
A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS

(EXTENDED ABSTRACT)

ELENA DI LAVORE, ALESSANDRO GIANOLA, MARIO ROMÁN,

NICOLETTA SABADINI, AND PAWE L SOBOCIŃSKI

Abstract. Feedback and state are closely interrelated concepts. Categories

with feedback, originally proposed by Katis, Sabadini and Walters, are a weak-

ening of the notion of traced monoidal categories, with several pertinent ap-
plications in computer science. The construction of the free such categories

has appeared in several different contexts, and can be considered as state boot-

strapping. We show that a categorical algebra for open transition systems,
Span(Graph)∗, also due to Katis, Sabadini and Walters, is the free cate-

gory with feedback over Span(Set). Intuitively, this algebra of transition

systems is obtained by adding state to an algebra of predicates, and therefore
Span(Graph)∗ is, in this sense, the canonical such algebra.

1. Introduction

Set

Reset
A

A

Figure 1. NOR latch.

1.1. State from feedback. A remarkable fact
from electronic circuit design is how data-storing
components can be built out of a combination
of stateless components and feedback. A famous
example is the (set-reset) “NOR latch”: a circuit
with two stable configurations that stores one
bit of information.

The NOR latch is controlled by two inputs,
Set and Reset. Activating the first sets the out-
put value to A = 1; activating the second makes the output value return to A = 0.
This change is permanent: even when both Set and Reset are deactivated, the feed-
back loop maintains the last value the circuit was set to1—to wit, a bit of data has
been conjured out of thin air. In this paper we show that this can be seen as an
instance of a more abstract phenomenon: the universal way of adding feedback to
a theory of processes consists of endowing each process with a state space.

Indeed, there is a natural weakening of the notion of traced monoidal categories
called categories with feedback [30]. The construction of the free category with
feedback coincides with a “state-bootstrapping” construction, St(•), that appears in
several different contexts in the literature [7, 23, 26]. We recall this construction and
its mathematical status (Theorem 2.5), which can be summed up by the following
intuition:

Theory of Processes + Feedback = Theory of Stateful Processes.

1.2. The algebra of transition systems. Our primary focus is the Span(Graph)
model of concurrency, introduced in [27] as a categorical algebra of communicating

1In its original description: “the relay is designed to produce a large and permanent change
in the current flowing in an electrical circuit by means of a small electrical stimulus received from
the outside” ([12], emphasis added).

1

2 DI LAVORE, GIANOLA, ROMÁN, SABADINI, AND SOBOCIŃSKI

state machines, or — equivalently — open transition systems. Open transition sys-
tems do not interact by input-output message passing, but by synchronization, pro-
ducing a simultaneous change of state. This corresponds to a composition of spans,
realized by taking a pullback in Graph. The dual algebra of Cospan(Graph)
was introduced in [29]. It complements Span(Graph) by adding the operation of
communicating-sequential composition [17].

Informally, a component of Span(Graph) is a state machine with states and
transitions, i.e. a finite graph given by the ‘head’ of the span. The transition system
is equipped with interfaces or communication ports, and every transition is labeled
by the effect it produces in all its interfaces. We give examples below.

1.3. Stateful and stateless components. In Figure 2, we depict two open tran-
sition systems as arrows of Span(Graph). The first represents a NOR gate
B × B → B. The diagram below left (Figure 2) is a graphical rendering of the
corresponding span B × B ← N → B, where B is considered as a single-vertex
graph with two edges, corresponding to the signals { 0, 1 }, the unlabeled graph
depicted within the bubble is N , and the labels witness the action of two homo-
morphisms, respectively N → B × B and N → B. Here each transition represents
one of the valid input/output configurations of the gate. NOR gates are stateless
components, since their transition graph N has a single vertex.

The second component is a span L = {Set,Reset, Idle} → {A,A} = R that models
a set-reset latch. The diagram below right (Figure 2), again, is a convenient way
of denoting the relevant span L ← D → R. Latches store one bit of information,
they are stateful components; consequently, their transition graph has two states.

(
0
0

)
,1

(
0
1

)
,0(
1
0

)
,0

(
1
1

)
,0

Set,A

Reset,A

Idle,A

Idle,A

B

B

B L R

Figure 2. A NOR gate and set-reset latch, in Span(Graph).

In both cases, the boundaries on Span/Cospan(Graph) are stateless: in-
deed, they are determined by a mere set – the self-loops of a single-vertex graph.
This is a restriction that occurs rather frequently: the important subcategory of
Span(Graph), the one that we can clearly conceptually explain as transition sys-
tems with interfaces, is the full subcategory of Span(Graph) restricted to objects
that are single-vertex graphs, which we denote by Span(Graph)∗. Analogously,
the relevant subcategory of Cospan(Graph) is Cospan(Graph)∗, the full sub-
category on sets, or graphs with an empty set of edges.

Definition. Span(Graph)∗ is the full subcategory of Span(Graph) with objects
the single-vertex graphs.

The problem with Span(Graph)∗ is that it is somewhat mysterious from the
categorical point of view; the morphisms are graphs, but the boundaries are given
by sets. Decorated and structured spans and cospans [14, 3] were introduced as
theoretical frameworks to capture such phenomena, which occur frequently when
composing network structures. Nevertheless, they do not quite answer the question
of why such examples do arise naturally.

