 1. For example, we have

ω′ ω ω′ # ω

# =
1

=

2, 3

=
4

For the more general k-ary or operadic case, we may obtain the composite

(n1 + · · ·+ ni−1 + ω′ + ni+1 + · · ·+ nk) # ω

of any twomorphisms ω′ : n′1 + · · ·+n′k → ni and ω : n1 + · · ·+nk → nout, with 1 ≤ i ≤ k,
by substituting the wiring diagram for ω′ into the ith inner circle of the diagram for ω,

and following a procedure similar to that in Example 3.19.
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Example 3.20 (Monoidal product as juxtaposition). Recall Corollary 3.8: the monoidal

product of any morphism ω with η # ε or id0 is again ω. In our graphical notation, if

neither morphism is equal to η # ε : 0→ 0, then the monoidal product of two morphisms

in W is simply their juxtaposition. For example, we might have:

+
=

Example 3.21 (2-morphisms as breaking wires and removing disconnected black dots).
Let ω, ω′ : n→ nout be morphisms in W. Each is canonically represented by a cospan of

finite sets,

n→ nω ← nout and n→ nω′ ← nout .

Bydefinition, there exists a 2-morphismω ≤ ω′ iff there is a functionx : nω′ → nωmaking

the requisite diagrams commute. For any element i ∈ nω, the pre-image x∗(i) is either

empty, has one element, or has multiple elements. In the first case, the pair of wiring

diagrams depicting each side of the inequality ω ≤ ω′ would show dot i being removed;

in the second case, it would show dot i remaining as it was; and in the third case, it

would show a connection being broken at dot i. For example, we have 2-morphisms

≤ and ≤ .

3.3 Supply

It often happens that every object in a symmetric monoidal category C is equipped with

the same sort of algebraic structure – say coming from a prop P – with the property that

these algebraic structures are compatible with the monoidal structure. In [FS19c], we

refer to this situation by saying that C supplies P. For our purposes we need to slightly

generalize this theory, from props to po-props and from symmetric monoidal categories

C to symmetric monoidal po-categories C.

Definition 3.22 (Supply). Let P be a po-prop and C a symmetric monoidal po-category.

A supply of P in C consists of a strong monoidal po-functor sc : P → C for each object

c ∈ C, such that

(i) sc(m) = c⊗m for eachm ∈ N,
(ii) the strongator c⊗m ⊗ c⊗n → c⊗(m+n)

is equal to the associator for eachm,n ∈ N,
(iii) the following diagrams commute for every c, d ∈ C and µ : m→ n in P, where the

σ’s are the symmetry isomorphisms from (2).
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c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c⊗ d)⊗m (c⊗ d)⊗n

sc(µ)⊗ sd(µ)

sc⊗d(µ)

σ σ

I I

I⊗m I⊗n

σ σ

sI(µ)

(10)

We often denote the morphism sc(µ) in C simply by µc : c⊗m → c⊗n for typographical

reasons; i.e. we elide explicit mention of s.

We further say that f : c → d in C is a lax s-homomorphism (resp. oplax s-
homomorphism) if, for each µ : m → n in the prop P, there is a 2-morphism as shown

in the left-hand (resp. right-hand) diagram:

c⊗m d⊗m

c⊗n d⊗n

f⊗m

µc µd

f⊗n

≥

c⊗m d⊗m

c⊗n d⊗n

f⊗m

µc µd

f⊗n

≤

.

Since C is locally posetal, if f is both a lax and an oplax s-homomorphism, then these

diagrams commute and we simply say f is an s-homomorphism.

We say that C (lax-/oplax-) homomorphically supplies P if every morphism f in C
is a (lax/oplax) s-homomorphism.

Example 3.23. An important class of examples of homomorphic supply are those cat-

egories with finite products. By the main theorem of [Fox76], replicated below, such

categories are precisely the discretely ordered po-categories that homomorphically sup-

ply cocommutative comonoids (Definition 3.11).

Proposition 3.24. A category C has finite products iff it can be equipped with a homomorphic
supply of commutative comonoids. If C and D have finite products, a functor C → D preserves
them iff it preserves the supply of comonoids.

Example 3.25. We shall meet another large class of examples of lax homomorphic supply

in Section 6, wherein we shall find that regular categories are equivalently po-categories

with a lax homomorphic supply ofW and some additional structure.

Now that we have established the definition of supply we collect some results which

we will variously leverage in our later sections.

Notation 3.26 (Coproduct of symmetric monoidal po-categories). We will write

⊔
to

denote the coproduct of symmetric monoidal po-categories in the 2-category SMC of

symmetric monoidal po-categories, symmetric monoidal po-functors, and monoidal

natural transformations.
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Warning 3.27. The coproduct of symmetric monoidal categories in SMC does not coincide
with the po-categorical coproduct inPoCat. Instead, for a set J and symmetricmonoidal

po-categories {Cj}j∈J ,

Ob
( ⊔
j∈J

Cj
)

:=
{

(cj) ∈
∏
j∈J

ObCj
∣∣∣ cj = Ij for all but finitely many j ∈ J

}
.

See [FS19c, Theorem 2.2 & Appendix A] for details.

Lemma 3.28. Let C be a symmetric monoidal po-category supplying P a po-prop. Then for any
set J , the supply s of P in R extends to a supply s̃ of C in

⊔
J C such that

s̃(cj)J # πi =

{
I, ci = I

sci , otherwise
,

as functorsP→ C. If in particularC is symmetric strict monoidal then s̃ satisfies s̃(cj)j #πi = sci .

Proof. The supply conditions (Definition 3.22) hold “point-wise” for each ci, and as the

symmetries of

⊔
J C are point-wise those of C, the functors s̃(ci)I constitute a supply of

P in

⊔
C.

In what follows, we do not produce proofs for Propositions 3.29 to 3.31 as these were

essentially proven in [FS19c, Propositions 3.13, 3.14, and 3.21]; the change from props to

po-props makes no difference in this context.

Proposition 3.29. A supply s of P in C induces a strong monoidal po-functor st :
⊔

ObC
P→ C

uniquely determined by ιc # st = sc for each c ∈ C and inclusion ιc : P�
⊔

ObC P.

Proposition 3.30. Let P be a po-prop. Then there is a supply of P in P where the functors sc for
c ∈ ObP and µ : m→ n of P are given by

sc(µ) : sc(m) = c+ . . .+ c︸ ︷︷ ︸
m

= m+ . . .+m︸ ︷︷ ︸
c

µ+...+µ−−−−−→ n+ . . .+ n︸ ︷︷ ︸
c

= c+ . . .+ c︸ ︷︷ ︸
n

= sc(n) .

Proposition 3.31 (Change of supply). Let G : P→ Q be a po-prop functor. For any supply s
of Q in C, we have a supply (G # s) of P in C.

Example 3.32. Any supply of W in C induces a supply of cocommutative comonoids in

C by change of supply and Definition 3.11.

Example 3.33. A symmetric monoidal po-category (C, I,⊗) is self-dual compact closed

iff it supplies self duals, cup and cap (see Definition 3.11). Thus W is self-dual compact

closed by Proposition 3.30, as in any po-category C supplyingW by Proposition 3.31.

Example 3.34. Consider the po-prop of finite sets and co-relations, where a morphism

m→ n is an equivalence relation onm+ n, and the order is given by coarsening. Since

this po-prop receives a po-prop functor from W (see Proposition 3.5), it supplies W by

Propositions 3.30 and 3.31.
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Definition 3.35 (Preservation of supply). Let P be a po-prop, C and D symmetric

monoidal po-categories, and suppose s is a supply of P in C and t is a supply of P
in D. We say that a strong symmetric monoidal po-functor (F,ϕ) : C→ D preserves the
supply if the strongators ϕ provide an isomorphism tFc ∼= (sc #F ) of po-functors P→ D
for each c ∈ C.

Unpacking, a strongmonoidal po-functor (F,ϕ)preserves the supply iff the following

diagram commutes for each morphism µ : m→ n in P and object c ∈ C:

F (c)⊗m F (c)⊗n

F (c⊗m) F (c⊗n)

µF (c)

F (µc)

ϕ ϕ (11)

As we might expect, the most abundant example of preservation of supply arises

from the supply of a po-prop P in itself.

Lemma 3.36. Let C be a po-category supplying P a po-prop, and let c ∈ ObC be an object.
Then the strong symmetric monoidal po-functor sc : P→ C determined by the supply of P in C
preserves the supply of P in itself of Proposition 3.30.

Proof. By unwinding this claim wemay see that it reduces to iterated applications of the

supply conditions (10) for sc.

3.4 General wiring diagrams

The notion of supply will enable us to extend our graphical notation of Section 3.2 for

morphisms in W to graphical notation for morphisms in any po-category C supplying

W. The extension of our graphical notation is to the general notion of wiring diagram for
C. Since W supplies W by Proposition 3.30, we will be able to verify that the current

material is a generalisation of the previous.

In the presence of objects andmorphisms of a po-categoryC supplyingW, the change

in our notation is essentially that each wire is labelled by an object in C and nodes may

be replaced by any morphism in C:

; f

c1

c3

c2

Note that we have used two related methods for depicting morphisms in W. The

first is the string diagrams of Joyal–Street, which we used in Section 3.1. In these

diagrams, the domain of the morphism is represented on the left of the diagram, and

the codomain is on the right. The second method is the wiring diagrams of Section 3.2.

For these diagrams, the domain of the morphism is represented by the interior blue
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circles, while the codomain is represented by the outer circle. Similarly, we will use two

analogous methods for depicting morphisms in a po-category supplying W. We first

discuss the Joyal–Street string diagrams.

String diagrams in a po-category supplyingW

As we shall soon see, in a po-category supplying W we may bĳectively move tensor

factors of the domain to the codomain and visa-versa by making use of the supplied

images of the morphisms cup and cap. Roughly speaking, this allows us to treat the

distinction between domain and codomain as a matter of bookkeeping. We give two

important examples of this, and depict them in string diagrams.

The first is the transpose of a morphism, which exchanges domain and codomain.

Definition 3.37 (Transpose). Let f : c→ d be a morphism in a self dual compact closed

po-category C. We define its transpose f † : d→ c to be the morphism

f † := f

Notation 3.38 (Transpose). Note that we have used the asymmetric icon f to denote

f . This asymmetry allows us to distinguish the domain against the codomain without

appealing to the orientation of the picture: the domain c is attached at largest angle of

the kite, while the domain d is attached at the least angle.

In linewith this convention, and the adjunction equations (6), wedepict the transpose

simply by the 180-degree rotation of f :

f † = f† = f

We will make liberal use of asymmetric icons when it will help to have rotation denote

transpose.

Transposition gives an isomorphismC(c, d) ∼= C(d, c) of posets. The second example

of moving factors between domain and codomain is given by naming and unfolding.

These give an isomorphism C(c, d) ∼= C(I, c⊗ d).

Definition 3.39 (Name and unfolding). Let f : c→ d and g : I → c⊗ d be morphisms in

a self dual compact closed po-category. We define the name f@ : I → c⊗ d of f and the

unfolding gw : c→ d, to be respectively:

f c

d

g

c

df@ :=

cupc #(idc⊗f)

gw :=

ρc
-1 # (idc⊗g) # (capc⊗ idd) # λd

We invite the reader to construct the pleasing graphical proof of the following.

