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Introduction. DISCOCAT (DIStributional COm-
positional CATegorical) (Coecke et al., 2010) is a
framework for models of natural language mean-
ing that comes with a rigorous treatment of the
interplay between syntax and semantics and with a
convenient diagrammatic representation in terms of
string diagrams. The conception of this framework
was the fruit of recognising the shared formal struc-
ture between pregroup grammar (Lambek, 2008)
and compact closed categories like that of finite-
dimensional Hilbert spaces (FHilb). A choice of
model within the framework essentially amounts
to choosing an appropriate semantics category and
a functor into it from the (pregroup) grammar cate-
gory. This functor is the mechanism through which
a sentence’s syntax determines, in a principled way,
how the word representations interact to yield the
sentence meaning – effectively, sentences are rep-
resented as string diagrams with an open wire car-
rying the sentence meaning interpreted in the cho-
sen semantics category. The motivation for such
a framework stems from the ambition to reconcile
vector space semantics with formal approaches to
linguistics, and to address the question of how the
meaning of a sentence arises from the meanings
of its words. Over the past 10 years DISCOCAT

also attracted interest as it was demonstrated to
be useful for capturing linguistic phenomena such
as ambiguity and entailment (Bankova et al., 2019;
Kartsaklis and Sadrzadeh, 2013). Furthermore, part
of the motivation for DISCOCAT models is the in-
terpretability of language models, which is a quality
that does not characterise modern approaches to
natural language processing (NLP).

Above all, however, as had already been noted

*Extended abstract as non-proceedings submission to
ACT 2021 for a contribution based on the two pre-
prints arXiv:2102.12846 and arXiv:2012.03756
(Refs. (Meichanetzidis et al., 2020) and (Lorenz et al., 2021)
below).

early on, if choosing to interpret the string diagrams
in FHilb as quantum circuits then the ‘computa-
tion of meaning’ – a tensor contraction – would
most naturally be performed on a quantum com-
puter. In this case the DISCOCAT model makes a
correspondence between words and quantum states
and between grammatical structure and Bell effects.
Notably, the work of Zeng and Coecke (Zeng and
Coecke, 2016) built on this idea and presented a
quantum algorithm for sentence similarity by re-
duction to the closest vector problem. Today, noisy
intermediate-scale quantum (NISQ) processors are
available via cloud access, naturally providing an
opportunity for implementing simple NLP tasks
using DISCOCAT. The theoretical basis for such
near-term implementations has since been laid out
in the works of Refs. (Meichanetzidis et al.; Coecke
et al., 2020).

Here, we report on a series of experiments, pre-
sented in Refs. (Meichanetzidis et al., 2020) and
(Lorenz et al., 2021), which are the first experi-
ments that implement a DISCOCAT model – in fact
any NLP model – on an actual quantum machine.
All three experiments successfully address simple
binary classification tasks.

The tasks. The first task as a basic proof of
concept, addressed in Ref. (Meichanetzidis et al.,
2020), takes the labels of the sentences in a very
small dataset of 16 sentences as ‘truth values’. The
second task concerns a ‘meaning classification’ of
sentences – whether they are about either ‘food’
or ‘IT’ – and has a dataset of 130 sentences. The
third task concerns the syntactical role of ‘relative
pronouns’ in noun phrases – whether the relative
pronoun replaces the subject or the object of the
respective relative subclause – and has a dataset
of 105 sentences. The second and third tasks are
addressed in Ref. (Lorenz et al., 2021).

