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Abstract

A long-standing open problem in the semantics of programming languages supporting probabilistic choice is to find a
commutative monad for probability on the category DCPO. In this paper we present three such monads and a general construction
for finding even more. We show how to use these monads to provide a sound and adequate denotational semantics for the
Probabilistic FixPoint Calculus (PFPC) – a call-by-value simply-typed lambda calculus with mixed-variance recursive types, term
recursion and probabilistic choice. We also show that in the special case of continuous dcpo’s, all three monads coincide with
the valuations monad of Jones, and we fully characterise the induced Eilenberg-Moore categories by showing that they are all
isomorphic to the category of continuous Kegelspitzen of Keimel and Plotkin.

This is an extended abstract for our LICS’21 paper [1]. Preprint: https://arxiv.org/abs/2102.00510.

I. INTRODUCTION

Probabilistic methods now are a staple of computation. The initial discovery of randomized algorithms [2] was quickly
followed by the definition of Probabilistic Turing machines and related complexity classes [3]. There followed advances in
a number of areas, including, e.g., process calculi, probabilistic model checking and verification [4]–[6], right through to the
recent development of statistical probabilistic programming languages (cf. [7]–[9]), not to mention the crucial role probability
plays in quantum programming languages [10], [11].

Domain theory, a staple of denotational semantics, has struggled to keep up with these advances. Domain theory encompasses
two broad classes of objects: directed complete partial orders (dcpo’s), based on an order-theoretic view of computation, and
the smaller class of (continuous) domains, those dcpo’s that also come equipped with a notion of approximation. However,
adding probabilistic choice to the domain-theoretic approach has been a challenge. The canonical model of (sub)probability
measures in domain theory is the family of valuations – certain maps from the lattice of open subsets of a dcpo to the
unit interval. It is well-known that the valuations form a monad V on DCPO (the category of dcpo’s and Scott-continuous
functions) and on DOM (the full subcategory of DCPO consisting of domains) [12], [13].

In fact, the monad V on DOM is commutative [13], which is important for two reasons: (1) its commutativity is equivalent
to the Fubini Theorem [13], a cornerstone of integration theory and (2) computationally, commutativity of a monad together
with adequacy can be used to establish contextual equivalences for effectful programs. However, in order to do so, one typically
needs a Cartesian closed category for the semantic model, and DOM is not closed; in fact, despite repeated attempts, it remains
unknown whether there is any Cartesian closed category of domains on which V is an endofunctor; this is the well-known
Jung-Tix Problem [14]. On the other hand, it also is unknown if the monad V is commutative on the larger Cartesian closed
category DCPO. In this paper, we offer a solution to this conundrum.

A. Our Contributions

We use topological methods to construct a commutative valuations monad M on DCPO, as follows: it is straightforward
to show the family SD of simple valuations on a dcpo D can be equipped with the structure of a commutative monad, but
SD is not a dcpo, in general. So, we complete SD by taking the smallest subdcpoMD ⊆ VD that contains SD. This defines
the object-mapping of a monad M on DCPO. The unit, multiplication and strength of the monad M at D are given by
the restrictions of the same operations of V to MD. Topological arguments then imply that M is a commutative valuations
monad on DCPO.

In fact, there are several completions of SD that give rise to commutative valuations monads on DCPO. These completions
are determined by so-called K-categories, introduced by Keimel and Lawson [15]. This observation allows us to define two
additional commutative valuations monads, W and P , on DCPO simply by specifying their corresponding K-categories.
Finally, while we have identified three such K-categories, there likely are more that meet our requirements, each of which
would define yet another commutative monad of valuations on DCPO containing S.

With this background, we now summarise our main results.
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Commutative monads: A K-category is a full subcategory of the category T0 of T0-spaces satisfying properties that
imply it determines a completion of each T0-space among the objects of the K-category. For example, each K-category defines
a completion of a poset endowed with its Scott topology, among the objects in the K-category. In particular, each K-category
determines a completion of the family SD when considered as a subset of VD, for each dcpo D.

By specifying an additional constraint on K-categories, we can show the corresponding completions of S define commutative
monads on DCPO. We identify three commutative monads concretely: M, W and P , corresponding to the K-categories of
d-spaces, that of well-filtered spaces and that of sober spaces, respectively. As part of our construction, we also prove the most
general Fubini Theorem for dcpo’s yet available.

Eilenberg-Moore Algebras: All three of M,W and P restrict to monads on DOM, where they coincide with V . We
characterize their Eilenberg-Moore categories over DOM by showing they are isomorphic to the category of continuous
Kegelspitzen and Scott-continuous linear maps [16]; this corrects an error in [13].

On the larger category DCPO, we show the Eilenberg-Moore algebras of our monads M,W and P are Kegelspitzen. It
is unknown if every Kegelspitze is an M-algebra.