Lemma 3.40. The maps ·@ and ·w are mutually inverse.
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Recall that we refer to the generating morphisms of W as (η, µ, ε, δ); see (3). The

equations in (4) imply that (η, µ, ε, δ) form a special commutative frobenius monoid. The

theory of special commutative frobenius monoids is given by the prop Cspn(FinSet)

of finite sets and cospans between them [Lac04]. Moreover, if we consider the prop

Cspn(FinSet) as a 2-discrete po-prop, there is a po-prop functor Cspn(FinSet) → W
taking a cospan to the morphism of W that it represents. Thus if C supplies W then by

Proposition 3.31 we see that C supplies special commutative frobenius monoids, and

the underlying 1-category of C is what is known as a hypergraph category [FS19a].

Hypergraph structure implies that we may use network or circuit-like diagrams to

represent 1-morphisms: the additional structures and axioms of a hypergraph category

allow us to split and combine wires in various ways, but such that “connectivity is all

that matters” when interpreting string diagrams. This allows us to be rather informal

when depicting morphisms as string diagrams – in particular how a given connection

is constructed from frobenius maps – because all formalisations of it result in the same

morphism.

For example, the following diagrams all canonically represent the same morphism:

f

g

f

g f
g f

g

We will make extensive use of this notation, and refer the reader unfamiliar with it to

[FS19a] for more details.

Wiring diagrams in a po-category supplyingW

Having considered the Joyal-Street-type string diagrams in a po-category supplyingW,

we are now ready to extend our notation of Section 3.2 to this context.

Definition 3.41 (Shell). Let C be a po-category supplying W. A shell Γ = (n, τ) in C is

a function τ : n → ObC. We depict a shell as a circle with n ports, labelled clockwise

starting from its left with the objects τ(i) ∈ ObC:

Γ = τ(1)

τ(2)

.

.

.

τ(n)

We shall abuse notation bywriting Γ for both the pair (n, τ) as well as the tensor product

Γ := τ(1)⊗ · · · ⊗ τ(n).

Definition 3.42 (Wiring diagram). Let C be a po-category supplying W. A wiring
diagram for C is:

(i) a natural number k,
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(ii) for each i ∈ {1, . . . , k, out}, a shell Γi := (ni, τi),

(iii) a morphism ω : Γ1 ⊗ · · · ⊗ Γk → Γout in C; that is, a morphism⊗
i=1,...,k

⊗
j=1,...,nk

τi(j)
ω−−−−−−−−−→

⊗
`=1,...,nout

τout(`)

Notation 3.43 (Wiring diagrams for a supply). We depict wiring diagrams for C in

much the same way as we depict wiring diagrams for W, except that wires are now

labelled by objects of C, and dots connecting wires may now be drawn as kites labelled

by morphisms of C or remain as dots to represent morphisms of C in the supply forW.

Example 3.44. Let p1 := (c1⊗c2⊗c3), p2 := (c5⊗c6⊗c3⊗c2), and pout := c5⊗c4⊗c5⊗c3,

and suppose given f1 : c1 ⊗ c5 → c5 and f2 : I → c4 ⊗ c5 in C. Using the supply of

W we also have the co-unit εc6 : c6 → I , capc2 : c2 ⊗ c2 → I , and the comultiplication

δc3 : c3 ⊗ c3 → c3 in C. Together these provide a morphism p1 ⊗ p2 → pout as shown

below-left, which we can render as the wiring diagram for C below-right.

1

2

3

5

6

3

2

5

4

5

3

p1

p2

pout

f1

f2

f1 f2

c3 c6

c2
c1 c5

c5 c4

c5

String diagram Wiring diagram

In the coming sections, where it causes no ambiguity, we will gradually suppress

infer-able details in our wiring diagrams.

4 Regular calculi

Graphical regular logic is the graphical representation of the logical calculus carried by

regular caluli, those objects understanding contexts, predicates, and the regular fragment

of logic thereupon. In this section we will introduce the framework of right ajax po-
functorswhich will allow us to compactly capture all of the desired properties of regular

calculi. We will then define regular calculi in terms of these right ajax po-functors and

assemble regular calculi into a suitable 2-category.

4.1 Right ajax po-functors and right adjoint monoids

Definition4.1 (Right ajaxpo-functor). LetC andDbe symmetricmonoidalpo-categories.

A right adjoint-lax or right ajax po-functor F : C→ D is a lax symmetric monoidal po-

functor for which the laxators are right adjoints.
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We denote the laxators by ρ and their left adjoints by λ:

I F (I)
ρ

λ

a and F (c)⊗ F (c′) F (c⊗ c′)
ρc,c′

λc,c′

a . (12)

Example 4.2 (Cartesianmonoidal po-categories). IfD is a cartesianmonoidal po-category

then every symmetric monoidal po-category C has a canonical right ajax po-functor

C→ D, viz., the constant po-functor at the terminal object ofD. This po-functor is easily
seen to be terminal in the po-category of right ajax po-functors C→ D and monoidal 2-

natural transformations. Later, in Lemma7.9we shall determine, for a class of symmetric

monoidal po-categories C, the initial right ajax po-functor C → Poset. Once we have

proven Proposition 4.6 below we will see that this is a special case of the composition of

po-functors C→ 1→ D and the fact that 1 is an right adjoint monoid in D.

Example 4.3 (Represented po-functors). As we shall see later in Sections 4.2 and 6.3

there are many important classes of examples of right ajax po-functors. One such class,

established in Proposition 6.22, is the represented po-functor R(I,−) : R → Poset for
any prerelational po-category R. Examples of prerelational po-categories include the

po-category LAdjR of left adjoints in a regular categoryR – see Theorem 6.19 for details.

Warning 4.4. If F is a right ajax po-functor, the left adjoints λc,c′ of the laxators do not in
general equip F with the structure of an oplax monoidal functor. A priori, the naturality
squares for the laxators ρ are only lax-naturality squares for their left adjoints λ.

Let us record two immediate but nevertheless useful consequences of the definition

of right ajax po-functors.

Lemma 4.5. Every strong monoidal functor between monoidal po-categories is right ajax. The
composite of right ajax po-functors is again right ajax.

To understand right ajax po-functors and their importance in the story of regular

logic, it is useful to introduce the notion of right adjoint monoid. Let us write 1 for the

terminal monoidal po-category.

Proposition 4.6. Let (C, I,⊗) be a symmetric monoidal po-category. There is a bĳection
between:

1. The set of right ajax po-functors 1→ C,
2. The set of commutative monoid objects (c, µ, η) such that µ and η are right adjoints,
3. The set of cocommutative comonoid objects (c, δ, ε) such that δ and ε are left adjoints.

Proof. (1) ⇔ (2): The set Lax(1,C) of lax symmetric monoidal po-functors 1 → C
may be seen to be in bĳection with the set of commutative monoid objects (c, µ, η)

in C. Indeed, η and unit µ come from the 0-ary and 2-ary laxators respectively:

η = ρ and µ = ρ1,1. Hence the added condition that η and µ have left adjoints is

precisely the right ajax condition.
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(2) ⇔ (3): This bĳection is implemented by taking adjoints. That is, given

an object c ∈ C and two adjunctions

I c
η

ε

a and c⊗ c c
µ

δ

a , (13)

it may be verified that µ and η satisfy the commutative monoid laws if and only if

δ and ε satisfy the cocommutative comonoid laws.

To summarize, if (c, ρ, λ) : 1 → C is a right ajax po-functor then the corresponding

monoid and comonoid structures on c are given by

η = ρ µ = ρ1,1 and ε = λ δ = λ1,1 (14)

Proposition 4.6 motivates the following definition.

Definition 4.7 (Right adjoint monoid). Let (C, I,⊗) be a monoidal po-category. A right
adjoint monoid in C is a commutative monoid object (c, µ, η) in C such that µ and η are

right adjoints.

Right adjoint monoids are a slight weakening of internal ∧-semilattices; see [Sch94,

Chapter 5] and references therein. To get a feel for why this might be so, it helps to first

recall the po-categorical version of a well-known lemma.

Lemma 4.8. Let C be a monoidal po-category. If the monoidal structure is cartesian (given by
finite products in the underlying 1-category) then every object has a unique comonoid structure,
and it is cocommutative.

Proof. Since the unit object is terminal, the maps c × ε and ε × c are forced to be the

projections c × c → c, so δ is forced to be the diagonal. Commutativity follows by

universal property arguments.

Example 4.9 (Right adjoint monoids in Poset are ∧-semilattices). A poset P ∈ Poset is an
adjoint monoid iff it is a meet-semilattice, in which case η = true and µ = ∧. To see this

we can use Lemma 4.8. This states that any poset P has a unique comonoid structure

given by the terminal and diagonal maps ε : P → 1 and δ : P → P × P . Thus P is an

adjoint monoid iff these maps have right adjoints as in (13), which holds iff η is a top

element and µ is a meet.

Example 4.10 (Right adjoint monoids in a relational po-category are objects). In later

sections we will have cause to consider relational and prerelational po-categories. By

Theorem 6.19, every relational po-category is equivalent to the po-category of left ad-

joints LAdjR in a regular category R. In particular, LAdjR is cartesian monoidal and so

Lemma 4.8 above applies to relational po-categories: each object has a unique cocom-

mutative comonoid structure. By Proposition 4.6 (2) ⇔ (3) we see that each object in

fact must have a unique commutative monoid structure.
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Itwill be useful to know that, just as laxmonoidal functorsmapmonoids tomonoids,

right ajax po-functors map right adjoint monoids to right adjoint monoids.

Proposition 4.11. Right ajax po-functors send right adjoint monoids to right adjoint monoids.

Proof. The composite of right ajax po-functors is again right ajax, so the result follows

from Proposition 4.6.

Although this result may seem anodyne at present, we will consistently leverage this

in our development of graphical regular calculus in Section 5 as it lends our graphical

calculus its “regular” aspect.

4.2 Regular calculi as indexed right adjoint monoids

Now that we have understood the notion of right ajax po-functor, we move to define one

of the central notions in this paper.

Definition 4.12 (Regular calculus). A regular calculus P consists of a pair (CP , P ) where

(CP , I,⊗) is a symmetric monoidal po-category supplying W and P : CP → Poset is a
right ajax po-functor, whose laxators we denote by true and �:

1 P (I)
true

λI

a and P (Γ1)× P (Γ2) P (Γ1 ⊗ Γ2)
�Γ1,Γ2

λΓ1,Γ2

a . (15)

We callCP the po-category of contexts, and P the predicates po-functor. If Γ ∈ ObCP is

a context, and θ, θ′ ∈ P (Γ) are predicates in context Γ such that θ ≤ θ′, then we say that

θ entails θ′, and write θ ` θ′. Finally, a regular calculus is termed bare if CP =
⊔
J W is

a coproduct1 of copies of W.

As a first example let us cast ∧-semilattices as a regular calculi.

Example 4.13 (∧-semilattices are regular calculi). Observe that the terminal po-category

1 supplies W. By Proposition 4.6 and Example 4.9 a right ajax po-functor 1 → Poset is
the same as a ∧-semilattice. Hence a regular calculus whose po-category of contexts is

terminal is a ∧-semillatice.

