
Submitted to:
QPL 2021

© A. Toumi, R. Yeung & G. de Felice
This work is licensed under the
Creative Commons Attribution License.

Diagrammatic Differentiation
for Quantum Machine Learning

Alexis Toumi?†, Richie Yeung†, Giovanni de Felice?†

?Department of Computer Science, University of Oxford † Cambridge Quantum Computing Ltd.

We introduce diagrammatic differentiation for tensor calculus by generalising the dual number con-
struction from rigs to monoidal categories. Applying this to ZX diagrams, we show how to calculate
diagrammatically the gradient of a linear map with respect to a phase parameter. For diagrams
of parametrised quantum circuits, we get the well-known parameter-shift rule at the basis of many
variational quantum algorithms. We then extend our method to the automatic differentation of hybrid
classical-quantum circuits, using diagrams with bubbles to encode arbitrary non-linear operators.
Moreover, diagrammatic differentiation comes with an open-source implementation in DisCoPy, the
Python library for monoidal categories. Diagrammatic gradients of classical-quantum circuits can
then be simplified using the PyZX library and executed on quantum hardware via the tket compiler.
This opens the door to many practical applications harnessing both the structure of string diagrams
and the computational power of quantum machine learning.

Introduction

String diagrams are a graphical language introduced by Penrose [1] to manipulate tensor expressions:
wires represent vector spaces, nodes represent multi-linear maps between them. In [2], these diagrams
are used to describe the geometry of space-time and an extra piece of notation is introduced: the covariant
derivative is represented as a bubble around the tensor to be differentiated. Joyal and Street [3, 4]
characterised string diagrams as the arrows of free monoidal categories, however their geometry of tensor
calculus makes no mention of differential calculus, it only deals with composition and tensor.

In categorical quantummechanics [5] string diagrams are used to axiomatise quantum theory in terms
of dagger compact-closed categories. This culminated in the ZX-calculus [6], a graphical language that
provides a complete set of rules for qubit quantum computing [7, 8]. ZX diagrams have recently been
used for state-of-the-art quantum circuit optimisation [9, 10, 11], compilation [12, 13], extraction [14]
and error correction [15, 16]. In recent work, ZX diagrams have been used to study quantum machine
learning [17, 18] and its application to quantum natural language processing [19, 20].

In this work, we introduce diagrammatic differentiation: a graphical notation for manipulating tensor
derivatives. On the theoretical side, we generalise the dual number construction (discussed in section 1)
from rigs to monoidal categories (section 2). We then apply this construction to the category of ZX
diagrams (section 3) and of quantum circuits (section 4). In section 5 we give a formal definition of
diagrams with bubbles and their gradient with the chain rule. We use this to differentiate quantum circuits
with neural networks as classical post-processing. The theory comes with an implementation in DisCoPy
[21], the Python library for monoidal categories. The gradients of classical-quantum circuits can then be
simplified using the PyZX library [22] and compiled on quantum hardware via the tket compiler [23].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Diagrammatic Differentiation for Quantum Machine Learning

Related work

The same bubble notation for vector calculus is proposed in [24], but they have mainly pedagogical
motivations and restrict themselves to the case of three-dimensional Euclidean space. To the best of our
knowledge, our definition is the first formal account of string diagrams with bubbles for tensor derivatives.

Differential categories [25] have been introduced to axiomatise the notion of derivative. More recently
reverse derivative categories [26] generalised the notion of back-propagation, they have been proposed
as a categorical foundation for gradient-based learning [27]. These frameworks all define the derivative
of a morphism with respect to its domain. In our setup however, we define the derivative of parametrised
morphism with respect to parameters that are in some sense external to the category. Investigating the
relationship between these two definitions is left to future work.

1 Dual numbers

Dual numbers were first introduced by Clifford in 1873 [28]. Given a commutative rig (i.e. a riNg
without Negatives) S, the rig of dual numbers D[S] extends S by adjoining a new element ε such that
ε2 = 0. Concretely, elements of D[S] are formal sums s + s′ε where s and s′ are scalars in S. We
write π0, π1 : D[S] → S for the projection on the real and epsilon component respectively. Addition and
multiplication of dual numbers are given by:

(a+ a′ ε)+ (b+ b′ ε) = (a+ b) + (a+ b′) ε (1)
(a+ a′ ε)× (b+ b′ ε) = (a× b) + (a× b′ + a′× b) ε (2)

A related notion is that of differential rig: a rig S equipped with a derivation, i.e. a map ∂ : S→ S
which preserves sums and satisfies the Leibniz product rule ∂(f ×g) = f ×∂(g)+∂(f)×g for all f ,g ∈ S.
An equivalent condition is that the map f 7→ f + (∂ f)ε is a homomorphism of rigs S→ D[S]. The
correspondance alsoworks the otherway around: given a homorphism ∂ : S→D[S] such that π0◦∂ = idS,
projecting on the epsilon component is a derivation π1 ◦ ∂ : S→ S. The motivating example is the rig
of smooth functions S = R→ R, where differentiation is a derivation. Concretely, we can extend any
smooth function f : R→ R to a function f : D[R] → D[R] over the dual numbers defined by:

f (a+ a′ε) = f (a) + a′×(∂ f)(a)ε (3)