1.4. Canonicity and our original contribution. Universal constructions, such
as “state-bootstrapping” St(•), characterize the object of interest up to equivalence,
making it the canonical object satisfying some properties. This is the key to avoiding
the problem outlined by Abramsky [1]: because of the lack of consensus about the

A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS (EXTENDED ABSTRACT) 3

intrinsic primitives of concurrency, we risk making our results too dependent on a
specific syntax. It is thus important to characterize existing modeling formalisms
for concurrent systems in terms of universal properties.

The main contribution of this paper is the characterization of Span(Graph)∗
in terms of a universal property: it is equivalent to the free category with feedback
over the category of spans of functions. We now state this more formally:

Theorem. The free category with feedback over Span(Set) is isomorphic to the
category Span(Graph)∗, the full subcategory of Span(Graph) given by single-
vertex graphs. That is, there is an isomorphism of categories St(Span(Set)) ∼=
Span(Graph)∗.

Given that Span(Set), the category of spans of functions, can be considered
an algebra of predicates [4, 10], the high level intuition that summarizes our main
contribution (Theorem 3.8) can be stated as:

Algebra of Predicates + Feedback = Algebra of Transition Systems.

We similarly prove (Section 3.4) that the free category with feedback over the
category of cospans of functions, Cospan(Set), is equivalent to Cospan(Graph)∗,
the full subcategory on discrete graphs of Cospan(Graph).

1.5. Related Work. Span/Cospan(Graph) has been extensively used for the
modeling of concurrent systems [27, 29, 40, 41, 9, 37, 17, 15, 16]. Similar approaches
to compositional modeling of networks have used decorated and structured cospans
[14, 3]. Despite this, Span(Graph)∗ has not previously been characterized in terms
of a universal property.

In [30], the St(•) construction (under a different name) is exhibited as the
free category with feedback. Categories with feedback have been arguably under-
appreciated but, at the same time, the St(•) construction has made multiple ap-
pearances as a “state bootstrapping” technique across the literature. The St(•)
construction is used to describe a string diagrammatic syntax for concurrency the-
ory in [7]; a variant of it had been previously applied in the setting of cartesian
bicategories in [26]; and it was again rediscovered to describe a memoryful geometry
of interaction in [23]. However, a coherent account of both categories with feedback
and their relation with these stateful extensions has not previously appeared. This
motivates our extensive preliminaries in Sections 2.1 and 2.2.

1.6. Synopsis. Section 2 contains preliminary discussions on traced monoidal cat-
egories and categories with feedback; it explicitly describes St(•), the free category
with feedback. It collects mainly expository material. Section 3 exhibits a univer-
sal property for the Span(Graph)∗ and Cospan(Graph)∗ models of concurrency
and Section 3.5 discusses a specific application.

1.7. Conventions. We write composition of morphisms in diagrammatic order,
(f ; g). When describing morphisms in a symmetric monoidal category whose input
and output are known, we omit the associators and unitors, implicitly using the
coherence theorem for monoidal categories.

4 DI LAVORE, GIANOLA, ROMÁN, SABADINI, AND SOBOCIŃSKI

2. Preliminaries: categories with feedback

Categories with feedback were introduced in [30], and motivated by examples
such as Elgot automata [13], iteration theories [6] and continuous dynamical systems
[28]. We recall the details below, contrast them with the stronger notion of traced
monoidal categories in Section 2.2, discuss the relationship between feedback and
delay in Section 2.3, recall the construction of a free category with feedback in
Section 2.4, and give examples in Section 2.5.

2.1. Categories with feedback. A feedback operator , fbk(•), takes a morphism
S⊗A→ S⊗B and “feeds back” one of its outputs to one of its inputs of the same
type, yielding a morphism A → B (Figure 3, left). When using string diagrams,
we depict the action of the feedback operator as a loop with a double arrowtip
(Figure 3, right).

f : S ⊗A→ S ⊗B
fbkS(f) : A→ B f

A B

S

Figure 3. Type and graphical notation for the operator fbkS(•).

Capturing a reasonable notion of feedback requires the operator to interact nicely
with the flow imposed by the structure of a symmetric monoidal category. This
interaction is expressed by a few straightforward axioms.

Definition 2.1. A category with feedback [30] is a symmetric monoidal category C
endowed with an operator fbkS : C(S ⊗ A,S ⊗ B) → C(A,B), which satisfies the
following axioms (A1-A5, see also Figure 4).

(A1). Tightening , u; fbkS(f); v = fbkS((id⊗ u); f ; (id⊗ v)).
(A2). Vanishing , fbkI(f) = f .
(A3). Joining , fbkT (fbkS(f)) = fbkS⊗T (f).
(A4). Strength, fbkS(f)⊗ g = fbkS(f ⊗ g).
(A5). Sliding , fbkT (f ; (h⊗ id)) = fbkS((h⊗ id); f), for h : S → T any isomor-

phism.

f
A B

S

u
A′

v
B′

= f
A B

S

u
A′

v
B′

f
A B

I

= f
A B

f
A B

S

T

= f
A B

S ⊗ T
f

A B

S

g
A′ B′

=

f
A B

S

g
A′ B′

f
A B

T

h
= f

A B

S

h
(h isomorphism)

Figure 4. Diagrammatic depiction of the axioms of feedback.

A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS (EXTENDED ABSTRACT) 5

The natural notion of homomorphism between categories with feedback is that
of a symmetric monoidal functor that moreover preserves the feedback structure.
These are called feedback functors.

