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Abstract. We advocate profunctors P |−→Q between posets as a more natural
and fruitful notion than order preserving maps. We intoduce the graph and
ascent of such profunctors. We apply this in commutative algebra where these
give classes of Alexander dual square-free monomial ideals giving the full and
natural generalized setting of isotonian ideals and letterplace ideals for posets.
We study the poset of profunctors from N to N. Such profunctors identify as
order presering maps f : N → N ∪ {∞}. For our applications when P and Q
are infinite, we also introduce a topology on the set of profunctors P |−→Q, in
particular on profunctors N |−→N.

Introduction

This article advocates for general posets P and Q the notion of profunctor
P |−→Q as more natural and well-behaved than the notion of isotone maps P → Q
between posets, especially for applications in algebra. When Q is totally ordered,
these notions are practically the same, but when Q is not totally ordered, pro-
functors seem to have a clear advantage for developing natural theory.

Let Bool be the two element boolean poset, often denoted by {0, 1} or {⊥,>}
but we shall use ω = {d, u} (down and up). Then a profunctor P |−→Q is simply
an isotone map P × Qop → ω. If P and Q are sets (discrete posets), then this
is simply a relation between P and Q. The notion of profunctor (also called
distributor) may generally be defined between categories or between categories
enriched in a monoidal category (like Bool), see [1], [3], or for a recent gentle
introduction focusing on applications, [10, Section 4].

The opposite P op of poset P , has the same elements but order relation reversed.

The elements in the distributive lattice P̂ associated to P are pairs (I, F ), called
cuts, where I is an order ideal in P and F the complement filter. There is then a

duality between P̂ and P̂ op sending (I, F ) to (F op , Iop ). We call two such pairs
dual or Alexander dual (as is common in combinatorial commutative algebra).

Denote by Hompro(P,Q) the profunctors P |−→Q. This is again a a partially
ordered set and the opposite of this poset is Hompro(Q,P ).
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The basic notions we introduce associated to a profunctor between posets f :
P |−→Q are the notions of its graph Γf and its ascent Λf . These are dual notions
in the sense that if g : Q |−→P is the dual profunctor, the graph of f equals the
ascent of g. Let UP and UQ denote the underlying sets of P and Q. Given a
poset ideal I in Hompro(P,Q) and F its complement filter, so (I,F) is a cut for
Hompro(P,Q). Let FΛ be the poset filter in the Boolean lattice of all subsets of
UQ× UP op generated by the ascents Λf for f ∈ F . Let IΓ be the poset ideal in
this Boolean lattice generated by the the complemens of the grapsh Γf for f ∈ I.
Our main theorem states the following.

Theorem 3.5. (Preserving the cut) Let P and Q be well-founded posets, and

(I,F) a cut for Hom(P, Q̂). Then (IΓ,FΛ) is a cut for the Boolean lattice of
subsets of UQ× UP op .

This has alternative formulations in Theorem 3.6 asserting that two filters are
Alexander dual, suitable to Stanley-Reisner theory, and in Theorem 3.7 asserting
that this corrspondence respects the duality on profunctors. In Theorem 6.1 we
give a version with conditions on P and Q ensuring that Γf and Λf are always
finite sets, suitable for applications to monomial ideals, Section 7.

Although we develop a general theory here, our original motivation came from
applications related to commutative algebra.

Applications to Stanley-Reisner theory. When P and Q are finite posets we
get general constructions, Subsection 3.5, of Alexander dual squarefree mono-
mial ideals, generalizing isotonian ideals and letterplace and co-letterplace ideals,
[6],[9], [7], [13], and [12]. In particular, when Q is a chain these constructions have
given very large classes of simplicial spheres, [4].

Applications to order preserving maps f : N→ N∪{∞}. The profunctors from N
to N identify as order preserving maps from N to the distributive lattice N̂, and

the latter identifies as N ∪ {∞}. The order preserving maps f : N → N̂ are the
topic of many our examples.

