Situated Transition Systems

Chad Nester *

Tallinn University of Technology, Estonia

We construct a monoidal category of open transition systems that generate material history as transi-
tions unfold, which we call situated transition systems. The material history generated by a composite
system is composed of the material history generated by each component. The construction is pa-
rameterized by a symmetric strict monoidal category, understood as a resource theory, from which
material histories are drawn. We pay special attention to the case in which this category is com-
pact closed. In particular, if we begin with a compact closed category of integers then the resulting
situated transition systems can be understood as systems of double-entry bookkeeping accounts.

1 Introduction

Graphs have been used to model the states and state changes (transitions) of systems for hundreds of
years [7l]. Today, graphs can be found everywhere in the scientific literature, and entire fields of study
are concerned with specific kinds of graph models. In common practice, to model something as a graph
is to treat is as a closed system — that is, the surrounding context is ignored by the model. The closed
nature of these models is a failure of compositionality: it prevents us from explaining large systems as
the combination of smaller components. This sort of compositionality is all but required if our modelling
techniques are to apply to the complex systems we encounter in the world.

A promising compositional approach is the algebra of transition systems with boundary given by the
category Span(RGraph) of spans of reflexive graphs [15]. In this formalism, each transition manifests
as an event at the boundaries of a system, and composing systems along a common boundary constrains
their behaviour to be consistent with the events observed there. This allows us to consider graph models
of open systems, and to use these as components in the construction of a larger whole. For example, the
authors of [9]] have constructed a simplified model of the heart system in the Span(RGraph) setting.

In an unpublished and — it seems — largely unknown paper [16], the category Span(RGraph) is
modified to give a category of systems of partita-doppia (double-entry bookkeeping) accounts. These
systems have an account balance, which may change as the result of vaule entering or leaving the system
during a transition. The resulting category Accounts allows us to model a system of partita-doppia
accounts in context, as one part of a notional system of all accounts. This is more exciting than may be
immediately apparent. From [16]:

”The aim of accounting is the measurement of a distributed concurrent system, and it is
our contention that it is one of the earliest and most successful mathematical theories of
concurrency.”

The present work arose from a desire to generalize the category Accounts. In a sense, models in
Span(RGraph) (indeed, graph models more generally) are detached from any sort of material reality.
The states and state transitions are specified, but the material effect of a given sequence of transitions is
left informal, specified as vague intuition. In the category of Accounts, transitions come equipped with a

*This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

To appear in EPTCS.

2 Please define \titlerunning

material effect on the partita-doppia ledger associated with that system. The abstract, conceptual world
of graphs is thus sifuated in the world of accouting.

Our point of departure is to replace the theory of partita-doppia ledgers with an arbitrary resource
theory (symmetric strict monoidal category) in the sense of [3]. Augmenting our resource theories with
corners [19] allows us to assign material history to a transition in a compositional way: material history
generated by a composite transition system is the composite of material history generated by its compo-
nents. We call the resulting notion a situated transition system, and we show that for any resource theory
A the A-situated transition systems form a monoidal category.

We show that our formalism specializes to capture its inspiration: if we begin with a compact closed
category Z of integers, the category of Z-situated transition systems is a category of systems of partita
doppia accounts in the sense of [16]. Further, we show that for any compact closed category A, the
catgory of A-situated transition systems is also compact closed. This generalizes the main theorem of
[[L6]], which is that Accounts is a compact closed category.

1.1 Contributions and Related Work

Related Work. We credit the resource-theoretic interpretation of monoidal categories and their string
diagrams to [3]]. String diagrams for monoidal categories are dealt with rigorously in [[14]. The use of
“corners” in single object double categories to allow the concurrent decomposition of resource transfor-
mations is due to [[19]. Double categories first appear in [15]. Free double categories are considered in [4]]
and again in [8]]. The corner structure we use is in fact the structure of a proarrow equipment. The idea of
a proarrow equipment first appears in [22]], albeit in a rather different form. Proarrow equipments have
subsequently appeared under many names in formal category theory (see e.g., [20,[10]). String diagrams
for double categories and proarrow equipments are treated precisely in [[12]. The original work on the
category of spans of reflexive graphs as a setting for modelling concurrent systems is [[15]. Our work is
directly inspired by earlier efforts to eqiup such models with accounting information [[16]. An excellent
mathematical exposition of double-entry bookkeeping is [[6]. Compact closed categories were introduced
in [13], along with the compact closed category Z of integers. More on compact closed categories, and
specifically on compact closed categories of integers, can be found in [1]].

Contributions. The main contribution of this paper is the notion of situated transition system, accom-
panied by the construction of the monoidal category S(A) of situated transition systems over an arbitrary
monoidal category A (Proposition[I]2)). Other contributions are our investigation into the effect of com-
pact closed structure in A on S(A) (Lemma [1J2I3), and the observation that S(Z) captures the systems
of partita-doppia accounts of [16] (Corollary [T)). To our knowledge the compact closed perspective on
double-entry bookkeeping is also novel, and so may be viewed as a modest contribution.