Shouldwefix ameet semi-latticeLviewed as a right ajax po-functorL : 1→ Poset, we

may extend this idea to endow any po-category C which supplies W with the structure

of a regular calculus by considering the composite po-functor C !−→ 1
L−→ Poset.

This phenomenon, that regular calculi induce∧-semilattice structures on their posets

of predicates, is not special to factoring through the terminal po-category 1. In the

following sense it must occurs point-wise for any regular calculus.

1

see Warning 3.27
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Proposition 4.14. If (CP , P ) is a regular calculus then the poset P (Γ) has the structure of a
meet-semilattice for each Γ ∈ CP .

Proof. Recall that by supplying W, CP has a chosen right adjoint monoid structure

supplied for each object Γ: (ηΓ, µΓ). The result then follows from fact that ajax po-

functors send right adjoint monoids to right adjoint monoids by Proposition 4.11, as

well as Example 4.9. Explicitly, (12) and (7) give rise to the following adjunctions.

1 P (I) P (Γ)
true

λI

P (ηΓ)

P (εΓ)

a a and P (Γ)× P (Γ) P (Γ⊗ Γ) P (Γ)
�Γ,Γ

λΓ,Γ

P (µΓ)

P (δΓ)

a a

This result motivates the following notation.

Notation 4.15 (Right adjoint monoids). In a regular calculus (CP , P ), for each context

Γ ∈ ObCP we have an right adjoint monoid structure on P (Γ) which we denote by

1 P (Γ)
trueΓ

!

a and P (Γ)× P (Γ) P (Γ)
∧Γ

∆Γ

a . (16)

In keeping with the conventions thus far, for n ∈ N we will write ∧nΓ for the composite

map �nΓ # P (µnΓ) : P (Γ)×n → P (Γ). In the case of n = 0 we see that ∧0
Γ = trueΓ, and we

will freely confuse this map trueΓ with the top element trueΓ(∗). Where it will cause

no ambiguity we will omit the label Γ on the maps true, ∧, ∧n, �, and so forth.

Further examples of regular calculi abound.

Example 4.16. In categorical logic, given a regular theory, we can construct a regular

calculuswhere the category of contexts has contexts as objects, andwhere the predicates

functor maps a context to the set of formulas in those variables.

Example 4.17. An important class of examples arise fromthe“prerelational”po-categories

of Section 6.1. There we will establish that the represented right ajax po-functor R(I,−)

of Example 4.3 above, for “prerelational” R, gives (R,R(I,−)) the structure of regular

calculus. This regular calculus has as contexts the objects r of R, and as predicates in

such a context morphisms I → r. We call the assignment R 7→ (R,R(I,−)) “taking

predicates”, and Section 6.3 stands to establish its 2-functoriality. Ultimately we shall

see that taking predicates is a certain type of 2-dimensional inclusion, and that this

inclusion is part of a 2-dimensional reflection.

Example 4.18. As an example of the previous example, by Example 6.4 later one may

take R to be the po-category of finite sets and corelations. The resulting regular calculus

assigns has as contexts finite sets S, and predicates in such contexts are equivalently

partitions of S.

Example 4.19. Another example of Example 4.17 is given by regular categories. Since

RelR gives a “prerelational” po-category for any regular categoryR, we obtain a regular
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calculus for every regular category. Here the contexts are the objects r of R, and the

predicates in such contexts are equivalently the subobjects of r. By composing the 2-

equivalence Relwith “taking predicates” we obtain similarly a 2-dimensional reflection

of regular categories in regular calculi.

Example 4.20. Taking predicates is not the only way to extract a regular calculus from a

“prerelational” po-category R. In Proposition 7.2 later we will see how to construct a

bare regular calculus from any prerelational po-category, and so in particular from any

regular category. Unlike taking predicates, here the contexts are finite lists of objects

(r1, . . . , rn) of R, and the predicates in such contexts are equivalently morphisms whose

domain d1 ⊗ · · · ⊗ dk and codomain c1 ⊗ · · · ⊗ cm tensored together give

⊗
ri.

4.3 The 2-category RgCalc of regular calculi

The central result of the companion paper compares the 2-category theory of regular

calculi with that of regular categories. In order to effect such a comparison wemust first

define suitable notions of 1- and 2-morphisms of regular calculi.

Definition 4.21 (Morphism of regular calculi). Let (CP , P ) and (CP ′ , P ′) be regular

calculi. Amorphism of regular calculi from (CP , P ) to (CP ′ , P ′) is a pair (F, F ]) where

(F,ϕ) : CP → CP ′ is a strong monoidal po-functor preserving the supply and F ] is a

monoidal 2-natural transformation (Definition 2.9) as follows.

CP

CP ′ Poset
F

P ′

P

F ]

A 2-morphism of regular calculi from (F, F ]) to (G,G]) is the data of a monoidal left

adjoint oplax-natural transformation (Definitions 2.5 and 2.9) α : F ⇒ Gwhich satisfies

the property F ] # P ′α ≤ G] as explicated below.

CP

CP ′ Poset
P ′

P

F G
α

F ] G]≤
i.e., for each Γ ∈ CP ,
an inequality in

Poset
(
P (Γ), P ′G(Γ)

)
:

P (Γ)

P ′F (Γ) P ′G(Γ)

F ]Γ

P ′αΓ

G]Γ

≤ (17)

Remark 4.22. The reader would of course be justified in wondering whether these partic-

ular choices of 1- and 2-morphisms preserves all of the relevant structure at hand. We

provide some discussion on this topic in Section 5.4, and for greater detail still direct the

reader to the companion paper [cFS21] in which we show that these morphisms support

the construction of a pseudo-reflection of regular categories into regular calculi.
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It is a straightforward if lengthy task to verify that morphisms of regular calculi

obey strict composition laws, and moreover that 2-morphisms may be composed along

shared morphism boundaries as well as whiskered with morphisms in a functorial

manner. With these facts, we are justified in making the following definition.

Definition 4.23 (RgCalc). The 2-category of regular calculi, denoted RgCalc, has as

objects regular calculi, and as 1- and 2-morphisms the 1- and 2-morphisms of regular

calculi of Definition 4.21.

Example 4.24. Recall Example 4.13, all regular calculi whose po-category of contexts is

terminal are ∧-semilattices. From this we may see that the full subcategory of RgCalc

spanned by regular calculi whose context category is terminal is isomorphic to the full

subcategory of Poset spanned by the ∧-semilattices.

5 Graphical regular logic

In this section we finally develop our graphical formalism for regular logic by defining

the notion of graphical term, showing how these graphical terms represent predicates

in contexts, and explaining how to reason with them. We sketch how the collection

of graphical terms, together with our graphical reasoning, allows us to form the “syn-

tactic po-category” of a regular calculus in a 2-functorial fashion. In the companion

paper [cFS21], we make extensive use of this graphical regular logic to prove the that

regular categories are “pseudo-reflective” in regular calculi by means of our syntactic

po-category construction.

5.1 Graphical terms

Given a regular calculus (CP , P ), graphical terms provide representations of its predi-

cates, i.e. the elements in P (Γ) for various contexts Γ ∈ CP .
We invite the reader to recall Definition 3.42, our definition of wiring diagrams in

a po-category supplying W, as well as Notation 3.43, our graphical notation therefor,

before considering this next definition and its accompanying notation.

Definition 5.1. (Graphical term) Let (CP , P ) be a regular calculus. A graphical term is

the data of

1. a wiring diagram (k, {Γi = (ni, τi)}i∈k, ω : Γ1 ⊗ · · · ⊗ Γk → Γout) in CP ,
2. for each i ∈ k, a predicate θi ∈ P (Γi) in context Γi =

⊗
j∈ni

τi(j).

Wewill choose to suppress the details of the wiring diagram and notate such a graphical

term by (θ1, . . . , θk;ω). If k = 0 then a graphical term (;ω) is simply a morphism

ω : I → Γout.

We say that the graphical term t = (θ1, . . . , θk;ω) represents the predicate

JtK := P (ω)(θ1 �
k · · ·�k θk) ∈ P (Γout) (18)
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where �k is the k-ary laxator �k :
∏
i∈k P (Γi) → P (

⊗
k Γi). In particular, if k = 0 then

a graphical term (;ω) represents the predicate P (ω)(true). We extend the equality and

implication of the poset P (Γout) to graphical terms t, t′ via J−K in the following sense:

we say that t implies t′ and that t equals t′ when JtK ` Jt′K and JtK = Jt′K respectively. In
a slight abuse of notation we will write t ` t′ and t = t′ for implication and equality in

this sense.2

Example 5.2. When k = 1 and ω = id is the identity, then J(−; Γ)K : P (Γ) → P (Γ) is also

the identity. More generally for any k, when ω = id, the map

J(−, . . . , −;
⊗

i∈k Γi)K :
∏
i∈k P (Γi)→ P (

⊗
i∈k Γi)

is �k, the k-ary laxator. We shall see other special cases in Proposition 5.12.

Notation 5.3 (Graphical terms). We draw a graphical term (θ1, . . . , θk;ω) by drawing the

morphism ω as inNotation 3.43 and annotating the ith inner shell with its corresponding

predicate θi. In the case thatω is the identitymorphism,wemay simplydraw the contexts

annotated by their predicates. For instance,

θτ(1)

τ(2)

.

.

.

τ(n)

J(θ; id⊗
τ(i))K is represented by .

Example 5.4. Let (CP , P ) be a regular calculus, and let θi ∈ P (Γi) for i ∈ {1, 2, 3} be
predicates, let f1 : Γ1 → Γ′1 and f2 : Γ1 ⊗ Γ2 → Γ′2 be morphisms of CP . Let us write

σ : Γ1 ⊗ Γ⊗2
1 ⊗ Γ2 → Γ⊗2

1 ⊗ (Γ1 ⊗ Γ2) for the appropriate symmetry of CP , then the

predicate q(
θ1, θ2, θ3; (Γ1 ⊗ δΓ1 ⊗ Γ2) # σ # ((µΓ1 # f1)⊗ f2)

)y
is represented by the graphical term

θ1

f2
θ2

f1

θ3

.

Example 5.5. We saw in Example 4.13 that right ajax po-functors 1 → Poset are ∧-
semilattices. The corresponding diagrammatic language has nowires, since 1 comprises

only the monoidal unit. The semantics of an arbitrary graphical term (θ1, . . . , θk; id) is

simply the meet θ1 ∧ · · · ∧ θk.
2

In this sense graphical terms inherit a pre-order as well as an equivalence relation, relative to which

anti-symmetry of the pre-order holds.
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Remark 5.6. Graphical terms are an alternate syntax for regular logic. Fix a regular

calculus (CP , P ), a context Γ ∈ CP and suppose ω : n1 + · · ·+ nk → nout is a morphism

of W, that is, by Remark 3.7, canonically a cospan of the form

n1 + · · ·+ nk
[ω1,...,ωk]−−−−−−→ nω

ωout←−− nout .