Injective order preserving maps f : N→ N form the so called increasing monoid,
which has gained recent interest. In [15] Nagel and Römer show that ideals in the
infinite polynomial ring invariant for the increasing monoid, have an essentially
finite Grobner basis, thereby generalizing previous results for the symmetric group.
In [11] Güntürkün and Snowden studies in depth the representation theory of the
increasing monoid. Note that the injective order preserving maps g : N→ N are in
bijection with order preserving maps f : N→ N by g = f+id−1. Order preserving
maps f : N→ N also occur in the definition of the bicylic semi-group [5], a basic
notion in inverse semi-group theory. In [8] we apply the order preserving maps
f : N→ N∪{∞} to the duality theory of strongly stable ideals in the the infinite
polynomial ring k[xi]i∈N.

In order for the substantial parts of our theory, related to graphs and ascents,
to work well we must have certain conditions on the posets P and Q. Our weakest
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condition is that they are well-founded. For our applications to polynomial rings,
we work in the class of natural posets, Section 5. These are posets where all
anti-chains are finite and for every x in the poset the downset {y | y ≤ x} is finite.
This is a subclass, close to natural numbers, of well partially ordered sets.

Another feature we introduce is a topology on Hompro(P,Q), Section 4, in
particular on Hompro(N,N). This is needed for our applications to commutative
algebra.

Note. We let N = {1, 2, 3, . . .}. We only use the ordered structure on this so we
could equally well have used N0 = {0, 1, 2, 3, · · · }. Only in the last Section 7 do
we, in a somewhat different setting, use the commutative monoid structure and
then we explicitly write N0.

1. Basic notions for posets

We give basic notions and constructions concerning posets: filters, ideals, du-
alities, distributive lattices, simplicial complexes. We also recount the algebraic
notions of Stanley-Reisner ideal and ring.

1.1. Poset ideals and filters in P . Let P be a partially ordered set. The
opposite poset P op has the same underlying set as P but with order relation ≤op

where p ≤op q if p ≥ q in P .
A poset ideal I of P is a subset of P closed under taking smaller elements. A

poset filter F in P is a subset closed under taking larger elements. If I and F
are complements of each other, we call (I, F ) a cut for P . Since each of I and F
determine each other, we sometimes denote this as (−, F ) if we focus on F , and
similarly with (I,−).

Definition 1.1. The Alexander dual (or just dual) of the cut (I, F ) is the cut
(F op , Iop ) for P op . The Alexander dual of the poset ideal I is the poset ideal
J = F op of P op , and the Alexander dual of the filter F is the poset filter G = Iop .

1.2. The distributive lattice. Denote by ω the ordered set {d < u}. The

distributive lattice associated to P is P̂ = Hom(P op , ω). Given an f ∈ P̂ , the
elements p in P such that pop maps to u ∈ ω, constitute a poset ideal I in P .
The complement filter F in P consists of those p ∈ P such that pop maps to d.

We may thus identify an element f of P̂ with a cut (I, F ) for P and these cuts
are ordered by

(I, F ) ≤ (J,G) iff I ⊆ J or equivalently F ⊇ G.

P̂ has a unique maximal element, denoted ∞. It sends every pop to u, and

corresponds to (I, F ) = (P, ∅). In particular N̂ = N ∪ {∞}.

1.3. Poset ideals and filters in P̂ . Let I be a poset ideal of P̂ , and F the

complement filter of P̂ . So I consists of cuts (I, F ) closed under forming cuts with
smaller I’s, and F consists of cuts (I, F ) closed under forming cuts with larger
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I’s (or equivalently smaller F ’s). Then (I,F) is a cut for P̂ (note terminology:

(I, F ) is a cut in P̂ ). Also (I,F) is a cut in ̂̂P .

1.4. Simplicial complexes and Stanley-Reisner rings. Let A be a set. A
simplicial complex X on A is a family of subsets of A closed under taking smaller
subsets, i.e. if I ∈ X and J ⊆ I, then J ∈ X.

