
Submitted to:
ACT 2021

© T. St. Clere Smithe
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Polynomial Life: the Structure of Adaptive Systems

Toby St. Clere Smithe
Topos Institute

toby@topos.institute

We extend our earlier work on the compositional structure of cybernetic systems in order to account
for the embodiment of such systems. All their interactions proceed through their bodies’ boundaries:
sensations impinge on their surfaces, and actions correspond to changes in their configurations. We
formalize this morphological perspective using polynomial functors. The ‘internal universes’ of
systems are shown to constitute an indexed category of statistical games over polynomials; their
dynamics form an indexed category of behaviours. We characterize active inference doctrines as
indexed functors between such categories, resolving a number of open problems in our earlier work,
and pointing to a formalization of the free energy principle as adjoint to such doctrines. We illustrate
our framework through fundamental examples from biology, including homeostasis, morphogenesis,
and autopoiesis, and suggest a formal connection between spatial navigation and the process of proof.

1 Introduction

In a submission to ACT 2020 [10], we presented some first steps towards a theory of categorical cyber-
netics, motivated by concerns about what gives physical systems life. We explained that perception and
action could both be described as processes of Bayesian inference: on the one hand, adjusting beliefs
about the world on the basis of observational evidence; on the other, adjusting the world itself in order
better to match beliefs. In each case, the system must instantiate a number of structures: a choice of
‘prior’ belief about the state of the world; a mechanism to generate predictions about sense-data on the
basis of that belief, called a ‘stochastic channel’; and a (typically approximate) Bayesian inversion of
that channel, by which to update those beliefs, in light of sensory observations.

The pairing of a prior with a stochastic channel corresponds to what is called in the informal litera-
ture a generative model, and it is common to suppose that these models are hierarchical: that is, that the
stochastic channel factors as some composite; one imagines that each factor corresponds to predictions
at some level of detail, cascading for example down from high-level abstractions to individual photore-
ceptors. In our earlier submission, we formalized this compositional structure using the bidirectional
‘lens’ pattern1 — since predictions and inversions are oppositely directed — and characterized a number
of approximate inference processes using a novel category of statistical games, whose best responses
correspond to optimal inferences. A cybernetic system was then defined as a ‘dynamical realisation’ of
such a game.

This formalism left some things to be desired: our notion of dynamical realisation was ill-defined,
and the notion of ‘action’ was overly abstract. In this submission, we resolve these issues, substantially
simplifying our presentation along the way. We explain that various recipes for performing approximate
inference, corresponding to our earlier informal notion of dynamical realisation, form functorial approx-
imate inference doctrines, between appropriate categories of statistical games and dynamical systems.
Then, to formalize a satisfactory notion of action, we note that any active system has a boundary defining

1See [9] for a pedagogical presentation of the fundamental structures.
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2 Polynomial Life

its morphology, and that it acts by changing the shape of this boundary; in order to act on another system,
it couples part of this boundary to that other system, so as to change the composite shape.

To formalize the shapes of systems and their interactions, we adopt polynomial functors: each poly-
nomial will encode the ‘phenotype’ (possible shapes or configurations) of a system, and the sensorium
possible in each configuration. To give such systems life, we construct categories of statistical games
and dynamical behaviours indexed by polynomials. An active inference doctrine is then an indexed
functor between such categories. This framework enables a number of possibilities: we can construct
a generative model for a corporation on the basis of models for its employees; we give compositional
descriptions of fundamental processes of life such as homeostasis and morphogenesis, and point towards
an account of autopoiesis; and we sketch the process by which living systems internalize the structures of
their environments, and navigate accordingly, noting that such navigation in abstract spaces corresponds
precisely to the process of proof.

The work presented here is work in progress, and owing to constraints of space and time, it has not
been possible to elaborate everything that we would have liked. We give proofs of the principal novel
results in an appendix, and sketch the rest. Notwithstanding these limitations, we believe our results go
some of the way to answering the open questions, of elegance and interaction, sketched at the end of our
earlier submission. We see this work as making steps towards a theory of embodied cybernetics.

Acknowledgements We thank the members of the Topos Institute for stimulating discussions, and the
Foundational Questions Institute and Topos Institute for financial support.

2 Simpler Statistical Games

We begin by presenting a refinement of the statistical games formalism developed in [10]. First, we recall
the bidirectional structure of Bayesian inversion.

2.1 Bayesian Lenses

Definition 2.1 ([11]). We define the category GrLensF of Grothendieck lenses for a (pseudo)functor
F : C op → Cat to be the total category of the Grothendieck construction for the pointwise opposite of
F . Explicitly, its objects (GrLensF)0 are pairs (C,X) of objects C in C and X in F(C), and its hom-sets
GrLensF

(
(C,X),(C′,X ′)

)
are given by dependent sums

GrLensF
(
(C,X),(C′,X ′)

)
= ∑

f :C (C,C′)
F(C)

(
F( f )(X ′),X

)
(1)

so that a morphism (C,X) 7→ (C′,X ′) is a pair ( f , f †) of f : C (C,C′) and f † : F(C)
(
F( f )(X ′),X

)
. We

call such pairs Grothendieck lenses for F or F-lenses.

Proposition 2.2. The identity Grothendieck lens on (C,X) is id(C,X) = (idC, idX). Sequential compo-
sition is as follows. Given ( f , f †) : (C,X) 7→ (C′,X ′) and (g,g†) : (C′,X ′) 7→ (D,Y ), their composite
(g,g†)◦| ( f , f †) is defined to be the lens

(
g• f ,F( f )(g†)

)
: (C,X) 7→ (D,Y ). Associativity and unitality

of composition follow from functoriality of F .
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Definition 2.3. Let (C ,⊗, I) be a monoidal category enriched in a Cartesian closed category V. Define
the C -state-indexed category Stat : C op→ V-Cat as follows.

Stat : C op → V-Cat

X 7→ Stat(X) :=


Stat(X)0 := C0
Stat(X)(A,B) := V(C (I,X),C (A,B))

idA : Stat(x)(A,A) :=
{
idA : C (I,X)→ C (A,A)

ρ 7→ idA

 (2)

f : C (Y,X) 7→


Stat( f ) : Stat(X) → Stat(Y )

Stat(X)0 = Stat(Y )0

V(C (I,X),C (A,B)) → V(C (I,Y ),C (A,B))
α 7→ f ∗α :

(
σ : C (I,Y )

)
7→
(

α( f •σ) : C (A,B)
)


Composition in each fibre Stat(X) is given by composition in C . Explicitly, given α : V(C (I,X),C (A,B))
and β : V(C (I,X),C (B,C)), their composite is β ◦α : V(C (I,X),C (A,C)) := ρ 7→ β (ρ)•α(ρ), where
here we indicate composition in C by • and composition in the fibres Stat(X) by ◦.