Definition 2.2. A feedback functor F : C→ D between two categories with feed-
back (C, fbkC) and (D, fbkD) is a strong symmetric monoidal functor such that

F (fbkCS (f)) = fbkDF (S)(µ;Ff ;µ−1),

where µA,B : F (A) ⊗ F (B) → F (A ⊗ B) is the structure morphism of the strong
monoidal functor F . We denote by Feedback the category of (small) categories
with feedback and feedback functors between them. There exists a forgetful functor
U : Feedback→ SymMon.

2.2. Traced monoidal categories. Categories with feedback are a weakening of
the well known traced monoidal categories. Between them, there is an interme-
diate notion called right traced category [38] that strengthens the sliding axiom
from isomorphisms to arbitrary morphisms. This first extension would be already
too strong for our purposes later in Section 2.4: we would be unable to define a
state space up to isomorphism. However, the more conceptual difference of traced
monoidal categories is the “yanking axiom” (in Figure 5). Indeed, strengthening
the sliding axiom and adding the yanking axiom yields the definition of traced
monoidal category.

Traced monoidal categories are widely used in theoretical computer science.
Since their conception [24] as an abstraction of the trace of a matrix in linear
algebra, they have been used in linear logic and geometry of interaction [1, 18, 19],
programming language semantics [21], semantics of recursion [2] and fixed point
operators [22, 5].

=

Figure 5. The yanking axiom.

Traces are thus undeniably important, but it
is questionable whether we really want to always
impose all of their axioms. Specifically, we will
be concerned with the yanking axiom that states
that tr(σ) = id. The yanking axiom is incon-
testably elegant from the geometrical point of
view: strings are “pulled”, and feedback (de-
picted as a loop with an arrowtip) disappears (Figure 5). However, if feedback
can disappear without leaving any imprint, that must mean that it is instanta-
neous: its output necessarily mirrors its input.2 Importantly for our purposes, this
seems to imply that a feedback satisfying the yanking equation is “memoryless”, or
“stateless”.

Figure 6. Diagram for the
NOR latch, modeled with a trace
in Span(Graph).

Consider again the NOR latch from Figure 1.
We have seen how to model NOR gates in
Span(Graph) in Figure 2, and the algebra of
Span(Graph) does include a trace (see Fig-
ure 6, later detailed in Section 3.2). However,
imitating the real-world behavior of the NOR
latch with just a trace is unsatisfactory: the
trace of Span(Graph) is built out of stateless
components, and tracing stateless components
yields again a stateless component.

In engineering and computer science, instantaneous feedback is actually a rare
concept; a more common notion is that of guarded feedback. Consider signal flow

2In other words, traces are used to talk about processes in equilibrium, processes that have
reached a fixed point. A theorem by Hasegawa [22] and Hyland [5] corroborates this interpretation:

a trace in a cartesian category corresponds to a fixpoint operator.

6 DI LAVORE, GIANOLA, ROMÁN, SABADINI, AND SOBOCIŃSKI

graphs [39, 33]: their categorical interpretation in [8] models feedback not by the
usual trace, but by a trace “guarded by a register”, that delays the signal and
violates the yanking axiom (see Remark 7.8 in op.cit.).

The component that trace misses in such examples is a delay.

= ∂

Figure 7. Definition of delay.

2.3. Delay and feedback. The main differ-
ence between categories with feedback and
traced monoidal categories is the failure of the
yanking axiom. Consider the process that only
“feeds back” the input to itself and then uses
that “fed back” input to produce the output.
This process, ∂A := fbkA(σA,A), is called delay
endomorphism. The yanking axiom of traced monoidal categories states that the
delay is equal to the identity, trA(σA,A) = id, which is not necessarily true for cate-
gories with feedback. In that sense, a non-trivial delay is what sets apart categories
with feedback from traced monoidal categories.

This interpretation of feedback as the combination of trace and delay can be
made into a theorem when the category has enough structure. Compact closed
categories are traced monoidal categories where every object A has a dual A? and
the trace is constructed from two pieces ε : A⊗A? → I and η : I → A?⊗A. Even if
not every traced monoidal category is compact closed, it is true that every traced
monoidal category embeds fully faithfully into a compact closed category.3 In a
compact closed category, a feedback operator is necessarily a trace “guarded” by a
delay.

Proposition 2.3 (Feedback from delay [7]). Let C be a compact closed category

with fbkC a feedback operator that takes a morphism S⊗A→ S⊗B to a morphism
A→ B, satisfying the axioms of feedback (in Figure 4) but possibly failing to satisfy
the yanking axiom (Figure 5) of traced monoidal categories. Then the feedback
operator is necessarily of the form

fbkCS (f) := (ε⊗ id); (id⊗ f); (id⊗ ∂S ⊗ id); (η ⊗ id)

where ∂A : A→ A is a family of endomorphisms satisfying

• ∂A ⊗ ∂B = ∂A⊗B and ∂I = id, and
• ∂A;h = h; ∂B for each isomorphism h : A ∼= B.

In fact, any family of morphisms ∂A satisfying these properties determines uniquely
a feedback operator that has ∂A as its delay endomorphisms.

∂

∂

Figure 8. NOR latch with feed-
back.

Consider one more time the NOR latch from
Figure 1. The algebra of Span(Graph) does
also include a feedback operator that is not
a trace. This feedback operator is indeed
canonical, in that it is the one that makes
Span(Graph) the canonical category with feed-
back containing spans of functions. Imitating
the real-world behavior of the NOR latch is
finally possible: one of the components that
builds up this feedback (and in fact, the only difference with the previous trace) is
a stateful delay component. The emergence of state from feedback is witnessed by
the St(•) construction, which we recall below.