By the supply ofW this induces a morphism ω :
⊗

Γ⊗ni ∼= Γ⊗(
∑
ni) → Γ⊗nout

. While we

will not dwell on the translation, a graphical term (θ1, . . . , θk;ω) represents the following

regular formula in free variables x(out,1), . . . , x(out,nout).

∃
i∈{1,...,k,ω}

j∈ni

x(i,j)

 ∧
i′∈{1,...k}

θi′(x(i′,1), . . . , x(i′,ni′ )
) ∧

∧
i′∈{1, ..., k,out}

j′∈ni′

(
x(i′,j′) = x(ω,ωi′ (j

′))

)


For example, given the supplied morphism ω : Γ⊗3 ⊗ Γ⊗3 ⊗ Γ⊗4 → Γ⊗6
of Example 3.16

and predicates θ1 ∈ P (Γ⊗3), θ2 ∈ P (Γ⊗2), and θ3 ∈ P (Γ⊗4), the graphical term

θ3

θ1

θ2

would represent the following formula after simplification.

ψ(y, z, z′, x, x′, z′′) = ∃ x̃, ỹ,
[
θ1(x̃, ỹ, y) ∧ θ2(x′, x̃, x) ∧ θ3(y, ỹ, x′, x′) ∧ (z = z′)

]
Before we address the calculus portion of our graphical notation for regular calculi,

let us turn our attention to a final class of examples of our graphical notation: bare

regular calculi.

Example 5.7. Recall that a regular calculus (CP , P ) is bare if its category of contexts CP
is of the form CP =

⊔
J W. Given our notation for wiring diagrams inW, Section 3.2, we

see that a graphical term (θ1,i1 , . . . θk,ik ;ω) in (
⊔
J W, P ) is precisely a collection ofwiring

diagrams for W each of whose shells have been annotated by predicates θj,ij ∈ P (nj,ij )

where j, ij ∈ J . A somewhat typical example might therefore be

θ1,i

θ2,i

θ1,j , θ2,j ∈ P (1j) for j ∈ J and ω = µ # ε : 1j + 1j → 0j .where

As there are no labelled morphisms decorating its graphical terms and instead only

wires, the regular calculus (
⊔
J W, P ) is in this visual sense considered bare.
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5.2 Reasoning with graphical terms

Now that we have understood the graphical notation, it is time to attend to the calculus

of manipulations it supports. Let (CP , P ) be a regular calculus. The following basic

rules for reasoning with graphical terms express the 2-functoriality and monoidality of

the po-functor P : CP → Poset.

Proposition 5.8. Let (θ1, . . . , θk;ω) be a graphical term, where θi ∈ P (Γi).
i. (Monotonicity) Suppose θi ` θ′i for some i. Then

J(θ1, . . . , θi, . . . , θk;ω)K ` J(θ1, . . . , θ
′
i, . . . , θk;ω)K.

ii. (Breaking) Suppose ω ≤ ω′ in CP . Then

J(θ1, . . . , θk;ω)K ` J(θ1, . . . , θk;ω
′)K.

iii. (Nesting) Suppose θi = J(θ′1, . . . , θ
′
`;ω
′)K for some 1 ≤ i ≤ k. Then

J(θ1 , . . . , θi−1, J(θ′1, . . . , θ
′
`;ω
′)K, θi+1, . . . , θk;ω)K = J(θ1, . . . , θi . . . , θk;ω)K

= J(θ1, . . . , θi−1, θ
′
1, . . . , θ

′
`, θi+1, . . . , θk; (

⊗
1≤j<i Γj ⊗ ω′ ⊗

⊗
i<j≤k Γj) # ω)K

Proof. By examining J−K of Definition 5.1 we may reason as below.

(i) This claim follows from the monotonicity of the map �k # P (ω).

(ii) This claim follows from the 2-functoriality of P .

(iii) This claim follows from the monoidality and 1-functoriality of P . By using the

symmetry ofCP , without loss of generality wemay assume that i = k. In this case,

to prove the desired equality it is sufficient to demonstrate the commutativity of

the following diagram.

k−1∏
j=1

P (Γj)×
∏̀
j=1

P (Γ′j)

k−1∏
j=1

P (Γj)× P
(⊗`

j=1 Γ′j

)

k∏
j=1

P (Γj)

P
(⊗k−1

j=1 Γj ⊗
⊗`

j=1 Γ′j

)

P
(⊗k

j=1 Γj

)
P (Γout)

id×�`

id×P (ω)

�(k−1)+`

�k

P (
⊗k−1

j=1 Γj ⊗ ω′)

�k

P ((
⊗k−1

j=1 Γj ⊗ ω′) # ω)

P (ω)

In the above diagram, the upper triangle commutes by coherence laws for �, the
square commutes by naturality of �, and the right hand triangle commutes by

functoriality of P .

Example 5.9. Proposition 5.8 is perhaps more quickly grasped through a graphical ex-

ample of these facts in action. Suppose we have the entailment
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θ1 ξ1 ξ2`

Then using monotonicity, nesting, and then breaking we may deduce the entailment

θ1 θ2

θ3

ξ1 ξ2 θ2

θ3

ξ1 ξ2 θ2

θ3

ξ1 ξ2 θ2

θ3

`
(i)

=
(iii)

`
(ii)

We’ll see many further examples in [cFS21], where we prove that we can construct a

regular category from a regular calculus.

The nesting rule of Proposition 5.8 (iii) has two particularly important cases.

Example 5.10 (Wiring diagrams as predicates). Let ω : I → Γ be a morphism in CP .
Observe that we have the equalities

J(;ω)K =
(
1 P (I) P (Γ)

)
=
(
1 P (Γ) P (Γ)

)
= J(J(;w)K; Γ)K

true P (ω)

true #P (ω) P (Γ)
,

so that we are justified in equating the following two graphical terms

ω J(;ω)K=

.

Moreover, every regular calculus has a rich stock of such morphisms I → Γ. In

Lemma 3.40 we exhibited an isomorphism CP (
⊗

Γi,Γout)∼=CP (I,
⊗

Γi ⊗ Γout) me-

diated by taking the name ω 7→ ω@ of a morphism. In this way we may view arbitrary

wiring diagrams ω :
⊗

Γi → Γout in CP as graphical terms J(J(;ω@)K;
⊗

Γi ⊗ Γout)K of
the above-right form.

Note, however, that in general the above merely constitutes a map of wiring dia-

grams into predicates which preserves representation. It is not necessarily the case that

all predicates θ ∈ P (Γ) may be realised as J(J(;ω)K; Γ)K for some wiring diagram ω.

Nevertheless, in Section 6.4 we will see that there is a large class of regular calculi in

which wiring diagrams and predicates do coincide.

Example 5.11 (Exterior conjunction). Let Γ1 and Γ2 be contexts, and let θ1 ∈ P (Γ1) and

θ2 ∈ P (Γ2) be predicates. Observe that we have the equalities

θ1 � θ2 = J(θ1 � θ2; Γ1 ⊗ Γ2)K = J(θ1, θ2; Γ1 ⊗ Γ2)K

of elements of P (Γ1⊗Γ2) so that we are justified in equating, for example, the following

two graphical terms.
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θ1

θ2

θ1 � θ2=

Under the interpretation of graphical terms as formulae in regular logic suggested by

Remark 5.6, this process of verticalmerging of graphical terms corresponds to the logical

conjunction of the formulae they represent.

In Proposition 4.14 we saw how a regular calculus endows each poset P (Γ) with the

structure of a meet-semilattice. As we will now see, this structure permits an intuitive

graphical interpretation. In the following proposition, the graphical terms on right are

illustrative examples of the equalities stated on the left.

Proposition 5.12. For all contexts Γ ∈ ObCP and predicates θ1, θ2 ∈ P (Γ), we have

i. (True is removable) J(trueΓ; Γ)K = J(; ηΓ)K, true =

ii. (Meets-are-merges) J(θ1 ∧ θ2; Γ)K = J(θ1, θ2;µΓ)K. θ1

θ2

θ1 ∧ θ2=

Proof. These equations are simply the definitions of true andmeet; see (16) and (18).

Example 5.13 (Discarding). Note that Proposition 5.12 (i) and the monotonicity of dia-

grams (Proposition 5.8 (i)) further imply that for all θ ∈ P (Γ) we have θ ` J(; ηΓ)K:

θ θ`

5.3 The syntactic po-category of a regular calculi: a sketch

As we have seen, graphical terms provide an effective way to reason in regular calculi.

It is thus of interest to consider forming, from a given regular calculus (CP , P ), a po-

category Syn(CP , P ) whose objects are the graphical terms of (CP , P ). In this way we

may study the collection of representations for predicates at once – that is, wemay study

the syntax of the regular calculus.
In what follows we will sketch the “syntactic po-category” construction, but we

will choose here to defer the full details to the companion paper. Consider then the

following collections of data which together form the objects and morphisms of the

syntactic po-category Syn(CP , P ) of the regular calculus (CP , P ).{
ObSyn(CP , P ) := {(Γ, p) | Γ ∈ ObCP , p ∈ P (Γ)}
Syn(CP , P )

(
(Γ1, p1), (Γ2, p2)

)
:= {θ12 ∈ P (Γ1 ⊗ Γ2) | θ12 ≤ p1 � p2}

(19)

Of course to claim that these data form a po-category we must provide various

additional structures and prove properties thereof. While it is possible to continue

our sketch in the language of supplied morphisms and right ajax po-functors – that is,
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semantically – we will instead make use of the tools of graphical regular logic. Thus, in

pictures, the to-be po-category Syn(CP , P ) has:

• objects (Γ, p) represented by graphical terms

p

Γ

• morphisms θ12 : (Γ1, p1) → (Γ2, p2) represented by graphical terms θ12Γ1 Γ2

together with an entailment θ12Γ1 Γ2 p1 p2Γ1 Γ2`
• the identity on (Γ, p) represented by the graphical term

p

Γ Γ

• the composite θ12 # θ23 represented by the graphical term θ12 θ23 Γ3
Γ2

Γ1

With the induced poset structure on the homs, in the companion paper [cFS21] we

prove that the collections Syn(CP , P ) with the composition and identities above indeed

form a po-category.

Example 5.14. In Example 4.13 we established that ∧-semilattices L are equivalently

regular calculi (1, L). By unwinding the syntactic po-category construction for such a

regular calculus we see that Syn(1, L) is the po-category whose objects are the elements

of L, whose hom posets Syn(1, L)(l, l′) are the down-sets ↓{l ∧ l′}, whose composition is

meet, and whose identities are given by the top element of each hom poset.

The syntactic po-categorymoreover inherits fromCP a canonical symmetricmonoidal

structure where the monoidal product of objects, the monoidal product of morphisms,

and the braiding correspond respectively to the following graphical terms – for details

see [cFS21].

p1 p2

θ1

θ2

p1

p2

With this symmetric monoidal structure we may induce, from the supply of W in

CP , a supply of W in Syn(CP , P ). This work appears as [cFS21], but we summarise

the results here. Recall that ε, δ, η, and µ are the generating morphisms of W; see (3).