Definition 2.4. Instantiating the category of Grothendieck F-lenses GrLensF with F = Stat : C op →
V-Cat, we obtain the category GrLensStat whose objects are pairs (X ,A) of objects of C and whose
morphisms (X ,A) 7→ (Y,B) are Bayesian lenses: elements of the hom objects

GrLensStat
(
(X ,A),(Y,B)

)∼= C (X ,Y )×V
(
C (I,X),C (B,A)

)
. (3)

The identity Stat-lens on (Y,A) is (idY , idA), where by abuse of notation idA : C (I,Y )→ C (A,A) is the
constant map idA defined in (2) that takes any state on Y to the identity on A. The sequential composite of
(c,c†) : (X ,A) 7→ (Y,B) and (d,d†) : (Y,B) 7→ (Z,C) is the Stat-lens

(
(d•c),(c†◦c∗d†)

)
: (X ,A) 7→ (Z,C)

with (d • c) : C (X ,Z) and where (c† ◦ c∗d†) : V
(
C (I,X),C (C,A)

)
takes a state π : C (I,X) on X to the

channel c†
π •d†

c•π .

Theorem 2.5 ([9]). Let (c,c†) and (d,d†) be sequentially composable exact Bayesian lenses. Then the
contravariant component of the composite lens (d,d†) ◦| (c,c†) = (d • c,c† ◦ c∗d†) is, up to d • c • π-
almost-equality, the Bayesian inversion of d • c with respect to any state π on the domain of c such that
c•π has non-empty support.

2.2 Statistical Games

The performance of a statistical or cybernetic system depends upon its interaction with its environment,
and the prior beliefs that it started with. We will therefore define a statistical game to be a Bayesian lens
paired with a fitness function measuring performance in context; and for this we need a notion of context.

Definition 2.6. We define the type of contexts for a Bayesian lens of type (X ,A) 7→ (Y,B) to be

BayesLensC

(
(X ,A),(Y,B)

)
:= BayesLensC

(
(I, I),(X ,A)

)
×BayesLensC

(
(Y,B),(I, I)

)
where I is the monoidal unit in C .
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Proposition 2.7. In the typical case where I is terminal in C , we have

BayesLensC

(
(X ,A),(Y,B)

)∼= C (I,X)×C (Y,A) .

The proof is a straightforward calculation and we omit it.

Proposition 2.8. Given a context (π,k) : BayesLensC

(
(X ,A),(Z,C)

)
for a composite lens (X ,A)

f7→
(Y,B)

g7→ (Z,C), we can obtain contexts for the factors as follows. We have

(π,k ◦| g) : BayesLensC

(
(X ,A),(Y,B)

)
,

( f ◦| π,k) : BayesLensC

(
(Y,B),(Z,C)

)
.

We are now in a position to define the category of statistical games over C .

Proposition 2.9. Let C be a category admitting Bayesian inversion. There is a category SGameC whose
objects are the objects of BayesLensC and whose morphisms (X ,A)→ (Y,B) are statistical games: pairs
( f ,φ) of a lens f : BayesLensC

(
(X ,A),(Y,B)

)
and a fitness function φ : Set

(
BayesLensC

(
(X ,A),(Y,B)

)
,R
)
.

Proof. Deferred to §A.1.

Definition 2.10. We will write SimpSGameC ↪→ SGameC for the full subcategory of SGameC defined
on simple Bayesian lenses (X ,X) 7→ (Y,Y ). Since duplicating the objects in the pairs (X ,X) is redundant,
we will write the objects simply as X and the morphisms as X 7→ Y accordingly.

We now present some key examples of statistical games.

Example 2.11. A simple Bayesian inference game is any game whose lens is simple (c,c′) : Z 7→ X and
whose loss function is Ex∼k•c•π

[
DKL(c′π(x),c

†
π(x))

]
, where E denotes expectation, π : I→• Z, k : X→• X ,

DKL denotes the Kullback-Leibler divergence, and c† is the exact inversion of c.

Typically, computing DKL(c′π(x),c
†
π(x)) is computationally difficult, so one resorts to optimizing an

upper bound; a prominent choice is the free energy.

Definition 2.12. Let (π,c) be a generative model with c : Z→• X . Let pc : X×Z→ R+ and pπ : Z→ R+

be density functions corresponding to c and π . Let pc•π : X→R+ be a density function for the composite
c•π . Let c′π be a channel X→• Z that we take to be an approximation of the Bayesian inversion of c and
that admits a density function q : Z×X → R+. The free energy of c′π with respect to the generative
model given an observation x : X is the quantity

φ(x) := E
z∼c′π (x)

[
log

q(z|x)
pc(x|z) · pπ(z)

]
. (4)

Proposition 2.13. Let DKL denote the Kullback-Leibler divergence between two distributions. The free
energy satisfies the following equality:

E
z∼c′π (x)

[
log

q(z|x)
pc(x|z) · pπ(z)

]
= DKL

[
c′π(x),c

†
π(x)

]
− log pc•π(x)

Since log pc•π(x) is always negative, the free energy is an upper bound on DKL

[
c′π(x),c

†
π(x)

]
.
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Proof. Let pω : Z×X→R+ be the density function pω(z,x) := pc(x|z) · pπ(z) corresponding to the joint
distribution of the generative model. We have the following equalities:

− log pc•π(x) = E
z∼c′π (x)

[− log pc•π(x)]

= E
z∼c′π (x)

[
− log

pω(z,x)
pc†

π
(z|x)

]
(by Bayes’ rule)

= E
z∼c′π (x)

[
− log

pω(z,x)
q(z|x)

q(z|x)
pc†

π
(z|x)

]

=− E
z∼c′π (x)

[
log

pω(z,x)
q(z|x)

]
−DKL

[
c′π(x),c

†
π(x)

]

Any system that performs (approximate) Bayesian inversion can thus be seen as minimizing some
free energy. The free energy principle says that all it means to be an adaptive system is to embody a
process of approximate inference in this way. We therefore define free energy games:

Example 2.14. A corresponding simple free energy game is any game whose lens is simple (c,c′) :
Z 7→ X and whose loss function is given by

E
x∼k•c•π

[
E

z∼c′π (x)
[− log pc(x|z)]+DKL(c′π(x),π)

]
= E

z∼c′π•k•c•π

[
−
∫

X
log pc(dk • c•π|z)

]
+DKL(c′π • k • c•π,π)

where π : I→• Z and k : X→• X , and where the second line follows from the first by linearity of expectation.