3This is the Int construction from [24].

A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS (EXTENDED ABSTRACT) 7

f
A

S

B

= f
A

T

B

h−1 h

Figure 9. We depict stateful
processes by marking the space
state.

2.4. St(•), the free category with feedback.
In this section, we identify the construction that
yields the free category with feedback over a
symmetric monoidal category. The St(•) con-
struction is a general way of endowing a system
with state. It appears multiple times in the lit-
erature in slightly different forms: it constructs
a stateful resource calculus in [7]; a variant is
used for geometry of interaction in [23]; it coincides with the free category with
feedback presented in [30]; and yet another, slightly different formulation was given
in [26].

Definition 2.4 (Category of stateful processes, [30]). Let (C,⊗, I) be a symmetric
monoidal category. We write St(C) for the category having the same objects as C
but where morphisms A → B are pairs (S | f), consisting of a state space S ∈ C
and a morphism f : S ⊗ A → S ⊗ B. We consider morphisms up to isomorphism
classes of their state space, and thus

(S | f) = (T | (h−1 ⊗ id); f ; (h⊗ id)), for any isomorphism h : S ∼= T.

When depicting a stateful process (Figure 9), we explicitly mark the strings form-
ing the state space. That is, an equivalence class will be depicted as any of its
representatives plus some strings marked.

We define the identity stateful process on A ∈ C as (I | idI⊗A). Sequential
composition of the two stateful processes (S | f) : A → B and (T | g) : B → C is
defined by (S | f); (T | g) = (S ⊗ T | (σ ⊗ id); (id⊗ f); (σ ⊗ id); (id⊗ g)). Parallel
composition of the two stateful processes (S | f) : A→ B and (S′ | f ′) : A′ → B′ is
defined by (S | f)⊗ (S′ | f ′) = (S ⊗ S′ | (id⊗ σ ⊗ id); (f ⊗ f ′); (id⊗ σ ⊗ id)).

f
A B

g

C

T

S f

A

S

Bf ′

A′ B′

S′

Figure 10. Sequential and parallel composition of stateful processes.

storeT

 f

A

S

B

T

 = f

A

S

B

T

Figure 11. The store(•) operation, in
diagrammatic terms.

This defines a symmetric monoidal cat-
egory. Moreover, it is a category with
feedback with the operator storeT (S |
f) := (S ⊗ T | f).

Theorem 2.5. [30] The category St(C),
endowed with the store(•)) operator, is the
free category with feedback over a sym-
metric monoidal category C.

2.5. Examples. Our first source of examples is traced monoidal categories. The
axioms of feedback are a strict weakening of the axioms of trace, and every traced
category is automatically a category with feedback. A more interesting source of
examples is the St(•) construction we just defined.

Example 2.6. A Mealy (or deterministic) transition system with boundaries A and
B, and state space S was defined [34, §2.1] to be just a function f : S×A→ S×B.
Consider St(Set), the free category with feedback over the monoidal structure of
sets with the cartesian product

8 DI LAVORE, GIANOLA, ROMÁN, SABADINI, AND SOBOCIŃSKI

fbk


0, 1/1 1, 0/0

1, 1/1

0, 0/0

 =

 0/ 0/ 1/

1/


Figure 12. Feedback of a Mealy transition system.
Every transition has a label i/o indicating inputs (i)
and outputs (o).

We take Mealy transition
systems to be morphisms of
St(Set), which are functions
of that signature up to iso-
morphism of the state space.
Mealy transitions compose
sequentially and in parallel
following Definition 2.4, and
they form a category with
feedback Mealy := St(Set).

The feedback operator of Mealy transitions transforms input/output pairs into
states. Figure 12 is an example of what this means: an automaton with a single state
becomes an automaton with two states and each transition (si, i/so) becomes a tran-
sition (i/) from si to so. The characterization Span(Graph)∗ ∼= St(Span(Set))
that we prove in Section 3 lifts the inclusion Set→ Span(Set) to a feedback pre-
serving functor Mealy → Span(Graph)∗. This inclusion embeds a deterministic
transition system into the graph that determines it. Indeed, it is traditional to
depict automata as state/transition graphs.

Similarly, when we consider Set to be the monoidal structure of sets with the
disjoint union, the notion we recover is that of an Elgot automaton [13], given by a
transition function S+A→ S+B. These categories of transition systems motivate
the work in [26, 30].

Example 2.7. A linear dynamical system with inputs in Rn, outputs in Rm and
state space in Rk is given by a matrix (A B

C D) ∈ MatR(k + m, k + n) [25]. Two

linear dynamical systems (A B
C D) and

(
A′ B′

C′ D

)
are considered equal whenever there

is an invertible matrix H ∈ MatR(k, k) such that A′ = H−1AH, B′ = BH, and
C ′ = H−1C.

Linear dynamical systems are morphisms of a category with feedback which
coincides with St(Vect⊕R). The feedback operator is defined by

fbkl(k,

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
) = (k + l,

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
),

where

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
∈MatR(k + l +m, k + l + n).