We can use equations 1, 2 and 3 to derive the usual rules for gradients in terms of dual numbers. For
the identity function we have id(a+ a′ε) = id(a)+ a′ε , i.e. ∂id = 1. For the constant functions we have
c(a+ a′ε) = c(a)+ 0ε , i.e. ∂c = 0. For addition, multiplication and composition of functions, we can
derive the following linearity, product and chain rules:

(f +g)(a+ a′ε) = (f +g)(a) + a′×(∂ f + ∂g)(a)ε (4)
(f ×g)(a+ a′ε) = (f ×g)(a) + a′×(f × ∂g + ∂ f ×g)(a)ε (5)
(f ◦g)(a+ a′ε) = (f ◦g)(a) + a′×(∂g × ∂ f ◦g)(a)ε (6)

This generalises to smooth functions Rn → Rm, where the partial derivative ∂i is a derivation for
each i < n. The functions Fn2 → F

m
2 on the two-element field F2 with elementwise XOR as sum and

conjunction as product also forms a differential rig. The partial derivative is given by (∂i f)(®x) =
f (®x[xi 7→0]) ⊕ f (®x[xi 7→1]). Intuitively, the F2 gradient ∂i f (®x) ∈ Fm2 encodes which coordinates of f (®x)

A. Toumi, R. Yeung & G. de Felice 3

actually depend on the input xi. An example of differential rig that isn’t also a ring is given by the set
N[X] of polynomials with natural number coefficients, again each partial derivative is a derivation.

A more exotic example is the rig of Boolean functions with elementwise disjunction as sum and
conjunction as product. Boolean functions Bn → Bm can be represented as tuples of m propositional
formulae over n variables. The partial derivative ∂i for i < n is defined by induction over the formulae: for
variables we have ∂ixj = δi j , for constants ∂i0 = ∂i1 = 0 and for negation ∂i¬ϕ = ¬∂iϕ. The derivative of
disjunctions and conjunctions are given by the linerarity and product rules. Equivalently, the gradient of
a propositional formula can be given by ∂iϕ = ¬ϕ[xi 7→0]∧ϕ[xi 7→1]. Concretely, a model satisfies ∂iϕ if and
only if it satisfies ϕ↔ xi: the derivative is true when the variable and the formula are positively correlated.
Substituting xi with its negation, we get that a model satisfies ∂iϕ[xi 7→¬xi] if and only if it satisfies ϕ↔¬xi,
i.e. iff variable and formula are anti-correlated. Note that although B and F2 are isomorphic as sets, they
are distinct rigs. Their derivations are related however by ∂F2

i f 7→ ∂Bi ϕ∨ ∂
B
i ϕ[xi 7→¬xi] for ϕ : Bn→ B

the formula corresponding to the function f : Fn2 → F2. That is, a Boolean function depends on an input
variable precisely when either the corresponding formula is positively correlated or anti-correlated.

Dual numbers are a fundamental tool for automatic differentiation [29], i.e. they allow to compute
the derivative of a function automatically from its definition. The key idea is that given a definition of
f : Sn→ Sm as a composition of elementary functions, we can compute (∂i f)(a) by evaluating f (a+ ε)
and projecting on the epsilon component.

2 Dual diagrams

Our main technical contribution is to generalise derivations from rigs to monoidal categories with sums.
Applying this to free monoidal categories, where the arrows are string diagrams, we say a derivation is
diagrammatic when it commutes with the interpretation of the diagrams. We take two different flavours
of the ZX-calculus as our main examples.

Let (C,⊗,1) be a monoidal category with sums, i.e. it has commutative monoids on each homset
(+) :

∐
x,y C(x, y)×C(x, y)→C(x, y)with unit 0 ∈

∐
x,y C(x, y) such that composition and tensor distribute

over the sum. Note that a one-objectmonoidal categorywith sums is simply a rig. Ourmotivating example
is the category MatS with natural numbers as objects and matrices valued in a commutative rig S as
arrows, with matrix multiplication as composition, Kronecker product as tensor and entrywise sum. We
define the category D[C] by adjoining a scalar (i.e. an endomorphism of the monoidal unit) ε such that
ε ⊗ ε = 0 for all arrows f ∈ C1. Concretely, the objects of D[C] are the same as those of C, the arrows
are given by formal sums f + f ′ε of parallel arrows f , f ′ ∈ C. Composition and tensor are both given by
the product rule:

(f + f ′ε) o
9 (g+g

′ε) = f o
9 g + (f ′ o

9g + f o
9g
′) ε (7)

(f + f ′ε) ⊗ (g+g′ε) = f ⊗ g + (f ′ ⊗ g + f ⊗ g′) ε (8)

We say that a unary operator on homsets ∂ :
∐

x,y C(x, y)→C(x, y) is a derivation whenever it satisfies
the product rules for both composition ∂(f o

9g)= (∂ f) o9g+ f o
9(∂g) and tensor ∂(f ⊗g)= (∂ f)⊗g+ f ⊗(∂g).

An equivalent condition is that the map f 7→ f + (∂ f)ε is a sum-preserving monoidal functor C→D[C].
Again, the correspondance between dual numbers and derivations works the other way around: given
a sum-preserving monoidal functor ∂ : C→ D[C] such that π0 ◦ ∂ = idC, projecting on the epsilon
component gives a derivation π1 ◦ ∂ :

∐
x,y C(x, y) → C(x, y). The following propositions characterise

the derivations on the category of matrices valued in a commutative rig S.