For an object (Γ, p) ∈ ObSyn(CP , P ), the supplied morphisms corresponding to these

generators are the following graphical terms.

p

ε(Γ,p)

p

δ(Γ,p)

p

η(Γ,p)

p

µ(Γ,p)

In fact there is even more coherent structure present, in the terms of Section 6.2

Syn(CP , P ) is a “relational” po-category, but we will delay this statement and its impli-

cations to that section.

Remark 5.15. Observe that Poset is a sub-2-category of Cat. Instead of our bespoke con-

struction of the syntactic po-category above, it is tempting to consider some appropriate

34



D
r
a
f
t

po-categorical variant of a monoidal Grothendieck construction – perhaps as developed

in [MV18] or [Buc13]. Indeed, at the level of objects it would seem that there is a co-

incidence between Syn(CP , P ) and the total space of a Grothendieck-type construction∫
(CP , P ).

However, it presently appears to the authors that any so-attempted recasting of Syn
is doomed to failure. In a putative Grothendieck construction, consider the pair of

objects (I, true) and (Γ, p). In order for the total space to supply W, we would require

the presence of morphisms ε̂ : (Γ, p)→ (I, true) and η̂ : (I, true)→ (Γ, p). However, in

general we have only P (ε)(p) ` true and p ` P (η)(true), and thus there appears to be

no uniform way to select the direction of the inequalities for morphisms in

∫
(CP , P ).

In this way, some form of ‘symmetrisation’ of domain and codomain becomes nec-

essary, considerations of which result in our Syn(CP , P ).

Although many details of the syntactic po-category construction do work, and we

are able to prove the central result Theorem 7.10 and several interesting corollaries,

nevertheless forming the syntactic po-category in thismanner can lose some information.

Despite the fact that in later sections and the companion paper we shall realise Syn as

a highly-structured 2-functor as in the above theorem, it fails to mediate any form of

equivalence. That is, the following counter-example stands to establish that a regular

calculus is more than the data of its graphical terms.

Counter-example 5.16 (Syn identifies distinct regular calculi). Recall Example 4.13, that is,

that ∧-semilattices L are equivalently regular calculi L : 1 → Poset. Consider then that

wemay form thedegenerate regular calculus (C,C !−→ 1
L−→ Poset) for anyC supplyingW.

The syntactic po-categories of these degenerate regular calculi are equally degenerate:

in Syn(C,C !−→ 1
L−→ Poset) there is a (natural) isomorphism (c, p)∼=(c′, p) for all elements

p ∈ L and objects c, c′ ∈ ObC, viz, p itself.
Itmaybe checked that givenC andD inequivalent symmetricmonoidal po-categories

supplying W, the regular calculi (C, !C # L) and (C, !C # L) are inequivalent. However,

the po-functor Syn(C, !C # L) → Syn(D, !D # L) which sends (c, p) 7→ (ID, p) and θ 7→ θ

mediates an equivalence (with evident inverse) of symmetric monoidal po-categories

supplyingW. Thus Syn cannot mediate a 2-dimensional equivalence of 2-categories.

Remark 5.17. In fact this failure is part of a more general class. In Proposition 6.18 below

we record a result of the companion paper: whenever there is a morphism of regular

calculi (F, F ]) : CP → CQ such that F is split essentially surjective (Definition 2.7) and

F ] is an isomorphism then Syn(F, F ]) : SynCP → SynCQ mediates an equivalence.

Observe then that for any po-category C supplying W, the canonical morphism

(!C, idL) : (C, !C # L) → (1, L) of regular calculi satisfies these conditions. Thus we may

conclude that Syn(C, !C # L)'Syn(1, L), which implies the above counter-example.

35



D
r
a
f
t

5.4 Morphisms of regular calculi & graphical terms

Our notions of 1- and 2-morphisms of regular calculi, Definition 4.21, interact well with

graphical terms and indeed preserve all of the desired structure. We have just seen the

sense in which graphical terms in a regular calculus are meaningfully the objects of a

syntactic po-category, so we now elucidate the manner in which morphisms of regular

calculi (CP , P )→ (CQ, Q) act on graphical terms.

Given a morphism (F, F ]) : (CP , P )→ (CQ, Q) of regular calculi and a collection of

contexts {Γi}i∈{1, ..., k, out} in CP , the monoidal 2-naturality of F ] renders commutative

the following diagram.

∏
P (Γi) P (

⊗
Γi) P (Γout)

∏
P ′F (Γi) P ′(

⊗′ F (Γi)) P ′F (
⊗

Γi) P ′F (Γout)

� P (ω)

∏
F ]Γi

F ]Γout

�′ P ′ϕ P ′F (ω)

Thus, given a graphical term (θ1, . . . , θk;ω) of (CP , P ) where θi ∈ P (Γi), we see

that we obtain the graphical term (F ]Γ1
(θ1), . . . , F ]Γk

(θk);ϕ # F (ω)) of (CQ, Q) with the

property

J(F ]Γ1
(θ1), . . . , F ]Γk

(θk);ϕ # F (ω))K = F ]Γout
(J(θ1, . . . , θk;ω)K) .

The fact that ϕ is the strongator of the supply-preserving strong symmetric monoidal

po-functor F affords us an easy graphical understanding of this action. First we replace

all the predicates θi ∈ P (Γi) in shells with the predicates F ]Γi
(θi), and then when ω is

composed of tensors of morphisms ω =
⊗
ωi, we may “pull ϕ through the tensors” in

F (ω) and preserve wiring as we go. These principles are illustrated by the following

example.

θ1

f2
θ2

f1

θ3

F ]θ1

ϕ Ff2
F ]θ2

Ff1

F ]θ3

(F,F ])7−−−−→

This description suggests thatmorphisms of regular calculi preserve the connectivity,

wiring, and compositionality of graphical terms, and so all the structure present in our

syntactic po-categories. Indeed, as we prove in the companion paper [cFS21], such a

morphism (F, F ]) : (CP , P )→ (CQ, Q) of regular calculi induces a symmetric monoidal

supply preserving po-functor Syn(F, F ]) : Syn(CP , P ) → Syn(CQ, Q). In this fashion,

we may prove that Syn forms a 2-functor
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Syn : RgCalc→ {symmetric monoidal po-categories supplyingW} .

However, as we stated in the previous section, Syn is in fact valued in “relational

po-categories” (see Section 6.2 and Proposition 6.18), and it is at that level that we shall

seek to establish its 2-functoriality.

6 Relational po-categories

The goal of this section is at first to axiomatise those po-categories whose objects, mor-

phisms, and 2-morphisms arise as the objects, relations, and inclusions of relations in a

regular category. We call these po-categories relational and introduce this notion and the

2-category RlPoCat of such in Section 6.2. As we shall see there, relational po-categories

admit tidy definition in terms of the notions of supply of Section 3.3, the po-category for

wiring W, and an extra piece of structure due to Freyd and Scedrov [FS90]. Moreover,

as we note in Theorem 6.19, the 2-category of relational po-categories is appropriately

equivalent to the 2-category of regular categories. The fundamental impetus for so

characterising regular categories is the construction of the 2-functor Prd of Section 6.3,

from relational po-categories to regular calculi. In our main theorem, Theorem 7.10, we

show that this 2-functor Prd is 2-dimensionally fully-faithful and is a 2-dimensional right

adjoint, and thereby affirm that regular calculi and graphical logic may be leveraged as

tools for studying relational po-categories and so regular categories.

6.1 The 2-category PrlPoCat of prerelational po-categories

The first step towards characterising relations in regular categories is the notion of

a prerelational category. Whereas relational po-categories play host to a full regular

structure, prerelational po-categories support only the underlying cartesian structure –

see [FS19b, Section 8.1] for details.

Definition 6.1 (Prerelational po-category). A symmetric monoidal po-category (R, I,⊗)

is prerelational if it supplies wiringW, such that the induced supply of cocommutative

comonoids (Example 3.32) is lax homomorphic.

Remark 6.2. The lax homomorphicity condition requires that for every f : c → d in R,
both f # εd ≤ εc and f # δd ≤ δc # (f ⊗ f). In graphical notation:

f
c d ≤ d

and f
c d ≤ c

f
d

f
d

(20)

As follows from the mate calculus, or indeed through pleasing graphical manipula-

tions, we may re-characterise prerelational po-categories in terms of the induced supply

of commutative monoids instead.
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Lemma 6.3. Suppose C supplies wiring W. Then the induced supply of comonoids is lax
homomorphic iff the supply of monoids is oplax homomorphic.

Proof. Note that given l left adjoint to r, we always have that a ≤ (l # b) iff (r # a) ≤ b and
that (a # l) ≤ b iff a ≤ (b # r). The result now follows from Proposition 3.9.

Example 6.4. The po-category W is prerelational. It supplies W by Proposition 3.30. To

see that the supply of comonoids is lax homomorphic, take a cospanm
f−→ n

g←− p. In the

case of the diagonal, the necessary composites are computed as pushouts (e.g. n+m n),

and the inequality from (20) is indicated by the dotted arrow, in the diagram

p

n n p

m p+ p

m n+m n n+ n

m+m

g

gf [p,p]

g+g

[m,m] f+f

The case of co-units is similar.

The po-category of finite sets and corelations is also prerelational; see Example 3.34.

Example 6.5. More generally, given any category Cwith finite limits, the poset reflection

of Span(C) is prerelational. If C is regular, then Rel(C) is prerelational.

A class of examples for which wewill have use later is given by the following lemma.

Lemma 6.6. Let I be a set and R a prerelational po-category supplying W. Then with induced
supply ofW in

⊔
J R of Lemma 3.28, the symmetric monoidal po-category

⊔
J R is prerelational.

Proof. Direct computation.

By [FS19b, Corollary 6.2], if f : r → s is a left adjoint in a prerelational po-category

(R, I,⊗) then its right adjoint is its transpose f † : r → s. With this fact we are justified

in introducing the following notation.

Notation 6.7 (Left adjoints). We shall denote f by f when f : r → s is known

to be a left adjoint. In keeping with Notation 3.38, we shall denote its right adjoint and

transpose f † : s→ r as f .

Remark 6.8. Left adjoints in a prerelational po-category are profitably understood as the

true morphisms of the cartesian 1-category whose structure has been elaborated. As

such, we should expect all analogues of cartesian results for left adjoints, such as: two

left adjoints f, g : r → s ⊗ t are equal iff their “projections” under εs and εt agree; left

adjoints are monoid homomorphisms strictly, for to them the structure is cartesian; a

“natural transformation” between “cartesian” po-functors of prerelational po-categories

is automatically “monoidal” if its components are left adjoints. Indeedwemake the first
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and last results precise and prove them as Lemmas 6.10 and 6.12 later, while the middle

appears as [FS19b, Corollary 6.2]. This serves as additional motivation to distinctly

signify left adjoints graphically.

Definition 6.9. The 2-categoryPrlPoCat of prerelational po-categories has as objects the
prerelational po-categories, as morphisms the strong symmetric monoidal po-functors,

and as 2-morphisms the left adjoint oplax-natural transformations α : F ⇒ G; see Defi-

nition 2.5.

Although it is not immediate, the 1 and 2-morphisms we have chosen above are

indeed appropriate for respecting all the structure present in prerelational po-categories.

To show this we appeal to a few results of [FS19b].