3. Span(Graph): an algebra of transition systems

Span(Graph) [27] is an algebra of “open transition systems”. It has appli-
cations in concurrency theory and verification [26, 27, 29, 31, 17], and has been
recently applied to biological systems [15, 16]. Just as ordinary Petri nets have an
underlying (firing) semantics in terms of transition systems, Span(Graph) is used
as a semantic universe for a variant of open Petri nets, see [41, 9].

An open transition system is a morphism of Span(Graph): it consists of a graph
endowed with two boundaries or communication ports; each transition of the graph
has an effect on each boundary, and this data is used to synchronize a network of
multiple transition systems. This conceptual picture actually describes a subcat-
egory, Span(Graph)∗, where boundaries are described by mere sets, accounting
for the alphabets of signals that open transition systems synchronize on. In this
section we recall the details of Span(Graph)∗ and show that it is universal in the
following sense:

Span(Graph)∗ is the free category with feedback over Span(Set).

A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS (EXTENDED ABSTRACT) 9

3.1. The algebra of Span(Graph).

Definition 3.1. A span [4, 10] from A to B, both objects of a category C, is a pair
of morphisms with a common domain, A ← E → B. The object E is the “head”
of the span, and the morphisms are the left and right “legs”, respectively.

When the category C has pullbacks, we can sequentially compose two spans
A ← E → B and B ← F → C into a span A ← E ×B F → C. Here, E ×B F
is the pullback of E and F along B: for instance, in the category Set of sets and
functions, E ×B F is the subset of E × F given by pairs whose two components
have the same image on B.

Definition 3.2. Let C be a category with pullbacks. Span(C) is the category
that has the same objects as C and isomorphism classes of spans between them
as morphisms. That is, two spans are considered equal if there is an isomorphism
between their heads that commutes with both legs. Dually, let C be a category
with pushouts. Cospan(C) is the category Span(Cop).

Span(C) is a symmetric monoidal category when C has products. The parallel
composition of A ← E → B and A′ ← E′ → B′ is given by the componentwise
product A×A′ ← E × E′ → B ×B′. An example is again Span(Set).

Definition 3.3. The category Graph has graphs G = (s, t : E ⇒ V) as objects.
A morphism G → G′ in this category is given by two functions e : E → E′ and
v : V → V ′ such that e; s′ = s; v and e; t′ = t; v. In other words, it is the presheaf
category on the diagram (•⇒ •).

Recall, however, that we are not interested in the whole Span(Graph) but only
in Span(Graph)∗, the spans of graphs that have a graph (A ⇒ 1) with a single
node on the boundaries.

Definition 3.4. An open transition system, a morphism of Span(Graph)∗, is a
span of sets A← E → B where the head is the set of transitions of a graph E ⇒ V
(see Figure 13). Two open transition systems are considered equal if there is an
isomorphism between their graphs that commutes with the legs of the span.

Open transition systems whose graph E ⇒ V has a single vertex, V = 1, are
called “stateless”.

A E B

1 V 1

ts

a b

Figure 13. A morphism of
Span(Graph)∗.

Sequential composition (the communicating-
parallel operation of [27]) of two open transition
systems with spans A← E → B and B ← F →
C and graphs E ⇒ S and F ⇒ T yields the open
transition system with span A ← E ×B F →
C and graph E ×B F ⇒ S × T . This means
that the only allowed transitions are those that
synchronize E and F on the common boundary
B.

Parallel composition (the non communicating-parallel operation of [27]) of two
open transition systems with spans A ← E → B and A′ ← E′ → B′ and graphs
E ⇒ V and E′ ⇒ V ′ yields the open transition system with span A × A′ ←
E × E′ → B ×B′ and graph E × E′ ⇒ V × V ′.

3.2. The components of Span(Graph). Let us now detail some useful constants
of the algebra of Span(Graph). We will illustrate how to use the algebra with an
example in which we construct the NOR latch circuit from Figure 8.

Example 3.5. In this example, we model the circuit in Figure 8 in Span(Graph)∗.
The connectivity of the circuit is modeled with a Frobenius algebra [10] (, ,

10 DI LAVORE, GIANOLA, ROMÁN, SABADINI, AND SOBOCIŃSKI

,). The corresponding spans are constructed out of diagonals A→ A×A and
units A→ 1.

()A = {A← A→ A×A} ()A = {A← A→ 1}
()A = {A×A← A→ A} ()A = {1← A→ A}

These already induce a compact closed structure (and, therefore, a trace), given by
the following spans.

()A = {1← A→ A×A} ()A = {A×A← A→ 1}

1,0

0,1

0,0

1,1

B B

Figure 14. Delay morphism
over the set B := {0, 1}.

In general, any function f : A → B can be
lifted covariantly to a span A ← A → B
and contravariantly to a span A ← B → B.
Any span A ← E → B can be lifted to
Span(Graph)∗ by making the head represent
the graph E ⇒ 1. We use this fact to obtain a
NOR gate from the function NOR : B × B → B
(Figure 2). However, components created like
this have a single-vertex: they are stateless.

We will need a single stateful component to model our circuit, the delay

(∂)A =


A×A

A A A

π2 π1π2π1

 .

This is not an arbitrary choice. This is the canonical delay obtained from the
feedback structure4 in Span(Graph)∗ that gives its universal property.

The NOR latch circuit of Figure 8 is the composition of two NOR gates where the
outputs of each gate have been copied and fed back as input to the other gate. The
algebraic expression, in Span(Graph)∗, of this circuit is obtained by decomposing
it into its components, as in Figure 15.