1 Note that in the case when C is not symmetric monoidal (or at least braided) the axiom ε ⊗ f = f ⊗ ε is also needed.

4 Diagrammatic Differentiation for Quantum Machine Learning

Proposition 2.1. Dual matrices are matrices of dual numbers, i.e. D[MatS] 'MatD[S].

Proof. The isomorphism is given by
(∑

i j fi j | j〉〈i |
)
+

(
f ′i j

∑
i j | j〉〈i |

)
ε ←→

∑
i j(fi j + f ′i jε)| j〉〈i |. �

Proposition 2.2. Derivations on MatS are in one-to-one correspondance with derivations on S.

Proof. A derivation on MatS is uniquely determined by its action on scalars in S. Conversely, applying
a derivation ∂ : S→ S entrywise on matrices yields a derivation on MatS. �

Fix a monoidal signature Σ with objects Σ0 and boxes Σ1. Let CΣ be the free monoidal category it
generates: the objects are types, i.e. lists of generating objects t = t1, . . ., tn ∈ Σ?0 , the arrows are string
diagrams with boxes in Σ1. Let C+

Σ
be the free monoidal category with sums: the objects are also given by

types, the arrows are formal sums, i.e. bags2, of string diagrams. We assume our diagrams are interpreted
as matrices, i.e. we fix a sum-preserving monoidal functor [[−]] : C+

Σ
→MatS for S a commutative rig

with a derivation ∂ : S→ S. Our main two examples are the standard ZX-calculus with smooth functions
Rn→ R as phases and the algebraic ZX-calculus over S, introduced in [30].

Applying the dual number construction to C+
Σ
, we get the category of dual diagrams D[C+

Σ
] which

is where diagrammatic differentiation happens. By the universal property of C+
Σ
, every derivation

∂ : C+
Σ
→ D[C+

Σ
] is uniquely determined by its image on the generating boxes in Σ1. Intuitively, if we’re

given the derivative for each box, we can compute the derivative for every sum of diagram using the
product rule. We say that the interpretation [[−]] : C+

Σ
→MatS admits diagrammatic differentiation if

there is a derivation ∂ on C+
Σ
such that [[−]] ◦ ∂ = ∂ ◦ [[−]], i.e. the interpretation of the gradient [[∂d]]

coincides with the gradient of the interpretation ∂[[d]] for all sums of diagrams d ∈ C+
Σ
. We depict the

gradient ∂d as a bubble surrounding the diagram d, we introduce bubbles formally in section 5. Once
translated to string diagrams, the axioms for derivations on monoidal categories with sums become:

f g = f g gf+

f

=

f

g g g

f

+and

∂

∂

∂

∂

∂

∂

3 Differentiating ZX

This section applies the dual number construction to the diagrams of the ZX-calculus.

Definition 3.1. The diagrams of the ZX-calculus with smooth maps Rn→ R as phases form a category
ZXn = CΣ where Σ = {H : x→ x, σ : x⊗2 → x⊗2}+ {Zm,n(α) : x⊗m→ x⊗n | m,n ∈ N, α : Rn → R}.
H is depicted as a yellow square, σ as a swap and Zm,n(α) as a green spider. The interpretation
[[−]] : ZXn→MatS inmatrices overS=Rn→C is given by on objects by [[x]]= 2 and on arrows by [[H]]=

2A bag of X , also called a multiset, is a function X→ N. Addition of bags is done pointwise with unit the constant zero.

A. Toumi, R. Yeung & G. de Felice 5

1√
2

(
|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|

)
, [[σ]] =

∑
i, j∈{0,1} | j, i〉〈i, j | and [[Zm,n(α)]] = e−iα/2 |0〉⊗n〈0|⊗m +

eiα/2 |1〉⊗n〈1|⊗m. We write ZX+n for the category of formal sums of parametrised ZX diagrams.

Remark 3.2. Note that we’ve scaled the standard interpretation of the green spider by a global phase to
match the usual definition of rotation gates in quantum circuits.

Remark 3.3. For n = 0 we get ZX0 = ZX the ZX-calculus with no parameters. By currying, any ZX
diagram d ∈ ZXn can be seen as a function d : Rn→ Ar(ZX) such that [[−]] ◦ d : Rn→MatC is smooth.

Lemma 3.4. A function s : Rn→ C can be drawn as a scalar diagram in ZXn if and only if it is bounded.

Proof. Generalising [31, P. 8.101] to parametrised scalars, if there is a k ∈ N with |s(θ)| ≤ 2k for all
θ ∈ Rn then there are parametrised phases α, β : Rn→ R such that

π

α

−β β . . .︸︷︷︸
k

= s

In the other direction, take any scalar diagram d in ZXn. Let k be the number of spider in the
diagram and l the maximum number of legs. By decomposing each spider as a sum of two disconnected
diagrams, we can write d as a sum of 2k diagrams. Each term of the sum is a product of at most 1

2 × k × l
bone-shaped scalars. Each bone is bounded by 2, thus [[d]] : Rn→ C is bounded by 2k×l. �

Lemma 3.5. In ZXn, we have α = α+π∂α
2 for all affine phases α : Rn→ R.

Proof. ∂[[Z(α)]] = ∂
(
e−iα/2 |0〉+ eiα/2 |1〉

)
= i∂α

2
(
− e−iα/2 |0〉+ eiα/2 |1〉

)
= ∂α

2
(
e−i

α+π
2 |0〉+ ei

α+π
2 |1〉

)
.