Semantics: We consider the Probabilistic FixPoint Calculus (PFPC) – a call-by-value simply-typed lambda calculus with
mixed-variance recursive types, term recursion and probabilistic choice. We show that each of the Kleisli categories of our
three commutative monads is a sound and computationally adequate model of PFPC. Moreover, we show that adequacy holds
in a strong sense, i.e., the interpretation of each term is a (potentially infinite) convex sum of the values it reduces to.

II. COMMUTATIVE MONADS FOR PROBABILITY

A. Domain-theoretic and Topological Preliminaries

A nonempty subset A of a partially ordered set (poset) D is directed if each pair of elements in A has an upper bound in
A. A directed-complete partial order, (dcpo, for short) is a poset in which every directed subset A has a supremum supA.
For example, the unit interval [0, 1] is a dcpo in the usual ordering. A function f : D → E between two (posets) dcpo’s is
Scott-continuous if it is monotone and preserves (existing) suprema of directed subsets. The category DCPO of dcpo’s and
Scott-continuous functions is complete, cocomplete and cartesian closed [17]. A domain is a dcpo which comes equipped
with some suitable additional structure for approximation (details omitted here). Domains and Scott-continuous maps form an
important subcategory DOM.

The Scott topology σD on a dcpo D consists of the upper subsets U = ↑U = {x ∈ D | (∃u ∈ U)u ≤ x} that are
inaccessible by directed suprema: i.e., if A ⊆ D is directed and supA ∈ U , then A ∩ U 6= ∅. The space (D,σD) is also
written as ΣD. Scott-continuous functions between dcpo’s D and E are exactly the continuous functions between ΣD and
ΣE [18, Proposition II-2.1].

A subset B of a dcpo D is a sub-dcpo if every directed subset A ⊆ B satisfies supD A ∈ B. In this case, B is a dcpo
in the induced order from D. The d-topology on D is the topology whose closed subsets consist of sub-dcpo’s of D. Open
(closed) sets in the d-topology will be called d-open (d-closed). The d-closure of C ⊆ D is the topological closure of C with
respect to the d-topology on D, which is the intersection of all sub-dcpo’s of D containing C.

The family of open sets of a topological space X , denoted OX , is a complete lattice in the inclusion order. The specialization
order ≤X on X is defined as x ≤X y if and only if x is in the closure of {y}, for x, y ∈ X . We write ΩX to denote X
equipped with the specialization order. It is well-known that X is T0 if and only if ΩX is a poset. A subset of X is called
saturated if it is an upper set in ΩX . A space X is called a d-space or a monotone-convergence space if ΩX is a dcpo and
each open set of X is Scott open in ΩX . As an example, ΣD is always a d-space for each dcpo D. The full subcategory
of T0 consisting of d-spaces is denoted by D. There is a functor Σ: DCPO→ D that assigns the space ΣD to each dcpo
D, and the map f : ΣD → ΣE to the Scott-continuous map f : D → E. Dually, the functor Ω: D → DCPO assigns ΩX
to each d-space X and the map f : ΩX → ΩY to each continuous map f : X → Y . In fact, Σ a Ω, i.e., Σ is left adjoint to
Ω [19].

A T0 space X is called sober if every nonempty closed irreducible subset of X is the closure of some (unique) singleton
set, where A ⊆ X is irreducible if A ⊆ B ∪ C with B and C nonempty closed subsets implies A ⊆ B or A ⊆ C. The
category of sober spaces and continuous functions is denoted by SOB. Sober spaces are d-spaces, hence SOB ⊆ D [15].

B. A Commutative Monad for Probability

To begin, a subprobability valuation on a topological space X is a Scott-continuous function ν : OX → [0, 1] that is strict
(ν(∅) = 0), and modular (ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V )). The set of subprobability valuations on X is denoted by
VX . The stochastic order on VX is defined pointwise: ν1 ≤ ν2 if and only if ν1(U) ≤ ν2(U) for all U ∈ OX . VX is a
pointed dcpo in the stochastic order, with least element given by the constantly zero valuation 0X and where the supremum
of a directed family {νi}i∈I is supi∈I νi

def
= λU. supi∈I νi(U).

The canonical examples of subprobability valuations are the Dirac valuations δx for x ∈ X , defined by δx(U) = 1 if x ∈ U
and δx(U) = 0 otherwise. VX enjoys a convex structure: if νi ∈ VX and ri ≥ 0, with

∑n
i=1 ri ≤ 1, then the convex sum



∑n
i=1 riνi

def
= λU.