(id⊗ ⊗ ⊗ id); (NOR⊗ σ ⊗ NOR); (⊗ id⊗)

; (id⊗ ∂ ⊗ id⊗ ∂ ⊗ id); (id⊗ ⊗ ⊗ id)

∂

∂

Figure 15. Decomposing the circuit.

The graph obtained by the computation of this expression, together with its
transitions, is shown in Figure 16. This time, our model is indeed stateful. It
has four states: two states representing a correctly stored signal, A = (1, 0) and
A = (0, 1); and two states representing transitory configurations T1 = (0, 0) and
T2 = (1, 1).

4As in Proposition 2.3.

A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS (EXTENDED ABSTRACT)11

•

•A

•A

• T2
T1

Idle

Set

Reset

Set

Unspec

Reset

Unspec

Idle

Set

Unspec

Reset

Unspec

Idle

Reset

Idle

Set

Figure 16. Span of graphs representing the NOR latch

We will be controlling the left boundary : it can receive a set signal, Set =
(

1
0

)
; a

reset signal, Reset =
(

0
1

)
; none of the two, Idle =

(
0
0

)
; or both of them at the same

time, Unspec =
(

1
1

)
, which is known to cause unspecified behavior in a NOR latch.

The signal on the right boundary, on the other hand, is always equal to the state
the transition goes to and does not provide any additional information. Knowing
this, we omit it from the drawing in Figure 16.

In normal functioning, activating the signal Set makes the latch transition to the
state A in two transition steps. Analogously, activating Reset makes the latch tran-
sition to A again in two transition steps. After any of these two cases, deactivating
all signals, Idle, keeps the last state.

Moreover, the (real-world) NOR latch has some unspecified behavior that gets
also reflected in the graph: activating both Set and Reset at the same time, what we
call Unspec, causes the circuit to enter an unstable state where it bounces between
the states T1 and T2. Our modeling has reflected this “unspecified behavior” as
expected.

fbkB×B




Figure 17. Applying fbk(•)
over the circuit gives the NOR
latch.

3.2.1. Feedback and trace. In terms of feedback,
the circuit of Figure 16 is equivalently obtained
as the result of taking feedback over the follow-
ing stateless morphism in Figure 17. We know
that it is stateless because it is the composition
of stateless morphisms.

But Span(Graph)∗ is also canonically
traced: it is actually compact closed. What
changes in the modeling if, over the same mor-
phism, we would have used trace instead? As we argued back for Figure 6, we
obtain a stateless transition system: it is given by a graph with a single vertex.
The valid transitions can be now computed explicitly to be

{(Unspec,T1), (Idle,A), (Idle,A), (Set,A), (Reset,A).}

These encode important information: they are the equilibrium states of the circuit.
However, unlike the previous graph, this one would not get us the correct allowed
transitions: under this modeling, our circuit could freely bounce between (Idle,A)
and (Idle,A), which is not the expected behavior of a NOR latch.

The fundamental piece making our modeling succeed the previous time was
feedback derived from the stateful delay. The next section explains in which sense
that feedback is canonical.

12 DI LAVORE, GIANOLA, ROMÁN, SABADINI, AND SOBOCIŃSKI

3.3. Span(Graph) as a category with feedback. This section presents our
main theorem. We start by introducing the mapping that associates to each stateful
span of sets the corresponding span of graphs. This mapping is well-defined and
lifts to a functor St(Span(Set))→ Span(Graph). Finally, we prove that it gives
an isomorphism St(Span(Set)) ∼= Span(Graph)∗.

Proposition 3.6. The composition of two stateful spans in the category St(Span(Set)),

S ×A σ,f←− X σ′,g−→ S ×B, T ×B τ,h←− Y τ ′,h−→ T × C

is given by the span T × S × A τ,σ,f←− X ×B Y
τ ′,σ′,k−→ T × S × C, where X ×B Y is

the pullback along g and h.

Lemma 3.7. The following assignment of stateful processes over Span(Set) to
morphisms of Span(Graph) is well defined.

K

S
∣∣∣∣∣∣∣∣

E

S ×A S ×B

(s,a) (t,b)

 :=

 A E B

1 S 1

ts

a b


Theorem 3.8. There exists an isomorphism of categories

St(Span(Set)) ∼= Span(Graph)∗.

That is, the free category with feedback over Span(Set) is isomorphic to the full
subcategory of Span(Graph) given by single-vertex graphs.

3.4. Cospan(Graph) as a category with feedback. The previous results can
be generalized to any category C with all finite limits. By taking Graph(C) to be
the presheaf category of the diagram (•⇒ •) in C and Span(Graph(C))∗ the full
subcategory on objects of the form A⇒ 1, we can prove the following result.

Theorem 3.9. There exists an isomorphism of categories

St(Span(C)) ∼= Span(Graph)∗.

That is, the free category with feedback over Span(C) is equivalent to the full sub-
category on Span(Graph(C)) given by single-vertex graphs.

Cospan(Graph)∗ can be also characterized as a free category with feedback. We
know that Cospan(Set) ∼= Span(Setop), we note that Graph(Setop) ∼= Graph
(which has the effect of flipping edges and vertices), and we can use Theorem 3.9
because Set has all finite colimits.

Corollary 3.10. There exists an isomorphism of categories St(Cospan(Set)) ∼=
Cospan(Graph)∗.