Remark 2.15. It is also often of interest to consider parameterized channels, for which we can use the
Para construction [12]. This acts by adjoining an object of parameters to the domain of the category
at hand (such as the category of Bayesian lenses), and tensoring parameters of composite morphisms.
Formally, this corresponds to a generalization of the indexed category of state-dependent morphisms,
and forms the subject of a parallel submission. The parameters might represent the ‘weights’ of a neural
network, or encode some structure about the possible predictions. Lacking the space to do justice to this
structure here, we nonetheless leave it at that.

3 Systems Within Interfaces; Worlds Within Worlds

In this section, we develop the structures required for extending the formalism of statistical games to
embodied systems.

3.1 Polynomials for Embodiment and Interaction

Each system in our universe inhabits some interface or boundary. It receives signals from its environ-
ments through this boundary, and can act by changing its shape (and, as we will see later, its position).
As a system changes its shape, the set of possible immanent signals might change accordingly: consider
a hedgehog rolling itself into a ball, thereby protecting its soft underbelly from harm (amongst other
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immanent signals). A system may also change its shape by coupling itself to some other system, such as
when we pick up chalk to work through a problem. And shapes can be abstract: we change our ‘shapes’
when we enter an online video conference, or move within a virtual reality. We describe all of these
interactions formally using polynomial functors, drawing on the work of [13].

Definition 3.1. Let E be a locally Cartesian closed category, and denote by yA the representable co-
presheaf yA := E (A,−) : E → E . A polynomial functor p is a coproduct of representable functors, writ-
ten p := ∑i:p(1) ypi , where p(1) : E is the indexing object. The category of polynomial functors in E is the
full subcategory PolyE ↪→ [E ,E ] of the E -copresheaf category spanned by coproducts of representables.
A morphism of polynomials is therefore a natural transformation.

Remark 3.2. Every copresheaf P : E → E corresponds to a bundle p : E → B in E , for which B =
P(1) and for each i : P(1), the fibre pi is P(i). We will henceforth elide the distinction between a
copresheaf P and its corresponding bundle p, writing p(1) := B and p[i] := pi, where E = ∑i p[i]. A
natural transformation f : p→ q between copresheaves therefore corresponds to a map of bundles. In the
case of polynomials, by the Yoneda lemma, this map is given by a ‘forwards’ map f1 : p(1)→ q(1) and
a family of ‘backwards’ maps f # : q[ f1(-)]→ p[-] indexed by p(1), as in the left diagram below. Given
f : p→ q and g : q→ r, their composite g◦ f : p→ r is as in the right diagram below.

E f ∗F F

B B C

f #

qp

f1

y
E f ∗g∗G G

B B D

(g f )#

rp

g1◦ f1

y

where (g f )# is given by the p(1)-indexed family of composite maps r[g1( f1(-))]
f ∗g#

−−→ q[ f1(-)]
f #

−→ p[-].

In our morphological semantics, we will call a polynomial p a phenotype, its base type p(1) its
morphology and the total space ∑i p[i] its sensorium. We will call elements of the morphology shapes or
configurations, and elements of the sensorium immanent signals.

Proposition 3.3 ([13]). There is a monoidal structure (PolyE ,⊗,y) that we interpret as “putting systems
in parallel”. Given p : ∑i p[i]→ p(1) and q : ∑ j q[ j]→ q(1), we have p⊗q = ∑i ∑ j p[i]×q[ j]→ p(1)×
q(1). y : 1→ 1 is then clearly unital.

Proposition 3.4 ([13]). The monoidal structure (PolyE ,⊗,y) is closed, with corresponding internal hom
denoted [−,−].

We interpret morphisms ( f1, f #) of polynomials as encoding interaction patterns; in particular, such
morphisms encode how composite systems act as unities. For example, a morphism f : p⊗q→ r speci-
fies how the systems p and q come together to form a system r: the map f1 encodes how r-configurations
are constructed from configurations of p and q; and the map f # encodes how immanent signals on p and
q result from signals on r or from the interaction of p and q. For intuition, consider two people engaging
in a handshake, or an enzyme acting on a protein to form a complex. The internal hom [o, p] encodes all
the possible ways that an o-phenotype system can “plug into” a p-phenotype system.

Remark 3.5. In the literature on active inference and the free energy principle, there is much debate
about the concept of ‘Markov blanket’, an informal notion conceived to represent the boundary of an
adaptive system. We believe that the algebra of polynomials is sufficient to formalize this concept pre-
cisely, and clear up much of the confusion in the literature.
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3.2 Dynamical Behaviours on Polynomial Interfaces

Although dynamical systems can be modelled within PolyE itself, we prefer to take a fibrational perspec-
tive, following the idea that polynomials represent the boundaries of systems, separating ‘internal’ states
from ‘external’. We will therefore adopt a pattern of indexing categories by polynomials: in the case of
dynamics, the fibre over a polynomial will be a category of possible internal systems, whose projection
forgets the internal structure. We adopt an observational perspective on dynamics accordingly: our cat-
egories of dynamics will in fact be categories of behaviours compatible with the phenotype. We follow
[8] and use sheaves over a site of intervals, sections of which constitute finite trajectories. Adopting such
a topos gives us access to its corresponding logic and temporal type theory [7], which in turn permits the
consideration of statistical games in nonstationary contexts.
Definition 3.6. Let (T,+,0) be a monoid representing time, such as R+ or N. Define the interval
site to be the twisted arrow category of the delooping of T, denoted IntT := Tw(BT), equipped with
the Johnstone coverage [8]. Explicitly, the objects of IntT are elements of T that we take to represent
intervals, and the morphisms a : l→ l′ are inclusions of intervals l into l′ at offset a, such that a+ l ≤ l′.
Definition 3.7. Denote by BT

E the category of E -valued sheaves on IntT.
Example 3.8. There is a functorial inclusion Traj : E ↪→BT

E of E into BT
E given by Traj(X) = E (−,X) :

IntT op→ E . Semantically, Traj(X) is the sheaf of trajectories over X .
Proposition 3.9. A dynamical system with state spaces in E is an object in the functor category Cat(BT,E ).
There is an embedding Cat(BT,E ) ↪→BT

E given as follows. Suppose θ is a dynamical system on X : E .
The embedding takes θ to the subsheaf Θ ↪→ Traj(X) given by {θ(−,x) | x : X}.
Definition 3.10. Define the PolyE -indexed category BPT