Lemma 6.10 ([FS19b, Proposition 6.22]). If R and R′ are prerelational po-categories and
F : R → R′ is any strong symmetric monoidal po-functor, then F automatically preserves the
supply of W.

Lemma 6.11. If R is prerelational, and f, g : r → s⊗ s′ are two left adjoints, then f = g iff

f g= and f g= .

Proof. Certainly f = g implies the given condition. For the converse recall that by [FS19b,

Corollary 6.2] left adjoints are comonoid homomorphisms – the inequalities of (20) are

equalities –, so that we may argue as follows.

f f=
f

f
=

g

g
= g=

Lemma 6.12. Let (F,ϕ), (G,ψ) : R → R′ be strong symmetric monoidal po-functors between
prerelational po-categories, and let α : F ⇒ G be a left adjoint oplax-natural transformation.
Then α is a monoidal oplax-natural transformation (Definition 2.9).

Proof. We must show that the diagrams

I ′

FI GI

ϕI
ψI

αI

and

Fr ⊗′ Fs Gr ⊗′ Gs

F (r ⊗ s) G(r ⊗ s)

αr ⊗ αs

αr⊗s

ϕr,s ψr,s

are strictly commutative for all objects r, s ∈ ObR. Observe that all the strongators

are isomorphisms and so are, in particular, left adjoints. Thus these are diagrams of

left adjoints and by [FS19b, Proposition 6.5] it suffices to show in the first case that

ϕI # αI ≤ ψI , equivalently αI # ψ-1
I ≤ ϕ-1

I . In the second case we will use Lemma 6.11 to

show ϕr,s # αr⊗s # ψ-1 = αr ⊗ αs.
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In the first case, by Lemma 6.10 above, we have the equalities ϕ-1
I = ε′FI : FI → I

and ψ-1
I = ε′GI : GI → I as both (F,ϕ) and (G,ψ) preserve the supply of W. As R′ is

prerelational, αI : FI → GI must be lax homomorphic and so we have

αI # ψ-1
I = αI # ε′GI ≤ ε′FI = ϕ-1

I ,

as desired.

To show the equality of the left adjoints ϕr,s # αr⊗s # ψ-1
and αr ⊗ αs let us begin by

writing π′Gr := (ε′Gr ⊗ idGs) # λ′Gs : Gr ⊗′ Gs → Gs and likewise for π′Gs,π
′
Fr, and π

′
Fs.

Lemma 6.11 shows that it is enough to prove that

ϕr,s # αr⊗s # ψ-1 # π′Gr = αr ⊗ αs # π′Gr and ϕr,s # αr⊗s # ψ-1 # π′Gs = αr ⊗ αs # π′Gs .

The proofs that these equalities hold involve large diagrams which make use of the

commutativity of the triangle established above, [FS19b, Proposition 6.5] to see that the

oplax-naturality squares for α on left adjoints are actually strict, and Lemma 6.10 for

equalities like G(εr) # ψ-1
I = ε′Gr. These diagrams are not especially illuminating and so

we have not included them here. Nevertheless, with the aforementioned techniques, it

is possible to show that both terms of the above-left claimed equality reduce to π′Fs # αs,
while for the above-right claimed equality the reduced form is π′Fr # αr.

6.2 The 2-category RlPoCat of relational po-categories

To make a prerelational po-category relational, we need tabulations. The following

definition is due to Freyd and Scedrov [FS90].

Definition 6.13 (Tabulation). Suppose C suppliesW and let f : r → s be a morphism in

C. A tabulation (fR, fL) of f is a factorization r
fR−→ |f | fL−→ s of f where

(i) fR : r → |f | is a right adjoint in C;
(ii) fL : |f | → s is a left adjoint in C; and
(iii) f̂ # f̂ † = id|f |, where f̂ := δ|f | # (fL ⊗ f †R); in pictures

fL fL

f†
R f†

R

|f | |f |
=

|f |
(21)

Definition 6.14 (Relational po-category). A relational po-category is a prerelational

po-category R in which additionally every morphism has a a chosen tabulation.

The 2-category RlPoCat of relational po-categories is the 2-full sub-2-category

PrlPoCat whose objects are relational po-categories. That is, it has as objects rela-

tional po-categories, as morphisms strong symmetric monoidal po-functors, and as

2-morphisms the left adjoint oplax-natural transformations.

By Lemma 6.10 we thus know that strong symmetric monoidal po-functors between

relational po-categories preserve the supply, but in fact more is true.
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Lemma 6.15 ([FS19b, Proposition 6.22]). IfR andR′ are relational po-categories and F : R→
R′ is any strong symmetric monoidal po-functor, then F automatically preserves the supply of
W and tabulations.

Remark 6.16. A prerelational po-category is exactly what Carboni and Walters called a

‘bicategory of relations’ (quotationmarks are an explicit part of the their terminology), and

a relational po-category is exactly what they called a functionally complete ‘bicategory of
relations’. There are a few, ultimately immaterial differences in the definition; see [FS19b,

Section 8.1] for details.

Example 6.17. As seen in Example 6.4, the po-category W is prerelational. However, it

is not relational: the cospan 0 → 1 ← 0 in W does not have a tabulation. On the other

hand, the po-category of finite sets and co-relations is relational.

As was suggested in Section 5.3, the syntactic po-category of a regular calculus is

in fact a relational po-category. Thus we have an abundant source of relational po-

categories. We will merely record this fact here, and defer the details to the companion

paper.

Proposition 6.18 ([cFS21, ???]). The syntactic po-category construction is the on-objects
component of a 2-functor Syn : RgCalc → RlPoCat. Moreover, if (F, F ]) : CP → CQ is a
morphism of regular calculi such that F is split essentially surjective and F ] is an isomorphism
then Syn(F, F ]) is an equivalence.

Every regular category has a po-category of relations, and it is relational; this map-

ping extends to a 2-functor Rel : RgCat → RlPoCat sending a regular category R to the

po-category with the same objects and with hom-posets given by

Rel(R)(r1, r2) := SubR(r1 × r2). (22)

In the other direction, the category of left adjoints in any relational po-category is regular;

this also extends to a 2-functor LAdj : RlPoCat→ RgCat. It turns out these functors form

an equivalence of 2-categories. Indeed, this is the Carboni-Walters idea, although they

did not explicitly give the full 2-categorical account. However, this equivalence was

proven as the main theorem in [FS19b, Theorem 7.3].

Theorem 6.19. The 2-functors Rel : RgCat � RlPoCat : LAdj form an equivalence of 2-
categories. Their underlying 1-functors moreover form an equivalence between the underlying
1-categories.

Example 6.20. Under the equivalence from Theorem 6.19, the relational po-category of

finite sets and equivalence relations corresponds to the regular category FinSetop. This

is almost the free regular category on one object, but not quite: it is the free regular

category in which every object x is inhabited (the unique map x→ 1 is a regular epi).
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Remark 6.21. In fact, more is true of LAdj. As a consequence of the main result Theo-

rem 7.10 and the work of companion paper [cFS21], in Corollary 7.5 belowwe prove that

LAdj is “bi-represented” by the relational po-category, SynPrdW, the syntactic category

of the regular calculus of predicates in W. That is, understanding the regular category

of left adjoints of a relational po-category is equivalent to mapping out of SynPrdW.

6.3 The predicates 2-functor Prd : PrlPoCat→ RgCalc

We are now ready to fulfil the promise we made in Examples 4.17 and 4.19: we will

construct a 2-functorial assignment of regular calculi to regular categories

To begin, let us recall that Theorem 6.19 gives a 2-equivalence between the 2-category

of regular categoriesRgCat and that of relational po-categoriesRlPoCat (Definition 6.14).

With this in mind, our goal may be achieved by instead constructing a 2-functor

Prd : RlPoCat → RgCalc. However, it turns out that our construction of this to-be 2-

functor does not depend on the presence of tabulators, and so we further factor our

promised assignment as follows:

RgCat
6.19' RlPoCat� PrlPoCat

Prd−−→ RgCalc .

With that let us turn our attention to the construction of the to-be 2-functor Prd. Our

first step will be to associate a right ajax po-functor to every prerelational po-categoryR.
In the coming proposition we will show that R(I,−) is right ajax, but in fact it is more

generally true that R(r,−) is right ajax for all objects r ∈ ObR – though we will have no

use of this fact.

Proposition 6.22. Let (R,⊗, I) be a prerelational po-category. The representable po-functor
R(I,−) : R → Poset has a lax monoidal structure whose laxators are right adjoints. Thus
(R,R(I,−)) supports the structure of a regular calculus.

Proof. For every r ∈ R, wehave aposetR(I, r), and this is clearly functorial in r. Consider

the proposed adjunctions below:

1 R(I, I)
idI

!

a and R(I, r)× R(I, r′) R(I, r ⊗ r′)
⊗ # (δI)

∗

π

a . (23)

The poset map labelled idI sends 1 to the identity; that labelled ! is uniquely determined;

that labelled ⊗ # (δI)
∗
sends 〈f, f ′〉 to f ⊗ f ′ pre-composed with δI : I → I ⊗ I ; and that

labelled π sends h : I → r ⊗ r′ to the pair π(h) := 〈h # (r ⊗ εr′) # ρr, h # (εr ⊗ r′) # λr′〉.
The coming contents of the proof rely on the lax comonoid homomorphism condition

in Definition 6.1.

To see that the first pair of maps form an adjunction, take any s ∈ R(I, I). By

definition of supply (10) we have εI = idI , so lax comonoidality implies s = s # εI ≤ εI =

idI , as desired. Let us pause here to note that the same supply conditions imply the

equality of morphisms δI = λI
-1 = ρI

-1 : I → I ⊗ I .
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Tosee that the secondpair ofmaps form an adjunction, take 〈f, f ′〉 ∈ R(I, r)×R(I, r′)

and h ∈ R(I, r ⊗ r′) and consider the below arguments, where we have used the lax

comonoidality properties of (20) and the facts εI = idI and δI = λI
-1
from above.

(⊗ # (δI)
∗ # π)

(〈
f , f ′

〉)
=

〈
f

f ′
,

f

f ′

〉
≤
〈

f , f ′
〉

h = h = h ≤
h

h

= (π #⊗ # (δI)
∗) h

It remains to establish that (R(I,−), idI ,⊗ # (δI)
∗) assembles into a lax monoidal

functor. The conditions on ! are all automatic by the terminality of 1 ∈ Poset, and so we

have reduced our claim to the assertion that the following diagram is commutative.

R(I, (r ⊗ r′)⊗ r′′) R(I, r ⊗ (r′ ⊗ r′′))

R(I, r ⊗ r′)× R(I, r′′) R(I, r)× R(I, r′ ⊗ r′′)

(R(I, r)× R(I, r′))× R(I, r′′) R(I, r)× (R(I, r′)× R(I, r′′))

αR
∗

π π

π × id id×π

αPoset

The commutativity of this diagram on f ∈ R(I, (r ⊗ r′) ⊗ r′′) is equivalently three

equalities between the corresponding components in R(I, r) × (R(I, r′) × R(I, r′′)). To

show all three of these equalities it is advantageous to cast δI = λI
-1
. In this way,

the second of these equalities follows only from formal arguments on the axioms of

a monoidal category, while the first and third follow from additional equations on ε

assured by definition of supply (10).