Cospan(Graph) is also compact closed and, in particular, traced. As in the
case of Span(Graph), the feedback structure given by the universal property is
different from the trace. In the case of Cospan(Graph), tracing has the effect
of identifying the output and input vertices of the graph; while feedback adds an
additional edge from the output to the input vertices.

3.5. Syntactical presentation of Cospan(FinGraph). The observation in Propo-
sition 2.3 has an important consequence in the case of finite sets. We write
FinGraph for Graph(FinSet). Cospan(FinSet) is the generic special com-
mutative Frobenius algebra [32], meaning that any morphism written out of the
operations of a special commutative Frobenius algebra and the structure of a sym-
metric monoidal category is precisely a cospan of finite sets (or, in other words,

A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS (EXTENDED ABSTRACT)13

symmetric monoidal functors out of Cospan(FinSet) correspond to special com-
mutative Frobenius algebras). But we also know that Cospan(FinSet), with an
added generator to its PROP structure [7] (the delay, with the conditions given in
Proposition 2.3), is St(Cospan(FinSet)), or, equivalently, Cospan(FinGraph).
This means that any morphism written out of the operations of a special commu-
tative Frobenius algebra plus a freely added generator of type (∂) : 1 → 1 is a
morphism in Cospan(FinGraph)∗. This way, we recover one of the main results
of [36] as a direct corollary of our characterization.

Proposition 3.11 (Proposition 3.2 of [36]). The category Cospan(FinGraph)∗
is the generic special commutative Frobenius monoid with an added generator.

Proof. It is known that the category Cospan(FinSet) is the generic special com-
mutative Frobenius algebra [32]. Adding a free generator (∂) : 1 → 1 to its
PROP structure corresponds to adding a family (∂)n : n→ n with the conditions
on Proposition 2.3. Now, Proposition 2.3 implies that adding such a generator
to Cospan(FinSet) results in St(Cospan(FinSet)). Finally, we can use again
Theorem 3.8 to conclude that St(Cospan(FinSet)) ∼= Cospan(FinGraph)∗. �

4. Conclusions and further work

We have characterized Span(Graph)∗, an algebra of open transition systems, as
equivalent to the free category with feedback over the category of spans of functions.
The St(•) constuction is well-known as a technique of adding state to processes. In
[30], it had been characterized as the free category with feedback under a different
name. What was missing was a coherent and explicit connection between the two.

We have seen how the St(•) construction creates categories of transition systems
out of symmetric monoidal categories. We could also consider a generalization of
this construction where, instead of quotienting by isomorphisms, we can quotient
by arbitrary classes of morphisms selected by some strong monoidal functor. Our
observation is that this generalized state construction can be rewritten compactly
as a particular kind of colimit called a coend. In fact, let F : D → C be a strong
monoidal functor, we can express the set of stateful morphisms quotiented by sliding
in D as

StD(C) :=

∫ D∈D
hom(FD ⊗X,FD ⊗ Y).

For instance, the original St(•) construction is recovered from the inclusion functor
of the subgroupoid of isomorphisms. The identity functor can be used to quo-
tient processes by dinaturality. The forgetful PointedSet → Set can be used to
construct automata with initial states.

All these possibilities deserve special attention, together with their potential
applications, both to transition systems and stateful automata. For instance, ob-
taining stream transducers, Stream(A) → Stream(B), from transition systems,
S × A → S × B, is only possible with an initial state s0 ∈ S. It would then be
important to compare the approach of generalized categories with feedback to the
more standard approaches based on guarded recursion [20] and coalgebras [11, 35].

References

[1] Samson Abramsky. What are the fundamental structures of concurrency? We still don’t
know! CoRR, abs/1401.4973, 2014.

[2] Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Elgot algebras. Log. Methods Comput. Sci., 2(5),

2006.
[3] John C. Baez and Kenny Courser. Structured cospans. CoRR, abs/1911.04630, 2019.

[4] Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,

pages 1–77. Springer, 1967.

14 DI LAVORE, GIANOLA, ROMÁN, SABADINI, AND SOBOCIŃSKI

[5] Nick Benton and Martin Hyland. Traced premonoidal categories. RAIRO Theor. Informatics

Appl., 37(4):273–299, 2003.

[6] Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic of Iterative

Processes. EATCS Monographs on Theoretical Computer Science. Springer, 1993.
[7] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawe l Sobociński, and Fabio Zanasi.

Diagrammatic algebra: from linear to concurrent systems. Proc. ACM Program. Lang.,

3(POPL):25:1–25:28, 2019.
[8] Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. The Calculus of Signal Flow Diagrams

I: Linear Relations on Streams. Information and Computation, 252:2–29, 2017.

[9] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for P/T nets
interactions. In Concurrency Theory (CONCUR ‘11), volume 6901 of LNCS, pages 312–326.

Springer, 2011.

[10] Aurelio Carboni and Robert F. C. Walters. Cartesian Bicategories I. Journal of pure and
applied algebra, 49(1-2):11–32, 1987.

[11] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. Programming and

reasoning with guarded recursion for coinductive types, 2015.
[12] William Henry Eccles and Frank Wilfred Jordan. Improvements in ionic relays. British patent

number: GB 148582, 1918.
[13] Calvin C. Elgot. Monadic computation and iterative algebraic theories. In Studies in Logic

and the Foundations of Mathematics, volume 80, pages 175–230. Elsevier, 1975.

[14] Brendan Fong. Decorated cospans. Theory and Applications of Categories, 30(33):1096–1120,
2015.