2 Preliminaries

2.1 Monoidal Categories as Resource Theories

Symmetric strict monoidal categories can be understood as theories of resource transformation [3]]. Ob-
jects are interpreted as collections of resources, with A ® B the collection consisting of both A and B,
and [the empty collection. Arrows f : A — B are understood as ways to transform the resources of A
into those of B, or equivalently as parts of a larger material history involving those resources. We call
symmetric strict monoidal categories resource theories when we have this sort of interpretation in mind.

Please define \authorrunning 3

For example, let B be the free symmetric strict monoidal category generated by:

{bread, dough, flour,oven}

knead : flour — dough bake : dough ® oven — bread ® oven eat: bread — I

subject to no equations. B can be understood as a resource theory of bread. The arrow knead represents
the process of making dough from flour, bake represents baking dough in an oven to obtain bread (and
an oven), and eat represents the consumption of bread.

The structure of symmetric strict monoidal categories provides natural algebraic scaffolding for com-
posite transformations, with the associated string diagrams acting as a convenient syntax for expressing
material histories. For example in the following string diagram over ‘B we see two units of dough made
into loaves of bread by baking one after the other in an oven.

dough Oven dough

bake

bread bread Oven

Notice how the topology of the diagram captures the logical flow of resources.

Given a parallel pair f,g : A — B of material histories in some resource theory A, we understand
equality of f and g to mean that both have the same effect on the resources involved. For example,
suppose we add a generating morphism sift : flour — flour to our resource theory ‘B, subject to the
equation sift osift = sift. Call the resulting resource theory Bg;s. In this new theory the material histories
sift and sift o sift express different sequences of events, with the flour being sifted once in the former,
but twice in the latter. They are made equal by our new equation, which means that in B, sifting
flour twice has the same effect as sifting it once. Contrast this to 1o, and sift : flour — flour. Identity
morphisms have no effect on the resources involved, so intuitively these two material histories should
not denote equal morphisms of Bz, and indeed they do not. We adopt this understanding of equality as
a general principle in our design and understanding of resource theories.

2.2 Cornering and Concurrent Transformations

The resource theoretic interpretation of symmetric strict monoidal categories can be extended to allow
the decomposition of material histories into their concurrent components [[19]. Specifically, we augment
the string diagrams for a given resource theory A with corners for each object A of A:

T A I A
M __T T I LA" I T—A’ A‘—l I
A I A T

Corners allow us to express resources flowing into and out of a system. A° denotes an instance of A
flowing from left to right, and A® denotes an instance of A flowing from right to left. Our corners must
satisfy the yanking identities, which ensure that this movement has no effect on the resources themselves:

te— hefef —-r

4 Please define \titlerunning

For example, adding corners to our resource theory ‘B allows the following decomposition of the baking
process. The transformation below on the left begins with no resources, then flour enters along the right
boundary and is kneaded into dough, which leaves along the right boundary. The transformation below
in the middle begins with an oven, then flour passes through from right to left, dough is received along
the left boundary and is baked, and the resulting bread leaves along the right boundary, with the oven
staying put. Finally, the transformation below on the right begins with flour, which leaves the system
along the left boundary, after which bread enters from the left, and is eaten.

oven Flovf
Floor® ‘Qf:t‘)‘k; - Hovr® Floor* —
bake L
doogr® —] bteod®
oven

These transformations may be composed horizontally to obtain a single transformation of resources:

Houp oven Yooy
=)

g
S

Formally, these augmented string diagrams denote cells of a single object double category [Aj which
we call the free cornering of A. This double category has one object, so in particular the horizontal
and vertical edge categories are necessarily monoids (single object categories). The horizontal edge
monoid (Ao, ®,I) is given by the monoidal structure on the objects of A. The vertical edge monoid
A°® = (Ag x {o,e})* is the free monoid of polarized objects of A, written as in A° and A®. Elements of
A°*® are sequences of polarized objects of A, which we understand as A-valued exchanges. The monoid
operation is given by concatenation (denoted by ®) and the empty sequence (denoted by I) is the unit
of the monoid. Each exchange X; ® --- ® X, € A°® involves a left participant and a right participant
giving each other resources in sequence, with A° indicating that the left participant should give the right
participant an instance of A, and A® indicating that the right participant should give the left participant an
instance of A. For example if Alice is the left participant and Bob is the right participant, then we can
picture the exchange A° ® B* @ C* € A°* as

Allce«/»% _<_L<_ %WBob

These exchanges happen in order. The exchange pictured above demands that first Alice gives Bob an
instance of A, then Bob gives Alice an instance of B, and then finally Bob gives Alice an instance of C.

The generating cells of [Aj are the corners discussed above, subject to the yanking equations, together
with cells [fj for each arrow f : A — B of A, subject to the following equations:

A
ek
SETY s | W cln; %l e — el [l
e = s = = HE
] L_‘ L] L]

Please define \authorrunning 5

Now [Aj is the free double category generated by this data, with arbitrary cells of [Aj being obtained by
vertical and horizontal composition of the generators, subject to the equations of a double category (see
[8} 4] for more on free double categories).