Then Â identifies as the Boolean poset on A, consisting of all subsets of A. A

cut (I,F) for Â corresponds precisely to a simplicial complex X. The elements I
in X give the cuts (I, Ic) in I.

Denote by k[xA] the polynomial ring in the variables xa for a ∈ A. When A is
finite, to the simplicial complex X corresponding to the cut (I,F), we associate
a monomial ideal IX in k[xA], the Stanley-Reisner ideal of X. It is generated
by monomials xI =

∏
i∈I xi for (I, F ) ∈ F . These are the subset I of A such

that I is not in the simplicial complex X. The monomials in the Alexander dual
Stanley-Reisner ideal IY are then precisely those monomials which have non-trivial
common divisor with every monomial in IX .

2. Profunctors between posets

We introduce profunctors P |−→Q between posets. Such a profunctor has a
dual Q |−→P and we investigate this correspondence. For an introduction to pro-
functors, see [10, Chap.4]. See also [3, Section 7] and [1] where they are called
distributors.

2.1. Duality on profunctors. A profunctor P |−→Q is simply a poset homo-

morphism P → Q̂. By the adjunction

Hom(P, Q̂) = Hom(P,Hom(Qop , ω))

= Hom(P ×Qop , ω)

= Hom((Q× P op )op , ω) = (Q× P op )̂.

Thus a profunctor is equivalently an isotone map P ×Qop → ω and this is often
taken as the definition. It is also equivalently an element of the distributive lattice
(Q×P op )̂, and so corresponds to a cut (I, F ) for Q×P op . (Our convention differs
somewhat from [10], since there a profunctor P |−→Q corresponds to an isotone
map P op ×Q→ ω.)

In particular if Q = B and P = A are sets, this is simply a subset of B × Aop

or a relation between the sets A and B. Since Hom(P, Q̂) identifies as (Q×P op )̂,
the following is seen to be natural, by taking opposites.

Lemma 2.1. Let P,Q be posets. There is a a natural isomorphism of posets

Hom(P, Q̂)op
D∼= Hom(Q, P̂ ).
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Example 2.2. Let P = Q = N = {1, 2, 3, · · · } and consider an isotone map f :

N→ N̂ with values given by

2, 2, 4, 5, 5, 7, · · · .
In Figure 1 the graph of f are marked with red (black) discs . We fill in with
blue circles to make a connected “snake”, starting at position (1, 1). The graph
of the dual map g = Df is given by the blue circles by considering the vertical
axis as the argument for g. The values of g are

1, 3, 3, 4, 6, 6, · · · .
Observe that for a map f : N → N̂ then f(1) ≥ 2 iff the dual map g = Df has
g(1) = 1. Hence there are no selfdual maps f .

The isotone map f corresponds to the cut (I, F ) for N × Nop (where N corre-
sponds to the y-axis and Nop to the (reversed) x-axis) where the filter F is given
by filling in red discs vertically above those in the graph, see Figure 2, and the
ideal I is given by filling in blue circles to the right of those which are present in
Figure 1.

2.2. Profiles and co-profiles.

Definition 2.3. The profile of an isotone map f : P → Q̂ is the cut (I, F ) for P
where the profile filter F consists of all p ∈ P such that f(p) =∞, and the profile
ideal I = F c is the complement ideal.

The co-profile of f is the cut (J,G) for Q where J is the union of all f(p)
(considered as a poset ideal of Q) for p ∈ P , and G is the complement of J .

These notions are dual to each other as the following shows.

Lemma 2.4. Let f be an isotone map and g = Df its dual map. The co-profile
of f equals the profile of g.
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We identify the following subsets of Hom(P, Q̂).

• HomL(P, Q̂) are the maps f with finite profile ideal I. These maps are
called large. Then f(p) =∞ for all but a finite number of p’s.