E : PolyE →Cat of dynamical behaviours over
polynomial interfaces in E and time T as follows. On objects, let BPT

E (p) :=BT
E /Traj

(
∑i:p(1) p[i]

)
. On

morphisms ϕ : p→ q, define BPT
E (ϕ) : BT

E /Traj
(
∑i:p(1) p[i]

)
→BT

E /Traj
(
∑ j:q(1) q[ j]

)
as follows. Let

Traj(ϕ#)∗ : BT
E /Traj

(
∑i:p(1) p[i]

)
→BT

E /Traj
(
ϕ∗∑ j:q(1) q[ j]

)
be the base-change along Traj(ϕ#). Let

πq : ϕ∗∑ j:q(1) q[ j]→∑ j:q(1) q[ j] be the projection out of the pullback and let Traj(πq)! : BT
E /Traj

(
ϕ∗∑ j:q(1) q[ j]

)
→

BT
E /Traj

(
∑ j:q(1) q[ j]

)
be the corresponding left adjoint to base change along Traj(πq). Then BPT

E (ϕ) :=
Traj(πq)!◦Traj(ϕ

#)∗ : BT
E /Traj

(
∑i:p(1) p[i]

)
→BT

E /Traj
(
∑ j:q(1) q[ j]

)
. When the choice of time monoid

T is clear from the context, we will often write just BPE .
Since we are principally interested in systems with uncertainty, we consider how to model random

dynamical systems in this setting. Let P : E → E be a probability monad on E . The slice 1/K `(P)
of its Kleisli category under the terminal object 1 is the category of probability spaces with measure-
preserving maps in E . A random dynamical system is a bundle of dynamical systems in E , where the
base system is measure-preserving. Denote the base probability space by (Ω,ν). The behaviours of a
random dynamical system system then form a sheaf in BT

E /Traj(Ω) where the projection of the stalk at
any point in time onto Ω is isomorphic to the support of ν .
Definition 3.11. We first define a polynomially-indexed category of bundles of behaviours over prob-
ability spaces. Let U : 1/K `(P)→ E be the forgetful functor taking a probability space (Ω,ν) to the
corresponding space Ω in E . Then define BBPT

P : PolyE → Cat on each p to be the lax colimit

BBPT
P(p) :=

∫ (Ω,ν) :1/K `(P)

BT
E /Traj

(
U(Ω,ν)× ∑

i:p(1)
p[i]

)
.

On morphisms of polynomials ϕ : p→ q we define BBPT
P(ϕ) as in Definition 3.10:

BBPT
P(ϕ) :=

∫ (Ω,ν)

Traj(U(Ω,ν)×πq)! ◦Traj
(
U(Ω,ν)×ϕ

#)∗
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We define the indexed category of random behaviours as a subcategory of these bundle systems.

Definition 3.12. Define the polynomially indexed category of random behaviours RBPT
P : PolyE →

Cat to be, on polynomials p, the subcategory of BBPT
P(p) of sheaves whose stalks, when projected onto

Ω, are isomorphic to the support of the corresponding measure ν . On morphisms of polynomials ϕ : p→
q, RBPT

P(ϕ) is defined as BBPT
P(ϕ), which preserves the stalk projection property since BBPT

P(ϕ)
doesn’t act on the Ω factor.

Example 3.13. The solutions X(t,ω;x0) : R+×Ω×M→M to a stochastic differential equation dXt =
f (t,Xt)dt +σ(t,Xt)dWt , where W : R+×Ω→M is a Wiener process in M, define a random dynamical
system R+×Ω×M→M : (t,ω,x) 7→ X(t,ω;x0) over the Wiener base flow ϑ : R+×Ω→Ω : (t,ω) 7→
W (s+ t,ω)−W (t,ω) for any s : R+. We can alternatively represent this system as a bundle system
over Ω, writing Θ : R+×Ω×M→Ω×M : (t,ω,x) 7→ (ϑ(t,ω),X(t,ω;x0)). We then seek a bundle of
sheaves S→ Traj(Ω). First, let Ω̄ := {ϑ(−,ω) : R+→Ω} with ϑ being the Wiener base flow as given.
Let S := {Θ(−,ω,x) : R+→Ω×M}. Then we have S→ Ω̄ ↪→ Traj(Ω) as required.

Example 3.14. A Markov chain on M is given by a coalgebra τ : M →P M. This is equivalently

a pair (Ω×M τ#

−→ M,ν : P Ω). So now suppose ϑ : N×Ω→ Ω is a ν-preserving system. Given a
sequence of points {ωi}i:N we can form the system τ ′ : N×M→ M : (n,x) 7→ τ#(ωn) ◦ · · · ◦ τ#(ω0,x).
But ϑ : N×Ω→Ω generates such a sequence in Ω, so we can define τ̄ : N×Ω×M→M : (n,ω,x) 7→
τ#
(
ϑ n−1(ω)

)
◦ · · · ◦ τ# (ω,x) when n > 0 and τ̄(0,ω,x) = x, which satisfies the cocycle condition of

a (random) dynamical system. We then obtain a trivial bundle system on Ω×M → Ω by defining
Θ : N×Ω×M→Ω×M : (n,ω,x) 7→ (ϑ(n,ω), τ̄(n,ω,x)) and then obtain a bundle of behaviour sheaves
by the method in Example 3.13.

3.3 Nested Systems and Dependent Polynomials

The foregoing formalism suffices to describe systems’ shapes, and behaviours of those shapes that de-
pend on their sensoria. But in our world, a system has a position as well as a shape! Indeed, one might
want to consider systems nested within systems, such that the outer systems constitute the ‘universes’
of the inner systems; in this way, inner shapes may depend on outer shapes, and inner sensoria on outer
sensoria.2 We can model this situation polynomially.

Recall that an object in PolyE corresponds to a bundle E → B, equivalently a diagram 1← E
p−→

B→ 1, and note that the unit polynomial y corresponds to a bundle 1→ 1. We can then think of PolyE

as the category of “polynomials in one variable”, or “polynomials over y”. This presents a natural
generalization, to polynomials in many variables, corresponding to diagrams J ← E → B→ I; these
diagrams form the objects of a category PolyE (J, I). When J is a (polynomial) bundle β over I, then we
can take the subcategory of PolyE (J, I) whose objects are commuting squares and whose morphisms are
prisms as follows; the commutativity ensures that inner and outer sensoria are compatible.