∑n
i=1 riνi(U) also is in VX . The simple valuations on D are those of the form

∑n
i=1 riδxi

, where xi ∈ X ,
ri > 0, i = 1, . . . , n and

∑n
i=1 ri ≤ 1. The set of simple valuations on X is denoted by SX . Clearly, SX ⊆ VX . Unlike VX ,

SX is not directed-complete in the stochastic order in general.
Given ν ∈ VX and f : X → [0, 1] continuous, we can define the integral of f against ν by the Choquet formula∫

x∈X
f(x)dν

def
=

∫ 1

0

ν(f−1((t, 1]))dt,

where the right side is a Riemann integral of the bounded antitone function λt.ν(f−1((t, 1])). If no confusion occurs, we
simply write

∫
x∈X f(x)dν as

∫
fdν. Basic properties of this integral can be found in [13].

For a dcpo D, VD is defined as V(D,σD). Using Manes’ description of monads (Kleisli triples) [20], Jones proved in her
PhD thesis [13] that V is a monad on DCPO:
• The unit of V at D is ηVD : D → VD :: x 7→ δx;
• The Kleisli extension f† of a Scott-continuous map f : D → VE maps ν ∈ VD to f†(ν) ∈ VE by

f†(ν)
def
= λU ∈ σE.

∫
x∈D f(x)(U)dν.

Then the multiplication µVD : VVD → VD is given by id†VD; it maps $ ∈ VVD to λU ∈ σD.
∫
ν∈VD ν(U)d$ ∈ VD. Thus, V

defines an endofunctor on DCPO that sends a dcpo D to VD, and a Scott-continuous map h : D → E to V(h)
def
= (ηE ◦ h)†;

concretely, V(h) maps ν ∈ VD to λU ∈ σE.ν(h−1(U)). Jones [13] also showed that V is a strong monad over DCPO: its
strength at (D,E) is given by

τVDE : D × VE → V(D × E) :: (x, ν) 7→ λU.

∫
y∈E

χU (x, y)dν,

where χU is the characteristic function of U ∈ σ(D × E). Whether V is a commutative monad on DCPO has remained an
open problem for decades. Proving this to be true requires showing the following Fubini-type equation holds:∫

x∈D

∫
y∈E

χU (x, y)dξdν =

∫
y∈E

∫
x∈D

χU (x, y)dνdξ, (1)

for dcpo’s D and E, for U ∈ σ(D × E) and for ν ∈ VD, ξ ∈ VE [12, Section 6]. The difficulty lies in the well-known fact
that a Scott open set U ∈ σ(D × E) might not be open in the product topology σD × σE in general [18, Exercise II-4.26].

We obtain a commutative monad of valuations on DCPO by restricting to a suitable completion of SD inside VD. There
are several possibilities (cf. [21]), and we choose the smallest and simplest – the d-closure of SD in VD.

Definition 1. For each dcpo D, we define MD to be the intersection of all sub-dcpo’s of VD that contain SD.

Theorem 2. M is a commutative monad on DCPO. The monad operations are (co)restrictions of those of V .

Remark 3. We note that MD is the first example of a commutative valuations monad on DCPO that contains the simple
valuations. And, since every valuation on a domain D is a directed supremum of simple valuations [13, Theorem 5.2], it
follows that M = V on the category DOM.

In fact, the construction of the monad M is a special case of a more general construction based on K-categories.

Theorem 4. Any K-category K with K ⊆ D determines a commutative valuations monad VK on DCPO. In particular,
M = VD. The categories of sober spaces SOB and that of well-filtered spaces WF are both K-categories and subcategories
of D and so they determine two additional commutative monads on DCPO, denoted P and W , respectively. These monads
satisfy the following relationship SD ⊆MD ⊆ WD ⊆ PD ⊆ VD for each dcpo D.

Remark 5. All subsequent results stated here hold for all three monads M, W and P.
Kegelspitzen [16] are dcpo’s equipped with a convex structure. A Kegelspitze which is also a domain is called continuous.

We show every continuous Kegelspitze K has a linear barycenter map β : MK → K making (K,β) an M-algebra and
conversely, every M-algebra (K,β) on DCPO admits a Kegelspitze structure on K making β : MK → K a linear map.

Theorem 6. The Eilenberg-Moore category DOMM of M over DOM is isomorphic to the category of continuous
Kegelspitzen and Scott-continuous linear maps.

Since DOMM = DOMV , the above theorem also characterises the algebras of V on domains. This corrects an error in [13],
where it is claimed that continuous abstract probabilistic domains and linear maps are isomorphic to DOMV . A separating
example is the extended non-negative reals [0,∞], which is a continuous Kegelspitze but not an abstract probabilistic domain.

Our final contribution is to show that our monads can be used to study the semantics of probabilistic programming languages.

Theorem 7. The Kleisli category DCPOM of M is a sound and (strongly) adequate denotational model of PFPC.
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