• HomS(P, Q̂) are the f with finite co-profile ideal J . These maps are called
small. Then there is a finite poset ideal J bounding the f(p), i.e. all
f(p) ⊆ J .

• Homu(P, Q̂) are the f which are in neither the above, so both the profile
ideal I and co-profile ideal J are infinite.

A consequence of Lemma 2.4 is the following.

Lemma 2.5. D switches HomL(P, Q̂) and HomS(Q, P̂ ) and maps Homu(P, Q̂)

to Homu(Q, P̂ ).

Example 2.6. Consider isotone maps f : N→ N̂ where N̂ = N∪{∞}. Such a map
is large if f(n) =∞ for some n. It is small if f is eventually constant, so f(n) = c

for all n ≥ n0. The maps in Homu(N, N̂) are the maps f : N → N which are not

bounded, so limn→∞ f(n) =∞. We see the naturalness of considering Hom(N, N̂)

instead of Hom(N,N): The latter is not self-dual while the former is. Hom(N, N̂)

has two countable dual “shores” HomL(N, N̂) and HomS(N, N̂) and then between

them an uncountable “ocean” Homu(N, N̂).

2.3. Adjunctions. Given an isotone map f : P → Q it induces a pull-back map

f ∗ : Q̂→ P̂ , (J,G) 7→ (f−1(J), f−1(G)).

This map has a left adjoint

f ! : P̂ → Q̂, (I, F ) 7→ (f(I)↓,−)



PROFUNCTORS BETWEEN POSETS AND ALEXANDER DUALITY 7

where f(I)↓ is the smallest poset ideal containing f(I). There is also a right
adjoint of f ∗:

f

!

: P̂ → Q̂, (I, F ) 7→ (−, f(F )↑)

where f(F )↑ is the smallest poset filter in Q̂ containing f(F ). All these maps are
functorial in P and Q.

3. The graph, the ascent, and Alexander duality

We define the two significant notions of this article, the graph and ascent of a
profunctor P |−→Q, or equivalently the right and left boundaries of the cut (I, F )
corresponding to this profunctor. Then we state several versions of the main
theorem of this article, Theorem 3.5 on preserving cuts.

3.1. The graph and ascent. Recall that for a poset P then UP denotes the
underlying set, considered as a discrete poset.

Definition 3.1. Let f : P → Q̂ be isotone. Its ascent is

(1) Λf = {(q, p) | q ∈ f(p) but q 6∈ f(p′) for p′ < p} ⊆ UQ× UP op .

Its graph is

(2) Γf = {(q, p) | q minimal in the complement f(p)c} ⊆ UQ× UP op .

Note that Λf and Γf are disjoint.

Example 3.2. For an isotone map f : N → N̂, see Figure 1, then Γf are the red
(or black) discs, and Λf are the blue circles.

3.2. Left and right boundaries. We have seen that Hom(P, Q̂), the profunctors

from P to Q, identify as (Q × P op )̂. So an isotone map f : P → Q̂ corresponds
to a cut (I, F ) for Q× P op where

(3) I = {(q, p) | q ∈ f(p)}, F = {(q, p) | q 6∈ f(p)}.

Definition 3.3. If (I, F ) is a cut for Q × P op its left and right boundaries are
respectively

ΛI = {(q, p) ∈ I | (q, p′) 6∈ I for p′ < p} ⊆ UQ× UP op

ΓF = {(q, p) ∈ F op | (p, q′) 6∈ F op for q′ < q} ⊆ UQ× UP op

Corollary 3.4. Given dual maps

f : P → Q̂, g = Df : Q→ P̂ .

Let (I, F ) be the cut in Q × P op associated to f , and (J,G) the cut in P × Qop

associated to g.

a. (J,G) = (F op , Iop ).
b. ΓG = ΛI, ΛJ = ΓF .
c. Γg = Λf, Λg = Γf .
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3.3. Extending Λ and Γ to the next level. We have looked at cuts (I, F ) for

Q × P op . Proceeding to the next level, we look at cuts (I,F) for Hom(P, Q̂) =
(Q×P op )̂. Elements in this latter set are cuts (I, F ) for Q×P op partially ordered
by (I, F ) ≤ (I ′, F ′) if I ⊆ I ′. Thus the ideal I consists of cuts (I, F ) closed under
taking cuts with smaller I’s. Similarly the poset filter F is closed under taking
larger I’s (and so smaller F = Ic’s).