Proposition 3.15. There is an indexed category of nested polynomials which by abuse of notation we
will call PolyE (−) : PolyE →Cat. Given β : J→ I, the category PolyE (β ) has commuting squares as on
the left below as objects and prisms as on the right as morphisms. Its action on polynomial morphisms

2We might even consider the outer shapes explicitly as positions in some world-space, and the outer sensorium as determined
by possible paths between positions, in agreement with the perspective of [13] on polynomials.
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β → γ is given by composition.

E J

B I

E J

B f ∗F

B F

I C

Remark 3.16. This construction can be repeatedly iterated, modelling systems within systems within
systems. We leave the consideration of the structure of this iteration to future work, though we expect it
to have an opetopic shape equivalent to that obtained by iterating the Para construction (Remark 2.15).

Observation 3.17. Our polynomially indexed categories of dynamical behaviours (Def. 3.10) and statis-
tical games (Prop. 4.6) generalize to the case of nested polynomials, giving a doubly-indexed structure.

4 Theories of Approximate and Active Inference

We now start to bring together the structures of the previous sections, in order to breathe life into poly-
nomials. We begin by sketching approximate inference doctrines, which characterize dynamical systems
that optimize their performance at statistical games, without reference to morphology. In this paper, we
do not concentrate on the detailed structure of these doctrines, leaving their exposition and comparison
to future work, where we will also be interested in morphisms between doctrines.

4.1 Two Approximate Inference Doctrines

An approximate inference doctrine will be a monoidal functor from a category of statistical games into
an appropriate category of dynamical systems, taking games to systems that ‘play’ those games, typically
by implementing an optimization process. In the free-energy literature (e.g., [2]), these systems have a
hierarchical structure in which the realization of a game has access to the dynamics realizing the prior,
mirroring the context-dependence of the games themselves. We therefore define the dynamical semantics
accordingly.

Proposition 4.1. Let P : E → E be a probability monad and T be a time monoid. There is a monoidal
category of Bayesian lenses with dynamical semantics, denoted DynLensTP , whose objects are those of
BayesLensK `(P) and whose morphisms (X ,A) 7→ (Y,B) are lenses equipped with dynamical semantics
functors RBPT

P(XyA)→RBPT
P(AY yXB). Given lenses (X ,A) 7→ (Y,B) 7→ (Z,C), we form the composite

semantics functor RBPT
P(XyA)→RBPT

P(AZXC) by first obtaining a system on AY yXB using the seman-
tics of the first factor, wiring the XyA system to obtain a system on AY yAB, tracing out the A to obtain
Y yB, and hence BZYC from the second semantics functor; we then tensor AY yXB and BZYC, obtaining
ABY ZyXY BC, tracing out BY to obtain AZyXC as required. The monoidal product on semantics functors
is given by tensoring the systems.

Definition 4.2. An approximate inference doctrine is a monoidal functor from SGameC (or some
subcategory thereof) for some Markov category C to DynLensTP for some probability monad P .
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Many informal approximate inference schemes—including Markov chain Monte Carlo, variational
Bayes, expectation-maximization, particle filtering—give rise to approximate inference doctrines; func-
toriality typically follows from Theorem 2.5. Here we note two explicitly, for later reference.
Proposition 4.3. Let C be the subcategory of K `P spanned by Euclidean spaces and stochastic chan-
nels emitting Gaussian distributions. Let G be the subcategory of SGameK `(P) restricted to free energy
games. The Laplace doctrine takes each such game to a dynamical system performing gradient descent
on the free energy under the assumption that the Gaussians are tightly concentrated about their modes
such that the free energy is well approximated by a Taylor expansion to 2nd order.[2] (Under this as-
sumption, analytic expressions for the dynamics obtain.)
Proposition 4.4. By lifting the category C of the preceding proposition to the behaviour topos BE , we
can define a category of “free action” games: these are games whose loss functions correspond to the
time-integral of the free-energy over the trajectories. By making the same assumptions of tightly-peaked
Gaussians, one obtains the approximate inference doctrine of generalized filtering [6]; the resulting equa-
tions of motion are formally similar, but now encompass nonstationary contexts.

4.2 Statistical Games over Polynomials

Despite admitting dynamical contexts, the approximate inference doctrine of generalized filtering nonethe-
less does not supply a satisfactory model of active systems. One piece of structure is still missing, with
which we can describe action and interaction faithfully: an indexed category of statistical games over
polynomials. In order to construct this, we first define categories of “games on interfaces”: this is simpler
than slicing the category of statistical games, as we do not require games between games.
Definition 4.5. Let P : E → E be a probability monad on E . Let X : E be an object in E . Define
a category of simple statistical games on the interface X , denoted IntGameP(X), as follows. Its
objects are simple statistical games with codomain X ; that is, points of ∑A:E SimpSGameK `(P)(A,X).
Let (γ,ρ,φ) : A→ X and (δ ,σ ,χ) : B→ X be two such simple statistical games. Then a morphism
(γ,ρ,φ)→ (δ ,σ ,χ) is a deterministic function f : A→ B—that is, a point of E (A,B)—such that γ =
δ ◦ f . Unitality and associativity follow immediately from those properties in E /P X .

We then use this to construct games over polynomials. The intuition here is that ‘inside’ a system
with a polynomial phenotype is a statistical model of the system’s sensorium. This involves an object
representing the space of possible causes of observations, and a simple statistical game from this object
onto the sensorium; by its nature, this model induces predictions about the system’s configurations, as
well about the immanent signals. By sampling from these predicted configurations, the system can act;
by observing its actual configuration and the corresponding immanent signals, it can update its internal
beliefs, and any parameters of the model. Later, we will equip this process with (random) dynamics,
thereby giving the systems life.
Proposition 4.6. Let P : E → E be a probability monad on a locally Cartesian closed category E . There
is a polynomially indexed category of statistical games PSGameP : PolyE →Cat, defined on objects
p as IntGameP

(
∑i:p(1) p[i]

)
. We defer the definition of the action of PSGameP on polynomial maps

to §A.2, where we also give the proof of pseudofunctoriality.
Example 4.7. To understand the action of PSGameP(ϕ) on statistical games, it may help to consider
the example of a corporation. Such a system is composed of a number of active systems, instantiating
statistical games, interacting according to some pattern, formalized by the polynomial map φ . Given such
a collection of games PSGameP(ϕ) tells us how to construct a game for the corporation as a whole:
in particular, we obtain a stochastic channel generating predictions for the (exposed) sensorium of the
corporation, and an inversion updating the constituent systems’ beliefs accordingly.
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4.3 Active Inference

We are now ready to define active inference doctrines; given all the foregoing structure, this proves
relatively simple.
Definition 4.8. Let P : E → E be a probablity (valuation) monad on a locally Cartesian closed category,
and let T be a time monoid. An active inference doctrine is a monoidal indexed functor from PSGameP

(or some sub-indexed category thereof) to RBPT
P .