α is affine so ∂α is constant, hence bounded and from lemma 3.4 we know it can be drawn in ZXn. �

Theorem 3.6. The ZX-calculus with affine maps Rn→ R as phases admits diagrammatic differentiation.

Proof. TheHadamard H and swapσ have derivative zero. For the green spiders, we can extend lemma 3.5
from single qubit rotations to arbitrary many legs using spider fusion:

α...
...
= ...

...

α

= ...
...

α+π
∂α
2

= α+π...
...

∂α
2

�

Note that there is no diagrammatic differentiation for the ZX-calculus with smooth maps as phases,
even when restricted to bounded functions. Take for example α : R→ R with α(θ) = sinθ2, it is smooth
and bounded by 1 but its derivative ∂α is unbounded. Thus, from lemma 3.4 we know it cannot be
represented as a scalar diagram in ZX1: there can be no diagrammatic differentiation ∂ : ZX1→D[ZX1].
In such cases, we can always extend the signature by adjoining a new box for each derivative.

Proposition 3.7. For every interpretation [[−]] : C+
Σ
→MatS, there is an extended signature Σ′ ⊃ Σ and

interpretation [[−]] : C+
Σ′
→MatS such that C+

Σ′
admits digrammatic differentiation.

Proof. Let Σ′ = ∪n∈NΣn where Σ0 = Σ and Σn+1 = Σn∪ {∂ f | f ∈ Σn} with [[∂ f]] = ∂[[f]]. �

6 Diagrammatic Differentiation for Quantum Machine Learning

The issue of being able to represent arbitrary scalars disappears if we work with the algebraic
ZX-calculus instead. Furthermore, we can generalise from S = Rn→ C to any commutative rig.

Definition 3.8. The diagrams of the algebraic ZX-calculus over a commutative rig S form a category
ZXS = CΣ where the signature Σ is given in [?, Table 2] and the interpretation is given in [?, §6].
In particular, there is a green square Rm,n

Z (a) ∈ Σ1 for each a ∈ S and m,n ∈ N with [[Rm,n
Z (a)]] =

|0〉⊗n〈0|⊗m+ a|1〉⊗n〈1|⊗m. Let ZX+S be the category of formal sums of algebraic ZX diagrams over S.

Theorem 3.9. Diagrammatic derivations on [[−]] : ZX+S →MatS are in one-to-one correspondance with
rig derivations ∂ : S→ S.

Proof. Given a derivation ∂ on S, we have ∂[[Rm,n
Z (a)]] = (∂a)|1〉⊗n〈1|⊗m and ∂a can be represented by

the scalar diagram R1,0
Z (∂a)|1〉. In the other direction, a diagrammatic derivation ∂ on ZX+S is uniquely

determined by its action on scalars R1,0
Z (a)|1〉 for a ∈ S. �

One application of diagrammatic differentiation is to solve differential equations between diagrams.
As a first step, we apply Stone’s theorem [32] on one-parameter unitary groups to the ZX-calculus.

Definition 3.10. A one-parameter unitary group is a unitary matrixU : n→ n inMatR→C withU(0)= idn
and U(θ)U(θ ′) =U(θ + θ ′) for all θ, θ ′ ∈ R. It is strongly continuous when limθ→θ0 U(θ) =U(θ0) for all
θ0 ∈ R. We say a one-parameter diagram d : x⊗n→ x⊗n is a unitary group if its interpretation [[d]] is.

Remark 3.11. The interpretation of diagrams with smooth maps as phases must be strongly continuous.

Theorem3.12 (Stone). There is a one-to-one correspondance between strongly continuous one-parameter
unitary groups U : n→ n in MatR→C and self-adjoint matrices H : n→ n in MatC. The bijection is given
explicitly by U(θ) = exp(iθH) and H = −i(∂U)(0), translated in terms of diagrams with bubbles we get:

U(θ) = H
exp

iθ

H = U(θ)
[θ 7→ 0] ◦∂

−i
and

Corollary 3.13. A one-parameter diagram d : x⊗n→ x⊗n in ZX1 is a unitary group if and only if there
is a constant self-adjoint diagram h : x⊗n→ x⊗n such that ∂d = ih o

9 d.

Proof. Given the diagram for a unitary group d, we compute its diagrammatic differentiation ∂d and get
h by pattern matching. Conversely given a self-adjoint h, the diagram d = exp(iθh) is a unitary group. �

Example 3.14. Let d = Rz(α) ⊗ Rx(α) for a smooth α :R→R, then the following implies d(θ) = exp(iθh)

α

α
∂

=

α

α

π

∂α
2 +

α

α

π

∂α
2 for h = −i ∂α2 (Z ⊗ I + I ⊗ X).

Example 3.15. Let d = P(α, Z X) be a Pauli gadget as defined in [33, def. 4.1] then the following implies

d(θ) = exp(iθh) for h = −i ∂α2 Z ⊗ X . α

∂

= α+π∂α
2 = α

π

π

∂α
2

A. Toumi, R. Yeung & G. de Felice 7

4 Differentiating quantum circuits

In this section, we extend diagrammatic differentiation to classical-quantum circuits. These circuit
diagrams have two kinds of wires for bits and qubits, and boxes for pure quantum processes, measurements
and preparations. We interpret these classical-quantum circuits in terms of parametrised matrices, where
the tensor product reorders the indices to keep the classical and quantum dimensions in order. Borrowing
the term from Coecke and Kissinger [31], we call these matrices cq-maps. In this context, diagrammatic
derivations correspond to the notion of gradient recipe for parametrised quantum gates [34].