Thus, if (R, I,⊗) is a prerelational po-category, we define

Prd(R, I,⊗) :=

(
R R(I,−)−−−−→ Poset

)
with

1 R(I, I)
id

!

a

R(I, r)× R(I, r′) R(I, r ⊗ r′)
⊗ # (δI)

∗

π

a

(24)

where the right ajax structure indicated on R(I,−) was constructed in (23) above.

Next let (F,ϕ) : R→ R′ be amorphismof prerelational po-categories, that is, a strong

symmetric po-functor. Recall that by Lemma 6.10, F preserves the supply of W. We

define Prd(F,ϕ) := (F, F ]), where the monoidal natural transformation F ] below-left is
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given in components F ]r : R(I, r)→ R′(I ′, F r) as below-right.

Prd(F,ϕ) := (F, F ]) where

R

R′ Poset
F

R′(I,−)

R(I,−)

F ]

F ]r := R(I, r)
F−→ R′(FI, Fr) (ϕI)∗−−−→ R′(I ′, F r)

(25)

It is straightforward to check that this definition is 1-functorial in (F,ϕ).

Finally, let α : (F,ϕ)⇒ (G,ψ) be a 2-morphism of prerelational po-categories, that is,

a left adjoint oplax-natural transformation. Wewish to provide a 2-morphism of regular

calculi of the form Prd(α) := (α, F ] ≤ G]) : Prd(F,ϕ)⇒ Prd(G,ψ). To achieve this, let us

note that Lemma 6.12 implies that α is, in fact, a monoidal oplax-natural transformation.

As such, it remains to provide the data of a modification F ] ≤ G] as in (17).

The required inequality F ]r #P ′αr ≤ G]r for each c ∈ ObR follows from themonoidal-

ity of α and the oplax-naturality of α.

Prd(α) := (α, F ] # R′(I ′, α) ≤ G]) where

I ′ I ′

FI GI

Fr Gr

ϕI ψI
αI

Ff Gf

αr

≤

=

(26)

Again, it is straightforward to see that this is 2-functorial by transitivity.

In summary, we have demonstrated the following.

Proposition 6.23. The assignments of objects, morphisms and 2-morphisms given by (24), (25),
and (26) assemble into a 2-functor Prd : PrlPoCat→ RgCalc.

We will henceforth freely confuse the 2-functor Prd with its restriction to relational

po-categories

RlPoCat� PrlPoCat
Prd−−→ RgCalc .

6.4 Graphical terms in the regular calculus of predicates

We wish to highlight, as a special case, regular calculi of the form PrdR where R is a

prerelational po-category. Recall the definition of graphical terms (Definition 5.1) and

observe that a graphical term in such a regular calculus comprises the data of a wiring

diagram ω : r1 ⊗ · · · ⊗ rk → rout in R as well as morphisms {θi : I → ri}i∈k of R.
Note that the right ajax structure on R(I,−) of (23) has in particular true = idI .

As such, a graphical term (θ1, . . . , θk;ω) with k > 0 represents the same predicate as

the graphical term (;σ # (
⊗
θi) # ω), namely J(θ1, . . . , θk;ω)K = σ # (

⊗
θi) # ω, where
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σ : I → I⊗k is the appropriate symmetry. As such, we have succeeded in obtaining an

equality3 of the graphical terms (θ1, . . . , θk;ω) = (;σ # (
⊗
θi) # ω), where the latter is

merely the data of a wiring diagram I → rout.

Of coursewemay read the equality (θ1, . . . , θk;ω) = (;σ #(
⊗
θi)#ω) “the otherway”.

Given any wiring diagram ω : I → rout – that is, a graphical term of the form (;ω) – we

may construct the graphical term (ω; idrout) such that (;ω) = (ω; idrout). Graphically this

is the observation that any wiring diagram with empty domain I may be equivalently

re-drawn as a predicate.

Recall however that in thepresenceof thename-unfolding isomorphismofLemma3.40,

the distinction between domain and codomain is fluid. With this final piecewe are ready

to observe that the data of graphical terms in PrdR is precisely the data of wiring dia-

grams in R, in the following sense.

Lemma 6.24. Let R be a prerelational po-category and fix k ∈ N and objects r1, . . . , rk, rout of
R. Then, with graphical terms considered in PrdR,

i. the set of wiring diagrams ω :
⊗
ri → rout in R is in bĳection with the set of graphical

terms of the form (;ω′ : I → (
⊗
ri)⊗ rout), mediated by the assignment ω 7→ (;ω@),

ii. the set of graphical terms (θ1, . . . , θk;ω :
⊗
ri → rout) and the set of graphical terms

of the form (;ω′ : I → rout) admit the following opposed functions between them which
preserve the represented predicate

(θ1, . . . , θk;ω) 7→ (;σ # (
⊗
θi) # ω)

(ω′; idrout)←[ (;ω′)

where σ : I → I⊗k is the appropriate symmetry of R.
Thefirst bĳection above is a strengtheningof thegraphical phenomenonwe identified

in Example 5.10. The second correspondence, although not strictly a bĳection of sets4,

lends itself readily to graphical understanding.

Example 6.25 (Graphical terms as wiring diagrams). For a given graphical term, the com-

binationof the correspondence of Lemma6.24 (ii) above andnesting (Proposition 5.8 (iii))

establishes that any shell containing a predicate may be re-drawn as a morphism of R
with empty domain I without altering the represented predicate. For example, the

following two graphical terms represent the same predicate.

θ1

f2
θ2

f1

θ3

θ1

f2
θ2

f1

θ3

= (27)

3

Recall that graphical terms inherit an equality relation under taking of representations, J−K
4

but rather an isomorphism of setoids
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7 Comparing regular calculi and relational po-categories

In this last section we will establish several results connecting relational po-categories,

and so regular categories, with regular calculi. First, in Section 7.1 below,we complement

the discussion of Section 6.4 byproving that all relational po-categories are appropriately

equivalent to structures comprising only the data of labelled shells connected by wires.

Then, in Section 7.2, we prove the main result of this paper: the taking of left adjoints

in a relational po-category may be understood by mapping out of PrdW in RgCalc. By

appealing to the main result of the companion [cFS21], we leverage this to prove that

the 2-functor LAdj is bi-represented. Finally, in Section 7.3, we record the main result of

the companion.

7.1 Bare regular calculi from relational po-categories

Broadly construed, the goal of this paper is to establish the utility of graphical reasoning

as a tool for the study of relational po-categories – and thereby for regular logic. In this

section we will further cement this stance by constructing from a relational po-category

R a bare regular calculus (
⊔

ObRW, P ) whose syntactic po-category Syn(
⊔

ObRW, P ) is

equivalent to R as a relational po-category.

Although on the face of things this might seem like an unnecessary detour, because

(
⊔

ObRW, P ) is bare we may leverage the reduction in complexity of graphical terms

of bare regular calculi (Example 5.7) as well as an explication of the particulars of this

regular calculus (Example 4.20) to greatly simplify the task of working graphically in R.
That is, in this section we will establish the following outlook.

Outlook 7.1. Every relational po-category, and so every regular category, is appropriately
equivalent to a graphical calculus of labelled shells and connecting wires only, and so may be
entirely understood through graphical regular logic.

To make rigorous these claims, we will shortly prove the following.

Proposition 7.2. Let R be a prerelational po-category. The supply of W in R induces a
split essentially surjective strong monoidal po-functor st :

⊔
ObRW → R. With this, the pair(⊔

ObRW, st #R(I,−)
)
supports the structure of a regular calculus. Furthermore st extends to

a morphism (st, s]) : (
⊔

ObRW, st #R(I,−))→ PrdR of regular calculi where s] is invertible.

This construction will afford us the following corollary, which when combined with

our understanding of graphical terms in bare calculi in general and in

⊔
ObRW in specific

gives meaning to the above outlook.

Corollary 7.3. Let R be a relational po-category, then there are equivalences in RlPoCat

R'SynPrdR'Syn
(⊔

ObRW, st # R(I,−)
)
.
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Proof. The first equivalence follows from Theorem 7.10. To see the second, observe that

the morphism (st, s]) :
(⊔

ObRW, st # R(I,−)
)
→ PrdR of regular calculi has st split

essentially surjective and s] invertible by Proposition 7.2. Thus by Proposition 6.18, the

morphism Syn(st, s]) of relational po-categories is an equivalence.

Now that we have situated the importance of these combined results, let us turn our

attention to the construction of the bare regular calculus.

Proof of Proposition 7.2. LetR be a prerelational po-category. Recall Proposition 3.29, the

supply sR of W in R induces a split essentially surjective strong monoidal po-functor

st :
⊔

ObRW→ Rwhich is the unique such whose pre-composition with the inclusions

ιr : W�
⊔

ObRW is given by ιr # st = sr.

With that, we will show that the pair (
⊔

ObRW, st # R(I,−)) supports the structure

of a regular calculus. First, by Lemma 3.28 and Example 6.4 we see that as W is

prerelational, so too is

⊔
ObRW – and so in particular this coproduct supplies W. Next,

we must show that the po-functor st # R(I,−) :
⊔

ObRW→ Poset is right ajax. As st is

strong symmetricmonoidal andR(I,−) is right ajax by Proposition 6.22, their composite

is right ajax. With this we now turn our attention to extending st to a morphism of

regular calculi.

To give an appropriatemorphism (st, s]) : (
⊔

ObRW, st #R(I,−))→ PrdR of regular

calculi we must establish that st preserves the supply of W and provide the data of an

invertible monoidal natural transformation s] : st # R(I,−) ⇒ st # R(I,−). This latter

part is easily achieved by setting s] = id, and so to complete the proof it remains to

establish that st preserves the supply of W. However, we know already that

⊔
ObRW

is prerelational and, as R is prerelational by assumption, Lemma 6.10 proves that st

preserves the supply of W.

7.2 Regular calculi recover regular categories

Using the 2-functor Prd we may now establish a relationship tying together all of the

major players. Recall thatRgCat is the 2-category of regular categories, regular functors,

and natural transformations. As a first step, we may exploit the nature of regular

categories and of the structure ofRgCalc to determine that the regular category LAdjR of

left adjoints in a relational po-categoryRmay be recovered as the category ofmorphisms

and 2-morphisms of regular calculi PrdW→ PrdR.

Theorem 7.4. Evaluation at 1 ∈ ObW gives rise to a pseudo-natural adjoint equivalence of
2-functors

RlPoCat RgCat

RgCalc(PrdW,Prd−)

LAdj

ev1
' .
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Asa curious consequence of Theorem 6.19, the statement that LAdj is a 2-equivalence,

Theorem 7.4 above shows that the 2-category RgCalc “knows about” all regular cate-

gories and their morphisms in a sense beyond that of our main result Theorem 7.10 – all

regular categories may be found as hom categories in RgCalc, as opposed to somehow

embedded as objects via Prd.
More still, this theorem allows us to determine a novel facet of the 2-functor LAdj: it

is 2-dimensionally represented. In the sense of the theorem below then, to understand

regular categories one may equivalently understand morphisms out of the syntactic

po-category SynPrdW.