Proposition 4.9. Both the Laplace and generalized filtering doctrines lift from approximate to active
inference. The functors on each fibre are as before on games (here, objects), and on morphisms between
games they are given merely by lifting the corresponding maps to the behaviour topos. One then checks
that morphisms of polynomials correspond to natural transformations between these functors.
Remark 4.10. It would be desirable to incorporate the compositional structure of the games themselves,
rather than treat them opaquely as objects. This suggests a double-categorical structure the investigation
of which we leave to future work. Similarly, we do not here elaborate the extension of these indexed
categories to the dependent-polynomial case.

5 Polynomial Life and Embodied Cognition

Finally, we sketch how a number of classic biological processes can be modelled as processes of active
inference over polynomials. The key insight is that, by fixing the prior of an ‘active’ free-energy game to
encode high-precision (low-variance) beliefs about the external state, we can induce the system to prefer
acting (to reify those beliefs) over perceiving (i.e., updating the beliefs to match perceptions). In doing
so, one can induce volition or goal-directedness in the system. A key feature of these examples is that
they demonstrate ‘embodied’ cognition, in which a system’s form and interactions become part of its
cognitive apparatus.
Remark 5.1. Of course, one must be careful not to choose a prior with excessively high precision (such
as a Dirac delta distribution), as this would cause the system to forego any belief-updating, thereby
rendering its actions independent from the ‘actual’ external state.
Example 5.2. Suppose that the system’s sensorium includes a key parameter such as ambient temper-
ature or blood pH. Suppose that by adjusting its configuration, the system can move around in order to
sample this parameter. And suppose that the ‘prior’ encodes a high-precision distribution centred on the
acceptable range of this parameter. Then it is straightforward to show that the system, by minimizing the
free energy, will attempt to configure itself so as to remain within the acceptable parameter range. We
can consider this as a simple model of homeostasis.
Example 5.3. We can extend the previous example to a system with multiple (polynomial) components,
each equipped with a “homeostasis game”, in order to model morphogenesis. Suppose the environmen-
tal parameter in the sensorium is the local concentration of some signalling molecule, and suppose the
polynomial morphism forming the composite system encodes the pattern of signalling molecule concen-
trations in the neighbourhood of each system, as a result of their mutual configurations. Suppose then
that the target state encoded in the prior of each system corresponds to the system being positioned in a
particular way relative to the systems around it, as represented by the signal concentrations. Free-energy
minimization then induces the systems to arrange themselves in order to obtain the target pattern.
Remark 5.4. The foregoing examples begin to point towards a compositional theory of autopoiesis:
here, one might expect the target state to encode the proposition “maintain my morphology”, which ap-
pears self-referential. The most elegant way of encoding this proposition in the prior is not immediately
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clear, although a number of possibilities present themselves (such as avoiding some undesirable con-
figuration representing dissolution). We expect a satisfactory answer to this to be related to “Bayesian
mechanics” (§6).

Remark 5.5. It has been shown informally that, given a finite time horizon Markov decision problem,
active inference can recover the Bellman-optimal policy traditionally obtained by backward induction
[4]. On-going work by the present author is directed at formalizing the structure of this relationship. In
particular, the result rests on encoding directly into the prior the expectation of the loss function given
a policy and a goal, which strikes us as a large amount of information to push into an unstructured
distribution over numbers.

Example 5.6. The examples need not be restricted to simple biological cases. For instance, we can model
spatial navigation quite generally: we can use parameterized statistical games to encode uncertainty
about the structure of the ‘external space’ (for instance: which points or neighbourhoods are connected to
which, and by which paths). By setting a high-precision prior at some location, the system will attempt to
reach that location, learning the spatial structure along the way; reducing the precision of the prior causes
the system to prefer “mere exploration”. One can attach sense-data to each location using the natural
polynomial bundle structure. Moreover, the ‘external space’ need not be a simple topological space:
it may be something more structured. For instance, categories and sites can themselves be modelled
polynomially. One can think of “taking an action” as precisely analogous to “following a morphism”:
thus, in a topos-theoretic setting, one can consider the structure of the ‘external space’ to be a type-
theoretic context, and positions in the world to be objects in the corresponding topos. One could then
encode in the prior a target proposition, and free-energy minimization would cause the system then to
explore the ‘space’ (learning its structure), and seek a path to the target. But such a path is precisely a
proof! There is increasing evidence that the neural mechanisms underlying spatial and abstract navigation
are the same [1], and this seems to supply a mathematical justification.

6 Future Directions

Besides expanding the examples above in detail, there are many future directions to pursue. Our last
example points towards a ‘well-typed’ theory of cognition, finding type-theoretic analogues of cognitive
processes (such as action, planning, or navigation). By formalizing the connection between polynomial
statistical games and Markov decision processes, we hope finally to relate our ‘statistical’ account of
cybernetics with the account emerging from research in compositional game theory. In particular, we
believe that the hierarchical/nested structure of our polynomial systems is structurally similar to that of
(parameterized) players in open games. Along similar lines, we expect a connection between statistical
games and ‘learners’ [12] implementing backprop.

In a more physical direction, there is a controversy in the informal literature about whether one
should expect any system with a boundary (and hence any system on a polynomial) to admit a canon-
ical statistical-game description; the typical suggestion is that such a description should obtain at non-
equilibrium steady state, through a manipulation of the corresponding Fokker-Planck equation; this is
the notion of “Bayesian mechanics” [5]. Our results suggest that such a canonical description should
form a left adjoint to some active inference doctrine; this is a matter of on-going research by the author.