We have a map

(4) Λ : UHom(P, Q̂)→ (UQ× UP op )̂, f 7→ (Λf,−)

and a map

(5) Γ : UHom(P, Q̂)→ (UP × UQop )̂, f 7→ (−,Γf).

The map Λ induces an isotone map of posets:

Λ

!

: Hom(P, Q̂)̂ → (UQ× UP op )̂̂, (I,F) 7→ (−,Λ(F)↑).

For the cut (I,F), denote by (−,FΛ) its image. Then FΛ is the filter in the
Boolean lattice (UQ× UP op )̂ generated by cuts (Λf,−) where f ∈ F .

The map Γ induces an isotone map of posets:

Γ! : Hom(P, Q̂)̂ → (UQ× UP op )̂̂, (I,F) 7→ (Γ(I)↓,−).

Denote by (IΓ,−) the image of (I,F). Then IΓ is the ideal in the Boolean lattice
(UQ× UP op )̂ generated by cuts (−,Γf) for f ∈ I.

3.4. Main theorem: Preserving the cut. In order for the left and right bound-
aries of a cut (I, F ) to give enough information we need to make sure that minimal
elements of poset filters of P and Q exists. A poset P is well-founded if every
subset of P has a minimal element. Equivalently, any descending chain of elements

p1 ≥ p2 ≥ · · · ≥ pn ≥ · · ·
stabilizes, i.e. for some N we have pn = pN for n ≥ N .

The following theorem is a strong generalization of the results in several articles
[6], [9], [7],[12], see the next Subsection 3.5 for more on this. The most significant
tool in the argument is Zorn’s lemma (which is equivalent to the axiom of choice).

Note also that Hom(P, Q̂) is a distributive lattice and so has all joins (colimits)
and meets (limits).

Theorem 3.5 (Preserving the cut). Let P and Q be well-founded posets, and

(I,F) a cut for Hom(P, Q̂). Then (IΓ,FΛ) is a cut for the Boolean lattice (UQ×
UP op )̂. In other words, the maps Γ! = Λ

!

.

Before proving this we state two alternative formulations of this theorem.

Theorem 3.6. Let P and Q be well-founded posets, and (I,F) a cut for Hom(P, Q̂).
The filter FΛ = Λ

!

(F) for (UQ× UP op )̂ generated by all (Λf,−) for f ∈ F , and
the filter (Γop )

!

(Iop ) for (UP × UQop )̂ generated by all ((Γf)op ,−) for f ∈ I,
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are Alexander dual filters. (This is the version applied in Stanley-Reisner theory,
giving Alexander dual monomial ideals, see Subsection 3.5.)

By Corollary 3.4 we also have a commutative diagram

(6) UHom(P, Q̂)
Λ //

D
��

(UQ× UP op )̂

D
��

UHom(Q, P̂ )
Γ // (UP × UQop )̂

.

Below we write ΛP,Q and ΓQ,P for these maps.

Theorem 3.7. Let P and Q be well-founded posets. The following diagram com-
mutes:

Hom(P, Q̂)̂
Λ

!

//

D
��

(UQ× UP op )̂̂

D
��

Hom(Q, P̂ )̂
Λ

!

// (UP × UQop )̂̂

.

There is of course also a similar diagram for Γ! = Λ

!

.

Proof of Theorem 3.5. We need to show that ideal IΓ is the complement of the
filter FΛ in the Boolean lattice (UQ× UP op )̂.