The experiments. The general pipeline that is
depicted in Fig. 1 shows the basic idea underlying
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Figure 1: Schematic overview of the general pipeline.

all three experiments. It begins by parsing each
sentence using a pregroup grammar built out of
atomic types n for nouns and s for sentence. The
name of a pregroup grammar stems from the fact
that every atomic type t ∈ {n, s} has a left- and a
right- adjoint type (tl and tr), with the property that
tlt → 1 and ttr → 1, where 1 is the trivial type.
The existence of two different inverses is motivated
by the fact that in language word-order can carry
meaning. The pipeline then involves translating
each type-tagged sentence into the induced DisCo-
Cat diagram, a string diagram. This diagram rep-
resents the grammatical reduction of the sentence
and can be seen as a graphical proof that the sen-
tence is grammatical, as witnessed by the reduction
of the product of types of all words to the s-type.
Finally the boxes are filled with parametrised quan-
tum circuits. Evaluating the circuits on a quantum
computer returns outcome statistics from which
the labels are estimated. The model is trained by
updating the circuit parameters, in a supervised-
learning style, to optimise the agreement between
the predicted and actual labels.

Consider as an example the sentence ‘person pre-
pares tasty dinner’ (from the second task’s dataset).
Fig. 2a shows its DISCOCAT diagram based on the
pregroup parsing with the cups corresponding to
the pregroup reductions n · nr → 1 and nl · n→ 1
and the output type indeed being that of a sentence.
Fig. 2b shows a corresponding quantum circuit as
the output of step (4) of Fig. 1, where essentially
three steps have happened. First, the n and s type
wires were all assigned a single qubit (more gen-
erally, while beyond the capacities of the currently
available quantum devices, a different number of
qubits may be assigned to each pregroup type).
These qubits define Hilbert spaces in which the
word meanings are to be represented as quantum
states. Second, all states have been assigned con-
crete parametrised quantum states. Specifically,
these states are prepared from a trivial reference
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Figure 2: Example sentence ‘person prepares tasty din-
ner’ with in (a) its DISCOCAT diagram reflecting the
pregroup parsing and in (b) a parametrised quantum cir-
cuit it can be mapped to.

state by parameterised quantum circuits. Thus,
a word state is defined by the parameters of the
quantum circuit that prepares it. A choice of con-
sistently assigning number of qubits to wires and
quantum states to words is termed an ansatz – the
step that determines the concrete parametrisation of
the word embeddings. Third, the states correspond-
ing to person and dinner were turned into effects,
by ‘bending them down’, in order to reduce the
overall number of needed post-selections, incurred
by nondeterministic Bell effects corresponding to
cups.

Having split the datasets into respective train
and test subsets, the model parameters are trained
on the former subset via the SPSA§ optimisation
algorithm against the cross-entropy Cost function,
measuring the discrepancy between predicted and
actual labels. Despite the typical noise that comes
with currently available NISQ machines, in all
three experiments the model converges well, i.e.
the Cost is minimised successfully.‡ In addition,
classical simulations were performed to see the
projected behaviour of the model in a noise-free
set-up. The typical errors after 100 SPSA iterations
are around 8-25% on the training data and 17-37%
on the test data, depending on which of the three

§Simultaneous perturbation stochastic approximation: the
optimiser we used to train the model.

‡We used IBM’s machines ibmq montreal,
ibmq toronto and ibmq bogota with
log2QuantumVolume = 5.
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Figure 3: Results for the first, second and third task in
(a), (b) and (c), respectively (qn and d are hyperparame-
ters determining the ansatz). See Refs. (Meichanetzidis
et al., 2020),(Lorenz et al., 2021) for details.

Conclusions. From a quantum machine learn-
ing perspective, this is an instance of a variational
quantum circuit approach, where, importantly, the
structure of the circuit, that is its connectivity, is

not rooted in mere heuristics, but in fact dictated by
the sentence’s syntax. From an NLP perspective,
contemplating an obvious question today, namely
whether one can do NLP on a quantum computer,
the work serves as proof of concept and indeed
paves the way to such QNLP. It also lends support
to seeing DISCOCAT as a natural choice of a lan-
guage model to that end. Future work may further
scale up the NLP tasks one can consider as the
available quantum machines improve, do compar-
ative analyses with approaches that do not use a
compositional model like DISCOCAT, that hard-
wires grammar and finally, explore the scope of
an experiment demonstrating a possible quantum
advantage for NLP tasks.
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