Corollary 7.5. The 2-functor LAdj : RlPoCat → RgCat is bi-represented by SynPrdW. That
is, there is a pseudo-natural adjoint equivalence of 2-functors

RlPoCat(SynPrdW,−)' LAdj : RlPoCat→ RgCat .

Proof. By composition of the pseudo-natural adjoint equivalences of Theorem 7.4 and

Corollary 7.13.

Remark 7.6. It is tempting to interpret the above result 1-categorically as some form of

free-ness statement. In particular, on a regular category R we may apply the objects

functor Ob to the equivalence RlPoCat(SynPrdW,R)' LAdjR. At the level of objects,

the above corollary compares morphisms of relational po-categories SynPrdW → R
with ObR = Ob LAdjR. However, given that we began with an equivalence and not an

isomorphism, taking objects merely yields functions back and forth and not a bĳection.

Thus, with our methods we have not in fact determined the “free relational po-category

on one object”.

Before we give the proof of Theorem 7.4 it will help us here and later to establish

some technical lemmas. First we claim that the inclusion of {2-functors into RgCat} into

{2-functors into Cat} is “closed” in the following sense.

Lemma 7.7. Let C be a 2-category, let F,G : C → Cat be 2-functors and let α : F ⇒ G be a
pseudo-natural equivalence. If G takes values in RgCat, then so too does F .

Proof. At the level of objects, observe that αC : FC
'−→ GC is an equivalence of categories

and so asGC is regular, so too isFC. At the level ofmorphisms, observe first that regular

functors are stable under composition by equivalences as equivalences preserve limits

and extremal epimorphisms. Moreover, in the square below where all categories are

regular, and G is a regular functor, it may be verified that F is necessarily regular by

virtue of being isomorphic to a regular functor.

FC GC

FC ′ GC ′

αC

αC′

Ff Gf
αf

∼=
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As the 2-morphisms of RgCat are simply natural transformations we have established

that F takes values in RgCat.

Secondly, as follows from the mate calculus or may be verified directly,

Lemma 7.8. Let F,G : C → D be 2-functors and let α : F ⇒ G be a pseudo-natural trans-
formation whose every object component αC : FC → GC, for C ∈ ObC, is equipped with the
structure of an adjoint equivalence

(βC : GC → FC, Cא : αC # βC ⇒ FC, Cב : GC ⇒ βC # αC) .

Then the morphism components of α and the families (−)א and (−)ב equip β with the structure
of pseudo-natural transformation, א and ב extend to invertible modifications א : α # β F ,
ב : G β # α, and (α, β,ב,א) is a pseudo-natural adjoint equivalence between G and F .

Finally we establish a universal property of the 2-functor Prd : RlPoCat→ RgCalc.

Lemma 7.9. Let (R, I,⊗) be a prerelational po-category. The po-functor R(I,−) : R→ Poset
is initial in the category of right ajax po-functors R → Poset and monoidal 2-natural transfor-
mations.

Proof. We gave R(I,−) a right ajax structure in Proposition 6.22, and so it remains to

determine initiality. To that end, let P : R→ Poset be another right ajax po-functor; must

to show there is a unique monoidal 2-natural transformation s : R(I,−)⇒ P .

The image of the laxator ϕI : 1 → R(I, I) is idI (23), so by monoidality any such s

must send idI to the top element sI(id) = true ∈ P (I). It follows by 2-naturality and a

Yoneda-style argument that the image of every element f ∈ R(I, r) is determined to be

sr(f) := P (f)(true):

R(I, I) R(I, r)

P (I) P (r)

1

R(I, f)

sI sr

P (f)

idI

true .

Thus any monoidal transformation must have components sr, and the result follows

when one checks that the proposed components sr are indeed natural andmonoidal.

We are now ready to give the proof of Theorem 7.4.

Proof of Theorem 7.4. By Lemma 7.7 it is enough to establish that evaluation at the

object 1 ∈ ObW gives a pseudo-natural adjoint equivalence between the 2-functors

RgCalc(PrdW,Prd−) and LAdj taken with codomain Cat. Then, by Lemma 7.8 it is

enough to give a pseudo-natural transformation between the above 2-functors whose

every component is an adjoint equivalence. To that end, let us begin by defining the to-be

components of the pseudo-natural transformation ev1 : RgCalc(PrdW,Prd−)⇒ LAdj.
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If R is a relational po-category, for a morphism (F, F ]) : PrdW → PrdR of regular

calculi let us set (ev1)R(F, F ]) := F1 ∈ ObR = Ob LAdjR. If α : (F, F ]) ⇒ (G,G]) is a

2-morphism of RgCalc then let (ev1)Rα := α1 ∈ LAdjR(F1, G1). It is straightforward to

verify that this is functorial in composition of 2-morphisms inRgCalc(PrdW,PrdR), and

that (ev1)R(id(F,F ])) is the identity so that (ev1)R is a functor. Finally, through a simple

expansion of definitions, the components of ev1 just constructed may be seen to satisfy

the two conditions of 2-naturality. Thus ev1 is a 2-natural transformation.

It remains then, for a fixed but arbitrary relational po-category R, to supply the

structure of an adjoint equivalence on (ev1)R. To do so we will begin with the opposing

functor (−)⊗R : LAdjR→ RgCalc(PrdW,PrdR).

On objects r ∈ ObR = Ob LAdjR, recall that the strong monoidal po-functor

sr(−) : W→ R determined by the supply ofW inR is supply preserving by Lemma 3.36.

Thus let us set r⊗ := (sr(−), ∃!) as the pair of sr(−) : W → R and the unique monoidal

natural transformation W(0,−) ⇒ R(I, sr(−)) guaranteed by Lemma 7.9. On mor-

phisms f : r → t of LAdjR, consider the family (f⊗)n := f⊗n : sr(n) → st(n) of left

adjoints in R. We contend that these data together form a monoidal left adjoint oplax-

natural transformation f⊗ : sr ⇒ st. Indeed monoidality is evident by definition, and

because R is relational the components f⊗n commute strictly with all left adjoints of

W ([FS19b, Proposition 6.9 (iv)]). Thus, by a mate argument the components f⊗n are

oplax-natural on right adjoints of W, and thus oplax-natural on all morphisms of W
for W is generated by left and right adjoints (Section 3.1). However, to cast f⊗ as a

2-morphism r⊗ ⇒ t⊗ of RgCalcwe must also verify that the modification condition (17)

holds. Closer examination of this requirement, however, reveals it to be a particular case

of the already established oplax-naturality of f⊗. Lastly, it is straightforward to see that

(−)⊗ is functorial.

Next let us turn our attention to the unit and co-unit of the to-be adjoint equivalence

mediated by (ev1)R and (−)⊗R . Observe that (−)⊗R # (ev1)R is the identity on LAdjR, so
we may take the unit as א := idLAdjR. Then, if (F, F ]) : PrdW→ PrdR is a morphism in

RgCalc, the componentב(F,F ]) of the co-unitב : (ev1)R #(−)⊗R ⇒ idRgCalc(...) must be an in-

vertible 2-morphism (F1)⊗ ⇒ (F, F ]) inRgCalc. For the underlying invertible monoidal

oplax-natural transformation sF1(−) ⇒ F we may choose the canonical isomorphisms

F (1)⊗n → F (n) comprising strongators of F , and then the modification condition (17)

becomes a comparison between two monoidal natural transformations W (0,−) ⇒ F .

But, by Lemma 7.9 thesemust coincide and the condition holds. Finally, the naturality of

the components of ב amounts to the monoidality property of the underlying monoidal

left adjoint oplax-natural transformations of the 2-morphisms of RgCalc.

To complete the proof it remains only to verify that the triangle equalities hold for א
and ,ב a task simplified by the fact that א = idLAdjR. These identities thus amount to the

observations that ⊗rב = idr⊗ and (ev1)R(ב(F,F ])) = id(ev1)R(F,F ]).
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7.3 Main results of the companion

To end this paper and introduce the companion, we record here the main result of the

work thus far on graphical regular logic. We have already described opposed 2-functors

Syn : RgCalc� RlPoCat : Prd

in Sections 5.3 and 6.3. In the companion paper we furnish additionally pseudo-natural

transformations

RgCalc RgCalc

Syn #Prd

inc RlPoCat RlPoCat

Prd # Syn

tab
' , (28)

where tab carries the structure of a pseudo-natural adjoint equivalence and is given by

taking tabulators in a certain capacity. Weadditionally construct invertiblemodifications

Syn Syn #Prd # Syn

Syn

inc #Syn

Syn # tab

א ∼=

Prd

Prd #Syn #Prd Prd

Prd # inc

tab #Prd

ב ∼=
, (29)

which together satisfy the so-called “swallow-tail identities”:

(CP , P ) PrdSynP PrdSynP

PrdSynP PrdSynPrdSynP PrdSynP

inc(CP ,P )

inc(CP ,P ) PrdSyn inc(CP ,P )

incPrd SynP Prd tabSynP

SynPב

PrdאP
idinc(CP ,P )= (30)

SynPrdR SynPrdSynPrdR SynPrdR

SynPrdR SynPrdR R

Syn incPrdR tabSynPrdR

SynPrd tabR tabR

tabR

SynבR

tabtabR

PrdRא

idtabR = (31)
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Our central thesis is that, taken together, these data and properties afford a rich

comparison of the 2-category theory of relational po-categories with that of regular

calculi. More precisely,

Theorem7.10 ([cFS21, ???]). The data of (28) and (29), and the properties (30) and (31) provide
the 2-functors Syn : RgCalc → RlPoCat and Prd : RlPoCat → RgCalc with the structure of a
a bi-adjunction Syn abi Prd. Moreover, as the co-unit tab is part of an adjoint equivalence this
bi-adjunction is pseudo-reflection of RlPoCat into RgCalc.

For a detailed account of this theorem and the relevant omitted constructions we

direct the reader to the companion paper [cFS21].

By the equivalence of relational po-categories and regular categories, any comparison

of the 2-category theory of regular calculi with that of relational categories extends to a

comparison with the 2-category theory of regular categories.

Corollary 7.11. The 2-category RgCat of regular categories is pseudo-reflective in RgCalc.

Proof. Althoughwewill not produce a proof here, it may be verified that a 2-equivalence

composed with a pseudo-reflection is again a pseudo-reflection. Thus the result follows

from Theorems 6.19 and 7.10.

We record here finally the following folk-lore lemma which affords us a convenient

recasting of Theorem 7.10.

Lemma 7.12. Given a pair of opposed pseudo-functors L : C � D :R, the structure of a
bi-adjunction L abi R on L and R is equivalently the structure of a pseudo-natural adjoint
equivalence of the pseudo-functors D(L−,−)'C(−, R−) : Cop × D → Cat. Additionally, the
co-unit is an adjoint equivalence if and only if the image of idRC ∈ C(RD,RD) is an equivalence
LRD'D in D for each D ∈ ObD.

Corollary 7.13. There is a pseudo-natural adjoint equivalence of 2-functors

RlPoCat(Syn−,−)'RgCalc(−,Prd−) : RgCalcop×RlPoCat→ Cat

such that the image of idPrdR ∈ RgCalc(PrdR,PrdR) is an equivalence SynPrdR'R for each
relational po-category R.
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