Part I. We first show that for any (I, F ) ∈ I and (J,G) ∈ F that

ΓF ∩ ΛJ 6= ∅.
This will show that IΓ is contained in the complement of FΛ. Part II. Let

S ⊆ UQ × UP op be such that S ∩ ΛJ 6= ∅ for every (J,G) ∈ F . We show that
S ⊇ ΓF for some (I, F ) ∈ I. This gives that IΓ contains the complement of
FΛ. �

Example 3.8. Consider profunctors Hom([5], [̂3]) where [̂3] = [3] ∪ {∞}. Let I be
the ideal consisting of all f not taking the value ∞. The graph of such and f
is shown in Figure 3. Such a path in the rectangle [5] × [3] is a right path. Let
F be the complement filter, consisting of all g which take the value ∞ for some
argument in [5]. The ascent of such a g is also shown in Figure 3. Such a path
in the rectangle [5] × [3] is an up path. Theorem 3.5 above says that given any
subset S of [5]× [3], exactly one of the following holds: i. S contains an up path,
ii. the complement Sc contains a right path.

3.5. Applications: Finite posets and Stanley-Reisner ideals. In the fol-
lowing for ease of notation we denote a polynomial ring k[xUQ×UP op ] as k[xQ×P op ].

Definition 3.9. Let P and Q be finite posets. From the cut (I,F) for Hom(P, Q̂),
we get the cut (IΓ,FΛ) for (UQ×UP op )̂. Since UQ×UP op is simply a set, this
gives a Stanley-Reisner ideal in k[xQ×P op ]. This is the Λ-ideal for (I,F) and we
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Figure 3. Profunctors Hom([5], [̂3]). A graph to the left and an
ascent to the right.

denote it as LΛ(F ;P,Q), or simply LΛ(F). As f varies in F , it is generated by
the Λf (or rather the squarefree monomials

∏
(q,p)∈Λf xq,p).

Similarly we get a cut ((FΛ)op , (IΓ)op ) for (UP × UQop )̂, corresponding to a
Stanley-Reisner ideal in k[xP×Qop ]. This is the Γ-ideal of the cut (I,F) and is
denoted LΓ(I;P,Q), or simply LΓ(F). As f varies in I, it is generated by the Γf
(or rather the squarefree monomials

∏
(p,q)∈Γf xp,q).

By Theorem 3.6 above, the Λ-ideal and Γ-ideal are Alexander dual ideals.

Application 1. When Q = [n], the chain on n elements, the Λ-ideals LΛ(F ;P, [n])
are the letterplace ideals of [9] and are shown to be Cohen-Macaulay ideals. The
Alexander dual Γ-ideals LΓ(I;P, [n]) are the co-letterplace ideals in loc.cit. and
thus have linear resolutions. The above definition and results may thus be seen
as a full generalization of the setting of [9].

Application 2. Again when Q = [n] the Λ-ideals LΛ(F ;P, [n]) define simpli-
cial balls by the Stanley-Reisner correspondence, [4]. Furthermore there is a very
simple description of the Stanley-Reisner ideal of their boundaries, which are sim-
plicial spheres. This gives the construction of an enormous amount of simplicial
spheres. In particular they generalize comprehensively both Bier spheres [2] and
Gil Kalai’s squeezed spheres [14].

4. Topology on Hom(P, Q̂)

We want to get a setting where P and Q may be infinite but the ascents Λf and
graphs Γf are finite. Then we get Λ- and Γ-ideals in infinite-dimensional polyno-

mial rings. This can be achieved if we put a suitable topology on Hom(P, Q̂).

4.1. Defining the topology. We define a topology on Hom(P, Q̂) by defining a
basis of open subsets.

Definition 4.1. Let f be a function in HomL(P, Q̂) and f a function in HomS(P, Q̂).

The set of functions f such that f ≤ f ≤ f is denoted U(f, f).

The sets U(f, f) form the basis of a topology on Hom(P, Q̂). Note that if P

and Q are finite we get the discrete topology on Hom(P, Q̂).
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Lemma 4.2. The duality map D of Lemma 2.1 is a homeomorphism of topological
spaces.