Wefirst give the definition of parametrised cq-mapswhich is at the basis of our Python implementation.
The category CQMapn has objects given by pairs of natural numbers Ob(CQMapn) = N×N, where
the first and second element of the pair encode the classical and the quantum dimension of the system
respectively. Arrows f : (a,b) → (c,d) are given by a× b2→ c× d2 parametrised complex matrices, i.e.
with entries inRn→C. Composition of cq-maps is given bymultiplying their underlyingmatrices. Tensor
is given on objects by pointwise multiplication and on arrows by the following diagram in MatRn→C:

f ⊗ f ′

a× a′

b× b′

b× b′

c× c′

d× d ′

d× d ′

=

f

a
b
b

c
d
d

a
a′

b
b′

b′
b f ′

a′
b′
b′

c′
d ′
d ′

c

d

d

c′

d ′

d ′

Each pure map f : a → b in MatRn→C embeds as a cq-map (1,a) → (1,b) by “doubling”, i.e.
tensoring with its complex conjugate f 7→ f̄ ⊗ f . Note that doubling is faithful up to a global phase.
For each dimension a ∈ N, there are distinguished cq-maps Ma : (1,a) → (a,1), Ea : (a,1) → (1,a) for
measurement and preparation in the computational basis with matrices given by Ma =

∑
i<a |i〉〈i, i | and

Ea =
∑

i<a |i, i〉〈i |. The sum of two cq-maps is given by entrywise addition of their underlying matrix.
Note that doubling does not preserve sums, i.e. (

∑
i fi) ⊗ (

∑
i fi) ,

∑
i(fi ⊗ fi). In quantum mechanical

terms, this corresponds to the distinction between quantum superposition and probabilistic mixing.
Remark 4.1. The cq-maps we have defined here differ from [31] in two minor ways. First, we take the
algebraic conjugate rather than the diagrammatic conjugate, i.e. we take f ⊗ g = f ⊗ g , g ⊗ f . This
is just a choice of convention that makes numerical computation easier. Second, our category CQMap
contains matrices that have no physical interpretation, e.g. we do not ask for complete positivity. This
can be fixed by considering the subcategory in the image of the interpretation functor defined below.

Take a monoidal signature Σ with one object Σ0 = {q} interpreted as a qubit, and boxes interpreted
as pure quantum processes with n parameters. That is, we fix a parametrised interpretation functor
[[−]] : CΣ→MatRn→C with [[q]] = 2. This could be the signatures for parametrised or algebraic ZX from
the previous section, or any universal quantum gate set plus boxes for scalars, bras and kets. We define an
extended signature cq(Σ) ⊃ Σ with two objects cq(Σ)0 = {c,q} interpreted as bit and qubit respectively.
Boxes are given by cq(Σ)1 = { f̂ : q⊗a → q⊗b | f ∈ Σ1}+ {M : q→ c, E : c→ q}. Let Ccq(Σ) be the
free monoidal category it generates, i.e. arrows are classical-quantum circuits. Their interpretation is
given by a monoidal functor [[−]] : Ccq(Σ)→CQMapn with [[c]] = (2,1) and [[q]] = (1,2) on objects. On
arrows we define [[M]] = M2, [[E]] = E2 and [[f̂]] = [[f]] ⊗ [[f]]. We write cq(ZXn) for the category of
classical-quantum circuits with parametrised ZX diagrams as pure processes.

Let C+
cq(Σ)

be the free monoidal category with sums, i.e. arrows are bags of circuits. Again, we want
to find a diagrammatic derivation ∂ : C+

cq(Σ)
→ D[C+

cq(Σ)
] which commutes with the interpretation, i.e.

8 Diagrammatic Differentiation for Quantum Machine Learning

such that [[∂ f̂]] = ∂[[f̂]] = ∂
(
[[f]] ⊗ [[f]]

)
for all pure maps f ∈ Σ1. Note that a diagrammatic derivation

for pure processes in C+
Σ
does not in general lift to one for classical-quantum circuits in CΣ. Indeed, using

the product rule we get ∂
(
[[f]] ⊗ [[f]]

)
= ∂[[f]] ⊗ [[f]] + [[f]] ⊗ ∂[[f]] , [[∂ f]] ⊗ [[∂ f]].

Hence we need equations, called gradient recipes, to rewrite the gradient of a pure map ∂[[f̂]]
as the pure map of a gradient [[∂ f̂]]. In the special case of Hermitian operators with at most two
unique eigenvalues, gradient recipes are given by the parameter-shift rule. In the general case where the
parameter-shift rule does not apply, gradient recipes require the introduction of an ancilla qubit.

Theorem 4.2 (Schuld et al.). For a one-parameter unitary group f with [[f (θ)]] = exp(iθH), if H has at
most two eigenvalues ±r , then there is a shift s ∈ [0,2π) such that [[r

(
f (θ + s)− f (θ − s)

)
]] = ∂[[f (θ)]].

Proof. The shift is given by s = π
4r , see the Taylor expansion given in [34, Theorem 1]. �

Corollary 4.3. Classical-quantum circuits cq(ZXn) with parametrised ZX diagrams as pure processes
admit diagrammatic differentiation.