Working topos-theoretically points further in a metaphysical direction: a Bayesian perspective lends
itself to subjectivism, but considering the “internal universe” of a navigating system to be a topos in
some context also points to a subjective realism. It seems likely then that composite systems need not in
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general agree about their observations. We should therefore expect to find evidence of contextuality and
disagreement in multi-agent systems, and to investigate this using cohomological tools (e.g., [3]).
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A Proofs

A.1 Proof of Prop 2.9

Proof. Suppose given statistical games ( f ,φ) : (X ,A)→ (Y,B) and (g,ψ) : (Y,B)→ (Z,C). We seek a
composite game (g,ψ)◦ ( f ,φ) := (g f ,ψφ) : (X ,A)→ (Z,C). We have g f = g◦| f by lens composition.
Propositon 2.8 gives us a dependent function localCtx with signature

BayesLensC

(
(X ,A),(Z,C)

)
×BayesLensC

(
(X ,A),(Y,B)

)
×BayesLensC

(
(Y,B),(Z,C)

)
→ BayesLensC

(
(X ,A),(Y,B)

)
×BayesLensC

(
(Y,B),(Z,C)

)
.

http://dx.doi.org/10.4204/EPTCS.236.2
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We therefore define the composite fitness function ψφ to be

ψφ := add◦ (φ ,ψ)◦ localCtx(−, f ,g)

where add : R×R→ R is the addition of real numbers. (Note that in general any associative unital
binary operation on R would suffice here.) The identity game (X ,A)→ (X ,A) is given by (id,0), the
pairing of the identity lens on (X ,A) with the constant function on 0 (or, more generally, constant on
the unit of the algebra add). Associativity and unitality are immediate from associativity and unitality of
lens composition and associativity and unitality of add.

A.2 Details for Proposition 4.6

Proposition A.1 (Action of PSGameP on morphisms of polynomials). A morphism of polynomials
ϕ : p→ q induces a functor PSGameP(ϕ) : PSGameP(p)→ PSGameP(q). Suppose the polynomial
p corresponds to a bundle E → B, where E = ∑i:p(1) p[i] and B = p(1), and q corresponds to a bundle
F →C with F = ∑ j:q(1) q[ j] and C = q(1). Write (γ,ρ,φ) : X → E for a generic statistical game on p:
this consists in a forwards channel γ : X →P E, an inverse channel ρ : P X ×E →P A, and a fitness
function φ : BayesLensK `(P) ((X ,X),(E,E))→R. We now define the action of PSGameP(ϕ) on each
of these three components. On the forwards channel, PSGameP(ϕ) takes γ to the composite map in the
top of the following diagram in E , where the square defines the indicated pullback:

γ∗Pϕ∗F Pϕ∗F PF

X PE

(P ϕ#)
∗
γ P πF

P ϕ#
γ∗(P ϕ#)

γ

y

(5)

On the inverse channel, PSGameP(ϕ) takes ρ to the composite map indicated at the top of the
following diagram in K `(P). Note that, for notational simplicity, we have used the name of a map in
E for its image under the canonical lifting by Kleisli extension to K `(P).

γ∗Pϕ∗F ϕ∗F F

X E

(P ϕ#)
∗
γ πF

ϕ#γ∗(P ϕ#)

γ

ρ
γ∗(P ϕ#)(−)

(πF )
†
(P ϕ#)∗γ(−)

(γ∗(P ϕ#))†
(−)

(γ∗(P ϕ#))†
(−)•ργ∗(P ϕ#)(−)•ϕ

#•(πF )
†
(P ϕ#)∗γ(−)

(6)

On fitness functions, PSGameP(ϕ) takes φ : BayesLensK `(P)

(
(X ,X),(E,E)

)
→ R to a fitness

function of type BayesLensK `(P)

(
(γ∗P ϕ∗F,γ∗P ϕ∗F),(F,F)

)
→ R, as follows. We can construct

simple Bayesian lenses γ∗P ϕ∗F 7→ X and F 7→ E using maps from the diagrams above. First, observe
that (ξ ,ξ †) :=

(
γ∗(P ϕ#),

(
γ∗(P ϕ#)

)†
)

is a Bayesian lens of the former type. Next, observe that the
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first factor of the context gives a state ν on γ∗P ϕ∗F , and pushing this through
(
P ϕ#

)∗
γ gives a state(

P ϕ#
)∗

γ •ν on ϕ∗F . We now construct a simple Bayesian lens (ζ ,ζ †) : F 7→ E, writing

ζ := F
(πF )

†
(P ϕ#)∗γ

−−−−−−−→P ϕ
∗F

P ϕ#

−−−→P E ,

ζ
† := P F×E

(πF )
†
(P ϕ#)∗γ•ν

×idE

−−−−−−−−−−−→P ϕ
∗F×E

(ϕ#)†

−−−→P ϕ
∗F P πF−−−→P F .

Hence we obtain a map

β :=BayesLensK `(P)

(
(γ∗P ϕ

∗F,γ∗P ϕ
∗F),(F,F)

)
BayesLensK `(P)

(
(ξ ,ξ †),(ζ ,ζ †)

)
−−−−−−−−−−−−−−−−−−→ BayesLensK `(P)

(
(X ,X),(E,E)

)
by post- and pre-composition. Then composing φ ◦β gives a fitness function of the required type.

Next, we define the action of PSGameP(ϕ) on morphisms f : X → Y in PSGameP(p). Let
(γ,ρ,φ) : X → E and (δ ,σ ,χ) : Y → E be the objects (statistical games with codomains E). Note that
γ∗P ϕ∗F ∼= (P ϕ#)∗γ and δ ∗P ϕ∗F ∼= (P ϕ#)∗δ . Then let PSGameP(ϕ)( f ) := (P ϕ#)∗ f . Commu-
tativity of the corresponding triangle in PSGameP(q) is immediate, and functoriality follows from that
of limits.

Proof of pseudofunctoriality. We treat PolyE as a trivial bicategory, with discrete hom-categories, and
so it only remains to check pseudofunctoriality of PSGameP ; that is, that given ϕ : p→ q and ψ : q→ r
in PolyE , PSGameP(ψ ◦ ϕ ∼= PSGameP(ψ) ◦ PSGameP(ϕ). We need to check this on forwards
channels, backwards channels, fitness functions, and morphisms between games. Let the polynomial r
correspond to the bundle G→ D where G := ∑k:r(1) r[k] and D := r(1).

We start with forwards channels. The forwards channel of PSGameP(ψ)◦PSGameP(ϕ)(γ,ρ,φ)
is by definition the top map in the following diagram, where the bottom map below is the top map in the
defining diagram (5) above:

γ∗P ϕ∗ψ∗G P ψ∗G P G

γ∗P ϕ∗F P ϕ∗F P F

P ψ#

P πF(P ϕ#)
∗
γ

y

(7)

The forwards channel of PSGameP(ψ ◦ϕ)(γ,ρ,φ) is by definition the top map in the following dia-
gram:

γ∗P ϕ∗ψ∗G P ϕ∗ψ∗G P G

X P E

P(ψϕ)#γ∗(P(ψϕ)#)

γ

y

(8)
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We need to show that the two composite top channels γ∗P ϕ∗ψ∗G→P G are equal up to isomorphism.
Consider therefore the following commutative diagram, in which each square is a pullback.