[15] Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Sabadini, Filippo Schi-

avio, and Simone Tini. CospanSpan(Graph): a compositional description of the heart system.
Fundam. Informaticae, 171(1-4):221–237, 2020.

[16] Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Sabadini, and Si-

mone Tini. Compositional modeling of biological systems in CospanSpan(Graph). In Proc.
of ICTCS 2020. CEUR-WS, To appear.

[17] Alessandro Gianola, Stefano Kasangian, and Nicoletta Sabadini. Cospan/Span(Graph): an

Algebra for Open, Reconfigurable Automata Networks. In Filippo Bonchi and Barbara König,
editors, 7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, June

12-16, 2017, Ljubljana, Slovenia, volume 72 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[18] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[19] Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics, 92(69-
108):6, 1989.

[20] Sergey Goncharov and Lutz Schröder. Guarded traced categories. In International Conference

on Foundations of Software Science and Computation Structures, pages 313–330. Springer,
2018.

[21] Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal categories and models

of cyclic lambda calculi. pages 196–213. Springer Verlag, 1997.
[22] Masahito Hasegawa. The uniformity principle on traced monoidal categories. In Richard Blute

and Peter Selinger, editors, Category Theory and Computer Science, CTCS 2002, Ottawa,

Canada, August 15-17, 2002, volume 69 of Electronic Notes in Theoretical Computer Science,
pages 137–155. Elsevier, 2002.

[23] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of interaction: from
coalgebraic components to algebraic effects. In Thomas A. Henzinger and Dale Miller, editors,

Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic

(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 52:1–52:10. ACM, 2014.

[24] André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119:447 – 468, 04 1996.

[25] Rudolf Emil Kalman, Peter L. Falb, and Michael A. Arbib. Topics in mathematical system

theory, volume 1. McGraw-Hill New York, 1969.

[26] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Bicategories of processes.
Journal of Pure and Applied Algebra, 115(2):141–178, 1997.

[27] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Span(Graph): A Categorial
Algebra of Transition Systems. In Michael Johnson, editor, Algebraic Methodology and Soft-
ware Technology, 6th International Conference, AMAST ’97, Sydney, Australia, December

13-17, 1997, Proceedings, volume 1349 of Lecture Notes in Computer Science, pages 307–321.
Springer, 1997.

[28] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. On the algebra of feedback

and systems with boundary. In Rendiconti del Seminario Matematico di Palermo, 1999.

A CANONICAL ALGEBRA OF OPEN TRANSITION SYSTEMS (EXTENDED ABSTRACT)15

[29] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A formalization of the IWIM

model. In International Conference on Coordination Languages and Models, pages 267–283.

Springer, 2000.
[30] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feedback, trace and fixed-

point semantics. RAIRO-Theor. Informatics Appl., 36(2):181–194, 2002.
[31] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A Process Algebra for the

Span(Graph) Model of Concurrency. arXiv preprint arXiv:0904.3964, 2009.

[32] Stephen Lack. Composing PROPs. Theory and Applications of Categories, 13(9):147–163,
2004.

[33] S. J. Mason. Feedback Theory - Some properties of signal flow graphs. Proceedings of the

IRE, 41(9):1144–1156, 1953.
[34] George H. Mealy. A method for synthesizing sequential circuits. The Bell System Technical

Journal, 34(5):1045–1079, 1955.

[35] Stefan Milius and Tadeusz Litak. Guard your daggers and traces: Properties of guarded (co-)
recursion. Fundamenta Informaticae, 150(3-4):407–449, 2017.

[36] Robert Rosebrugh, Nicoletta Sabadini, and Robert F. C. Walters. Generic commutative sep-

arable algebras and cospans of graphs. Theory and applications of categories, 15(6):164–177,
2005.

[37] Nicoletta Sabadini, Filippo Schiavio, and Robert F. C. Walters. On the geometry and algebra
of networks with state. Theor. Comput. Sci., 664:144–163, 2017.

[38] Peter Selinger. A survey of graphical languages for monoidal categories. In New structures

for physics, pages 289–355. Springer, 2010.
[39] Claude E. Shannon. The Theory and Design of Linear Differential Equation Machines. Bell

Telephone Laboratories, 1942.

[40] Pawe l Sobociński. A non-interleaving process calculus for multi-party synchronisation. In 2nd
Interaction and Concurrency Experience: Structured Interactions, (ICE 2009), volume 12 of

EPTCS, 2009.

[41] Pawe l Sobociński. Representations of Petri net interactions. In Concurrency Theory, 21th
International Conference, (CONCUR 2010), number 6269 in LNCS, pages 554–568. Springer,

2010.

	1. Introduction
	1.1. State from feedback
	1.2. The algebra of transition systems
	1.3. Stateful and stateless components
	1.4. Canonicity and our original contribution
	1.5. Related Work
	1.6. Synopsis
	1.7. Conventions

	2. Preliminaries: categories with feedback
	2.1. Categories with feedback
	2.2. Traced monoidal categories
	2.3. Delay and feedback
	2.4. St(), the free category with feedback
	2.5. Examples

	3. Span(Graph): an algebra of transition systems
	3.1. The algebra of Span(Graph)
	3.2. The components of Span(Graph)
	3.3. Span(Graph) as a category with feedback
	3.4. Cospan(Graph) as a category with feedback
	3.5. Syntactical presentation of Cospan(FinGraph)

	4. Conclusions and further work
	References