Proof. The Z rotation has eigenvalues ±1, hence the spiders with two legs have diagrammatic differenti-
ation given by the parameter-shift rule:

α+ π
2 α− π

2

−

α

= ∂α
2

−α− π
2 −α+ π

2−α

∂α
2

∂

As for theorem 3.6, this extends to arbitrary-many legs using spider fusion. �

Remark 4.4. All scalars in cq(ZXn) are non-negative real numbers. Thus in order to encode the
substraction of the parameter shift-rule diagrammatically, we need either to consider formal sums with
minus signs (a.k.a. enrichment in Abelian groups) or simply to extend the signature with the −1 scalar.

Example 4.5. The quantum enhanced feature spaces of [35] are parametrised classical-quantum circuits.
The quantum classifier can be drawn as a diagram:

U(®x) U(®x) W(®θ) f.
.
.

.

.

.
.
.
.

.

.

.

where U(®x) depends on the input, W(®θ) depends on the trainable parameters and f is a fixed Boolean
function encoded as a linear map.

5 Bubbles and the chain rule

This section introduces an extension of the language of string diagrams that encodes arbitrary non-linear
operators on matrices: bubbles. Previous sections already used two kinds of bubbles informally: matrix
exponentials and gradients. We give a formal definition of bubbles and their gradients with the chain rule.
We then use them to compute the gradient of hybrid classical-quantum circuits where the measurement
results can be post-processed by any classical feed-forward neural network.

Fix a set of colours C. Take a monoidal signature Σ, we construct the free monoidal category with
sums and bubbles C+

β(Σ)
, i.e. arrows are formal sums of diagrams with bubbles. We define the signature

A. Toumi, R. Yeung & G. de Felice 9

of bubbled diagrams as a union β(Σ) =
⋃

n∈N β(Σ,n) where the signature of (≤ n)-nested bubbles β(Σ,n)
is defined by induction:

β(Σ,0) = Σ and β(Σ,n+1) =
{
βc(d) : x→ y | c ∈ C, d : x→ y ∈ C+β(Σ,n)

}
That is, we put a formal sum of diagrams d ∈C+

β(Σ,n)
with (≤ n)-nested bubbles inside a c-coloured bubble

and take it as a box βc(d) ∈ β(Σ,n+ 1) for diagrams with (n+ 1)-nested bubbles. We say a monoidal
category C has bubbles when it comes equipped with a unary operator on homsets βc :

∐
x,y C(x, y) →

C(x, y) for each colour c ∈ C. Although it makes the bureaucracy heavier, we may consider bubbles that
change the domain and codomain of the diagram inside. Such a bubble is defined by two operators on
objects βcdom, βccod : Ob(C) →Ob(C) and an operator on homsets βc :

∐
x,y C(x, y) →C(βcdom(x), βccod(y)).

Example 5.1. Bubbles first appear in Penrose and Rindler [2] where they are used to encode the covariant
derivative. An extra wire comes in the bubble to encode the dimension of the tangent vector.
Example 5.2. The functorial boxes of Melliès [36] can be thought of as well-behaved bubbles, i.e. such
that the composition of bubbles is the bubble of the composition. Indeed, a functor F : C→ D between
two categories C and D defines a bubble on the subcategory of their coproduct C

∐
D spanned by C.

Example 5.3. Bubbles appear under the name “uooh” (unary operator on homsets) in [37] where they
are used to encode the sep lines of C.S.Peirce’s existential graphs. Take the predicates of a first-order
logic as signature, i.e. one generating object x and each predicate P with arity k as a box with dom(P) = 1
and cod(P) = x⊗k . Add generators for spiders to encode lines of identity. Then bubbled diagrams encode
first-order logic formulae, and every formula can be represented in this way. Logical deduction rules
may be given entirely in terms of diagrammatic rules. The evaluation of first-order logic formulae is a
bubble-preserving functor F : CB(Σ)→MatB, where bubbles are interpreted as pointwise negation.
Example 5.4. Take colours to be arbitrary rig-valued functions S→ S, then the category of matrices
MatS has bubbles given by pointwise application. Gradient bubbles ∂ : S→ S are a special case.
Example 5.5. In the subcategory of square matrices, matrix exponential is an example of bubble for
S = R,C. When S = B, square matrices are finite graphs and reflexive transitive closure is an example.
Example 5.6. Bubbles can encode the standard non-linear operators used in machine learning. The
sigmoid σ(x) = 1/(1+ e−x) and rectified linear unit σ(x) =max(0, x) are pointwise bubbles σ : R→ R.
The softmax function σ : Rn→ Rn takes a vector ®x, applies exponential pointwise then normalises by∑

i<n e ®xi . It can be drawn as a bubble around the diagram for the vector ®x. Bubbles may also depend on
the labels from the dataset. Take a loss function such as the relative entropy l(®y, ®y?) =

∑
i<m ®yi log(®yi/®y?i).

The partially-applied loss function l(−, ®y?) : Rm→ R for the label ®y? ∈ Rm can be drawn as a bubble
around the diagram for the prediction ®y ∈ Rm.