5. Natural posets

We introduce the class of natural posets as the suitable generalization of natural
numbers. We then have good criterions for when open poset ideals are closed or
interior. In Section 6 for this class of posets we get a version of Theorem 3.5
which may be applied to construct Alexander dual ideals in infinite-dimensional
polynomial rings.

5.1. Well partially ordered sets. A poset P is well partially ordered if the
following two conditions holds:

i. Any descending chain in P stabilizes.
ii. Any antichain in P is finite.

Lemma 5.1. Let P and Q be well partially ordered sets, and f : P → Q̂ an
isotone map.

a. If f is large, then Γf is finite.
b. If f is small, then Λf is finite.

5.2. Natural posets. The class of well partially ordered sets is very large, it
includes all well-ordered sets. For our purposes we need an extra condition so
that our posets are more like natural numbers.

Definition 5.2. A poset P is down finite if for each p in P , the principal ideal
I(p) is finite. A natural poset (in analogy with natural numbers) is a poset which
is well partially ordered and down finite.

Lemma 5.3. Let Q be down finite. Then for any large f ∈ Hom(P, Q̂) the open
set U(0, f) is also closed.

5.3. Criterions for poset ideals being interior or for being clopen. Let

f1 ≤ f2 ≤ f2 ≤ · · ·

be a weakly increasing set of maps in Hom(P, Q̂), write colimfr for their join. If
the fr’s are a decreasing sequence we write lim fr for their meet.

Posets in our application will typically be natural posets, like finite posets, the
natural numbers N. The following seems to provide the best way to check whether
a poset ideal of isotone maps is interior.

Proposition 5.4. Let P and Q be natural posets and I an open poset ideal in

Hom(P, Q̂).

a. I is closed iff it contains the colimit of any increasing sequence of isotone
maps in I.

b. I is interior iff it contains any large colimit of an increasing sequence of
isotone maps in I.
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There are analog statements for open poset filters and decreasing sequences of
maps in F .

Theorem 5.5. A poset ideal I of Hom(P, Q̂) is clopen (closed and open) iff I
is a finite union of basis open subsets U(0, f). Alternatively formulated, an open
poset ideal I is clopen iff it is finitely generated.

Definition 5.6. A poset ideal I and a filter F in Hom(P, Q̂) form an interior
cut, if I is an interior open set and F is the interior set which is the complement
of the closure of I. We denote this as [I,F ].

6. Natural posets and monomial ideals

Here we give the variant of Theorem 3.5 such that the Λ- and Γ-ideals are
finitely generated ideals in a polynomial ring. This works when P and Q are
natural posets, which we assume in this section.

We have the following variation of Theorem 3.5.

Theorem 6.1. Let P and Q be natural posets and [I,F ] an interior cut for

Hom(P, Q̂). Then (IΓ,FΛ) is a finite type cut for the Boolean lattice (UQ×UP op )̂.

We may now define the Λ- and Γ-ideals for (infinite) natural posets P and Q.
These ideals then live in infinite-dimensional polynomial rings. These ideals will
be square-free monomial ideals.

Definition 6.2. Let LΛ(F) the ideal in k[xQ×P op ] generated by the monomials∏
(q,p)∈I xq,p for (I,−) ∈ FΛ. Let LΓ(I) be the ideal in k[xP×Qop ] generated by

the monomials
∏

(p,q)∈F op xp,q for (F op ,−) ∈ Iop
Γ .

By the theorem above, these ideals are Alexander dual ideals.

7. Monomial ideals

Large maps in Hom(N, N̂) correspond bijectively to monomials in the infinite
dimensional polynomial ring k[xN] = k[x1, . . . , xn, . . .]. Open poset ideals in

Hom(N, N̂) correspond bijectively to strongly stable ideals in k[xN]. Applying
Theorem 6.1 this enables one to define a duality on strongly stable ideals, [8].
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