γ∗P ϕ∗ψ∗G P ϕ∗ψ∗G P ψ∗G P G

γ∗P ϕ∗F P ϕ∗F P F

X P E

P πG

P ψ#

P πF

((P ϕ#)∗γ)
∗
P ϕ∗ψ# ∼=

((P πF )◦(P ϕ#)∗γ)
∗
(P ψ#)

(P ϕ#)
∗
γ

(P ϕ∗ψ#)
∗
(P ϕ#)

∗
γ P πψ∗G

P ϕ∗ψ#

γ∗(P ϕ#)

γ

P ϕ#

yy

y

γ∗(P(ψϕ)#)

∼=(P(ψϕ)#)
∗
γ

(9)
The projection γ∗

(
P(ψϕ)#

)
: γ∗P ϕ∗ψ∗G→ X (the left vertical map in (8)) factors as γ∗P ϕ∗ψ∗G→

γ∗P ϕ∗F → X by the universal properties of the defining pullbacks. This latter composite is the left
vertical composite in (9) above. Next, notice that P(ψϕ)# ∼= P ϕ# ◦P ϕ∗ψ# by the definition of
(ψϕ)# and functoriality of P , and so the entire pullback square in (8) factors as the pasting of the
vertical pair of pullback squares in (9). Consequently, the pullback square in (7) factors as the pasting of
the horizontal pair of pullback squares in (9). Therefore, the top map in (7) is isomorphic to the top map
in (9). Finally, note that the projection P ϕ∗ψ∗G→P G in (8) factors as P ϕ∗ψ∗G→P ψ∗G→P G
by the universal properties of the defining pullbacks. Therefore, the top map in (8) is also isomorphic to
the top map in (9). And so the top maps in (7) and (8) are isomorphic to each other, as required.

To check pseudofunctoriality on backwards channels and fitness functions, we lift diagram (9) to
K `(P), as before, though now we include the maps ρ and ζ relevant for our present purposes. Note
that this means that the diagram is not commutative, although each inner square commutes by the com-
mutativity of the corresponding squares in (9).

γ∗P ϕ∗ψ∗G ϕ∗ψ∗G ψ∗G G

γ∗Pϕ∗F ϕ∗F F

X E

(P ϕ#)
∗
γ πF

ϕ#γ∗(P ϕ#)

γ

ρ
γ∗(P ϕ#)(−)

((P ϕ#)∗γ)
∗
P ϕ∗ψ#

ϕ∗ψ#

πψ∗G

ψ#

πG

ζ

ζ̄

γ∗(P(ψϕ)#)

(P(ψϕ)#)
∗
γ

(10)

Denote by δ by the action of PSGameP(ϕ) on γ , by σ the action of PSGameP(ϕ) on ρ , and by τ the
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action of PSGameP(ψ) on σ ; that is,

δ :=P πF ◦
(
P ϕ

#)∗
γ ,

σ :=
(
γ
∗(P ϕ

#)
)†
(−) •ργ∗(P ϕ#)(−) •ϕ

# • (πF)
†
(P ϕ#)∗γ(−) ,

τ :=
(
δ
∗(P ψ

#)
)†
(−) •σδ ∗(P ψ#)(−) •ψ

# • (πG)
†
(P ψ#)∗δ (−) .

Denote by τ ′ the action of PSGameP(ψ ◦ϕ) on ρ; this is the backwards channel paired by PSGameP(ψ ◦
ϕ) with the forwards channel at the top of diagram (10). We now check that τ ′ equals τ , reasoning di-
agrammatically. Note that (δ ,σ) is a Bayesian lens. Let σ̄ be defined as the factor of σ up to (πF)

†.
Note then that (δ ,σ) =

(
πF ,(πF)

†
)
◦|
((

P ϕ#
)∗

γ, σ̄
)
, by Theorem 2.5. Reasoning similarly, τ factors

through (πG)
† and τ ′ factors through (πG ◦πψ∗G)

†. Since the inner squares of (10) commute, any parallel
path through them is equal. By Theorem 2.5, this also applies to the exact inversions. Furthermore, by
following their paths through (10), we see that this applies specifically to τ and τ ′. We therefore conclude
that they are equal.

Next, we check pseudofunctoriality on fitness functions. PSGameP(ϕ) gives us, for a fitness func-
tion φ over p, two Bayesian lenses (ξ ,ξ †) and (ζ ,ζ †) which we compose with the lenses in the context
over p, in order to obtain the fitness function φ ◦β over q. Denote by (ξ̄ , ξ̄ †) and (ζ̄ , ζ̄ †) the correspond-
ing lenses obtained by applying PSGameP(ψ) to the fitness function φ ◦β . We need to show that the
lenses

(
ξ ′,ξ ′†

)
and

(
ζ ′,ζ ′†

)
obtained from applying PSGameP(ψ ◦φ) to φ factor as (ξ̄ , ξ̄ †) ◦| (ξ ,ξ †)

and (ζ ,ζ †)◦| (ζ̄ , ζ̄ †). We have:(
ξ ,ξ †) :=

(
γ
∗(P ϕ

#),
(
γ
∗(P ϕ

#)
)†
)
,(

ξ̄ , ξ̄ †) :=
((

(P ϕ
#)∗γ

)∗
P ϕ

∗
ψ

#,
((

(P ϕ
#)∗γ

)∗
P ϕ

∗
ψ

#
)†
)
,(

ξ
′,ξ ′†

)
:=
(

γ
∗ (P(ψϕ)#) ,(γ∗ (P(ψϕ)#))†

)
.

Clearly by diagram (10) and Theorem 2.5, we have
(
ξ ′,ξ ′†

)
= (ξ̄ , ξ̄ †) ◦| (ξ ,ξ †). Similar “Bayesian

diagram-chasing” demonstrates that
(
ζ ′,ζ ′†

)
= (ζ ,ζ †)◦| (ζ̄ , ζ̄ †).

Finally, we check pseudofunctoriality on morphisms f : X→Y . PSGameP(ϕ) takes f to
(
P ϕ#

)∗ f ;
in turn, this is taken by PSGameP(ψ) to

(
P ψ#

)∗ (
P ϕ#

)∗ f . Simultaneously, PSGameP(ψ ◦ϕ) takes
f to

(
P(ψϕ)#

)∗ f . The functoriality of limits immediately gives
(
P(ψϕ)#

)∗ f =
(
P ψ#

)∗ (
P ϕ#

)∗ f .
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