Bubbles compose by nesting, this defines a category of post-processes pp(C). The objects are pairs
of objects from C, arrows (x, y)→ (x ′, y′) are c-coloured bubbles such that βcdom(x) = x ′ and βccod(y) = y′.
If we apply this to the category of matrices, pp(MatS) is the category of all matrix-valued functions. In
particular, this includes any feed-forward neural networks. Indeed, take f = fn ◦ · · · ◦ f1 : Ra→ Rb where
each layer is given by fi(®xi)=σ(Wi ®xi+ βi) for the input vector ®xi : 1→ ai, the parametrised weight matrix
Wi : ai→ bi and bias vector βi : 1→ bi in MatRn→R for n the total number of parameters. Drawing both
fi and σ : R→ R as bubbles we get the following definition:

σ

=®xi
ai bi

®yi
bi bi where ®yi = βi ®xi

ai
Wi

bi
+

bibi

fi

10 Diagrammatic Differentiation for Quantum Machine Learning

When the bubble β has a derivative ∂β, wemay define the gradient of bubbled diagramswith the chain
rule ∂(β(f)) = (∂β)(f)×∂ f . In order to make sense of the multiplication, we assume that the homsets of
our categoryC have a product on homsets which is compatible with the sum, i.e. each homset forms a rig3
and which commutes with the tensor, i.e. (f × f ′)⊗ (g×g′)= (f ⊗g)×(f ′⊗g′). The category of matrices
MatS over a rig S is an example, each homset MatS(m,n) is a rig with entrywise sums and products.
Another example is the category of diagrams with spiders on each object, where the product is given by
pre/post-composition with the co/monoid structure. We get the following diagrammatic equation:

β

f =

f

f∂

∂β

∂

For scalar diagrams, spiders are empty diagrams and the equation simplifies to the usual chain rule.
Thus, we can draw both a parametrised quantum circuit and its classical post-processing as one

bubbled diagram in cq(ZXn). By applying the product rule to the quantum circuit and the chain rule
to its post-processing, we can compute a diagram for the overall gradient. This applies to parametrised
quantum circuits seen as machine learning models [38], to the patterns of measurement-based quantum
computing seen as ZX-diagrams [39] as well as the quantum natural language processing of [19].

Conclusion, implementation & future work

We introduced diagrammatic differentiation for tensor calculus, using bubbles to represent the partial
derivative of a subdiagram. The product rule allows to compute the gradient of a diagram from the
gradient of its boxes. Applying this to ZX diagrams, we showed how to compute the gradient of any
linear map with respect to a phase parameter. We then extended this to quantum circuits with the
parameter-shift rule and to neural networks with the chain rule.

Although this work focused on the theoretical foundations of diagrammatic differentiation, we briefly
describe its implementation as part of the open-source DisCoPy library [21]. A notebook with examples
is available in the documentation4. The cqmap module implements classical-quantum maps as NumPy
arrays [40], with SymPy [41] symbols as parameters. The two modules zx and circuit build upon
monoidal, the implementation of diagrams in monoidal categories. They both come with an eval
method which evaluates a diagram as a NumPy array and a grad method which returns a formal sum
of diagrams given a SymPy symbol. The zx module comes with back-and-forth translations with the
PyZX library [22] for automated diagram simplification. The circuit module interfaces with the tket
compiler [23], allowing to execute the diagrams for circuits and their gradient on quantum hardware.

For now, we have only defined gradients of diagrams with respect to one parameter at a time. In
future work, we plan to extend our definition to compute the Jacobian of a tensor with respect to a vector
of variables. Other promising directions for research include the study of diagrammatic differential
equations, as well as a definition of integration for diagrams.

3 We do not assume that products are compatible with composition, in other words C need not be rig-enriched.
4 https://discopy.readthedocs.io/en/main/notebooks/diag-diff.html

https://discopy.readthedocs.io/en/main/notebooks/diag-diff.html

A. Toumi, R. Yeung & G. de Felice 11

Acknowledgements

The authors would like to thank the members of the Oxford quantum group for their insightful feedback.
Special thanks go to Stefano Gogioso for developing the idea of diagrammatic differentiation with RY
during his MSc project [17]. We thank the QPL reviewers for their constructive feedback which improved
the presentation of this work. We also thank Nicola Mariella for his contribution to the implementation.
AT thanks Simon Harrison for the Wolfson Harrison Quantum Foundation Scholarship.

References
[1] Roger Penrose. Applications of Negative Dimensional Tensors. Scribd, 1971.
[2] Roger Penrose and Wolfgang Rindler. Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Rela-

tivistic Fields. Cambridge University Press, 1984.
[3] André Joyal and Ross Street. Planar diagrams and tensor algebra. Unpublished manuscript, available from

Ross Street’s website, 1988.
[4] André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics, 88(1):55–112,

July 1991.
[5] Samson Abramsky and Bob Coecke. Categorical quantum mechanics. arXiv:0808.1023 [quant-ph], August

2008.
[6] Bob Coecke and Ross Duncan. Interacting Quantum Observables. In Luca Aceto, Ivan Damgård, Leslie Ann

Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages
and Programming, Lecture Notes in Computer Science, pages 298–310. Springer Berlin Heidelberg, 2008.

[7] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A Complete Axiomatisation of the ZX-Calculus
for Clifford+T Quantum Mechanics. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’18, pages 559–568, New York, NY, USA, 2018. ACM.

[8] Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two Complete Axiomatisations of Pure-state
Qubit Quantum Computing. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 502–511, New York, NY, USA, 2018. ACM.

[9] Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-calculus. Physical Review A,
102(2):022406, August 2020.

[10] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic Simplification of
Quantum Circuits with the ZX-calculus. Quantum, 4:279, June 2020.

[11] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Fast and effective techniques for T-count reduction
via spider nest identities. arXiv:2004.05164 [quant-ph], April 2020.

[12] Alexander Cowtan, Will Simmons, and Ross Duncan. A Generic Compilation Strategy for the Unitary
Coupled Cluster Ansatz. arXiv:2007.10515 [quant-ph], August 2020.

[13] Arianne Meijer-van de Griend and Ross Duncan. Architecture-aware synthesis of phase polynomials for
NISQ devices. arXiv:2004.06052 [quant-ph], April 2020.

[14] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de Wetering. There
and back again: A circuit extraction tale. arXiv:2003.01664 [quant-ph], March 2020.

[15] Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Dominic Horsman. Graphical
Structures for Design and Verification of Quantum Error Correction. arXiv:1611.08012 [quant-ph], January
2018.

[16] Craig Gidney and Austin G. Fowler. Flexible layout of surface code computations using AutoCCZ states.
arXiv:1905.08916 [quant-ph], May 2019.

12 Diagrammatic Differentiation for Quantum Machine Learning

[17] Richie Yeung. Diagrammatic Design and Study of Ans\"{a}tze for Quantum Machine Learning.
arXiv:2011.11073 [quant-ph], November 2020.

[18] Chen Zhao and Xiao-Shan Gao. Analyzing the barren plateau phenomenon in training quantum neural
network with the ZX-calculus. arXiv:2102.01828 [quant-ph], February 2021.

[19] Konstantinos Meichanetzidis, Stefano Gogioso, Giovanni De Felice, Nicolò Chiappori, Alexis Toumi, and
BobCoecke. QuantumNatural Language Processing onNear-TermQuantumComputers. InQuantumPhysics
and Logic (QPL), 2020.

[20] Bob Coecke, Giovanni de Felice, KonstantinosMeichanetzidis, and Alexis Toumi. Foundations for Near-Term
Quantum Natural Language Processing. ArXiv e-prints, 2020.

[21] Giovanni de Felice, Alexis Toumi, andBobCoecke. DisCoPy: Monoidal Categories in Python. InProceedings
of the 3rd Annual International Applied Category Theory Conference, ACT, volume 333. EPTCS, 2020.

[22] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated Diagrammatic Reasoning.
arXiv:1904.04735 [quant-ph], April 2019.

[23] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. Tket :
A Retargetable Compiler for NISQ Devices. arXiv:2003.10611 [quant-ph], March 2020.

[24] Joon-Hwi Kim, Maverick S. H. Oh, and Keun-Young Kim. Boosting Vector Calculus with the Graphical
Notation. arXiv:1911.00892 [hep-th, physics:physics], January 2020.

[25] R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Differential categories. Mathematical Structures in Computer
Science, 16(06):1049, December 2006.

[26] Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin MacAdam,
Gordon Plotkin, and Dorette Pronk. Reverse derivative categories. arXiv:1910.07065 [cs, math], October
2019.

[27] G. S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. Categorical Foundations
of Gradient-Based Learning. arXiv:2103.01931 [cs, math], March 2021.

[28] William Kingdon Clifford. A Preliminary Sketch of Biquaternions. 1873.
[29] Philipp H. W. Hoffmann. A Hitchhiker’s Guide to Automatic Differentiation. Numerical Algorithms,

72(3):775–811, July 2016.
[30] Quanlong Wang. Completeness of algebraic ZX-calculus over arbitrary commutative rings and semirings.

arXiv:1912.01003 [quant-ph], October 2020.
[31] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and

Diagrammatic Reasoning. Cambridge University Press, 2017.
[32] M. H. Stone. On one-parameter unitary groups in hilbert space. Annals of Mathematics, 33(3):643–648,

1932.
[33] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. Phase Gadget Synthesis

for Shallow Circuits. Electronic Proceedings in Theoretical Computer Science, 318:213–228, May 2020.
[34] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic

gradients on quantum hardware. Physical Review A, 99(3):032331, March 2019.
[35] Vojtech Havlicek, Antonio D. Córcoles, Kristan Temme, AramW. Harrow, Abhinav Kandala, Jerry M. Chow,

and Jay M. Gambetta. Supervised learning with quantum enhanced feature spaces. Nature, 567(7747):209–
212, March 2019.

[36] Paul-André Melliès. Functorial Boxes in String Diagrams. In Zoltán Ésik, editor, Computer Science Logic,
Lecture Notes in Computer Science, pages 1–30. Springer Berlin Heidelberg, 2006.

[37] Nathan Haydon and Pawel Sobocinski. Compositional Diagrammatic First-Order Logic. page 16, 2020.
[38] Marcello Benedetti, Erika Lloyd, and Stefan Sack. Parameterized quantum circuits as machine learning

models. arXiv:1906.07682 [quant-ph], June 2019.

A. Toumi, R. Yeung & G. de Felice 13

[39] Ross Duncan and Simon Perdrix. Rewriting measurement-based quantum computations with generalised
flow. In International Colloquium on Automata, Languages, and Programming, pages 285–296. Springer,
2010.

[40] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science Engineering, 13(2):22–30, March 2011.

[41] AaronMeurer, Christopher P. Smith,Mateusz Paprocki, Ondřej Čertík, SergeyB.Kirpichev,MatthewRocklin,
AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger,
Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa,
Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert
Cimrman, and Anthony Scopatz. SymPy: Symbolic computing in Python. PeerJ Computer Science, 3:e103,
January 2017.

	Dual numbers
	Dual diagrams
	Differentiating ZX
	Differentiating quantum circuits
	Bubbles and the chain rule