The double category ' A is more thoroughly investigated in [19]. For our purposes we need only
mention that CAI always contains crossing cells, pictured below on the left for an arbitrary B € A and
X € A°*. These crossing cells make A into a monoidal double category in the sense of [21]], with the
tensor product of cells given given below on the right.

B A A AKX
’ %] + X —fd——y
U Yl :
X X X y ® x¥—¢] x.y,
B B ® B &

This is all the resource-theoretic machinery we will need to give a compositional account of the
material histories generated by our transition systems. We turn now to the transition systems themselves.

2.3 The Algebra of Transition Systems with Boundary

For our purposes a transition system R consists of a collection of states, Ry, and a collection of transitions
t:A — B € Ry where A, B € Ry. We ask further that for each A € R there is a trivial transition €4 : A —
A € R,. In other words, a transition system is precisely a reflexive graph (states are vertices, transitions
are edges). A morphism F : R — § of transition systems is a morphism of reflexive graphs: It consists
of a mapping of vertices Fp : Ry — Sp together with a mapping of edges Fi : Ry — S| and must preserve
the source and target of edges in the sense that if # : A — B then Fi(¢) : Fj(A) — Fy(B). Further, it
must preserve the trivial edges in the sense that Fi(€4) = € (4). Reflexive graphs and reflexive graph
morphisms form a cartesian category RGraph, which will play a supporting role in our development.

The algebra of transition systems with boundary is captured by the category Span(RGraph) of spans
in RGraph [15]]. If U and V are reflexive graphs, then a morphism R : U — V of Span(RGraph) consists
of another reflexive graph R (the apex) with morphisms & : R — U and 8; : R — V of RGraph (the legs).
We understand this as a transition system R with boundaries U and V. Every transition ¢t : A — B of
R corresponds to an event at each boundary — &y(¢) at U and 0;(¢) at V. Span composition is given by
pullback: If R: U — V and S : V — W in Span(RGraph), a transition of SoR : U — W consists of a pair
of transitions (z,7') € Ry x S which correspond to the same event) (¢) = &(¢') at the shared boundary
V. In the composite each of the components constrains the behaviour of the other. We consider spans
modulo the equivalence relation generated by span isomorphism.

For example, let M be the reflexive graph with a single vertex and two nontrivial edges up and down,
pictured below on the left. The diagram below on the right indicates a morphism Gear : M — M of
Span(RGraph). The apex has a single vertex and two nontrivial edges cw and ccw, and the legs of the
span are indicated by the colouring. The idea is that our gear can rotate clockwise (cw), in which case the
teeth along the left and right boundary move up and down respectively, or may rotate counterclockwise
(ccw), with the boundary teeth moving in the opposite directions. We omit the trivial edges from our
diagrams but nonetheless consider them to be present, so our gear system can also do nothing via €.

vp u w ul
M= Q Ger:MoyM - & 6|8

3 B | & |

down down o down

6 Please define \titlerunning

Now the composite system Gear o Gear represents two interlocking gears. The teeth interlock at the
shared boundary, where they must move in unison. Our notion of composition captures this formally: the
apex of our composite span has a single vertex and two nontrivial edges, one in which the gear on the left
rotates clockwise and the gear on the right rotates counterclockwise, and one representing the opposite
situation. The case where both gears rotate in the same direction is not present as it would be inconsistent
along the shared boundary. In fact Gear o Gear = 1y, reflecting a similar property of physical gears.

ul cw/cew u
GearoGear: M - M = (S a (ﬁ

J A J

down cew/ew down

Span(RGraph) is a symmetric monoidal category. The tensor product is defined on objects by U ®
V =U x V, and the unit 1 is the graph with a single vertex and no nontrivial edges. On arrows R :
U —VandS:U — V' the tensor product RQ S: U ®@U’ — V @V’ has apex R x S with left and right
leg given by the product of the left and right legs of R and S, respectively. A transition in the tensor
product of two systems is simply a transition from each component. Intuitively, the components function
independently of each other. Further, notice that the component systems may function asynchronously
via the € transitions: If 7 € Ry and ¢’ € S; then (7,1), (¢,€), (g,1'), and (g, €) are all transitions of R® S.

There is also a lot of other structure in Span(RGraph). Relevant to our purposes here is the fact that
Span(RGraph) is compact closed. The dual of X is given by X itself, and the unit and counit are defined
in terms of the finite product structure on RGraph: nx : 1 — X ® X is given by the span with apex X, left
leg !x : X — 1, and right leg Ax : X — X x X, with €&y : X ® X — 1 constructed similarly.

We conclude our discussion of Span(RGraph) with a bread-themed example. Define objects U,V of
Span(RGraph) as follows — again omitting the trivial edges from our diagrams:

U= Qx V=0QY

We understand the event x € U; to indicate that the system on the right is obtaining ingredients for baking
from the system on the left, and the y € V) indicates that the system on the left is selling bread to the
system on the right.

Let Baker be the morphism of Span(RGraph) pictured below on the left. The apex has two vertices,
one in which the system is open for business, and another in which it is closed. There are edges allowing
the system to transition from being open to being closed, and vice-versa. When it is open, the system may
bake and sell bread. The legs of the span are indicated by the colouring: The bake transition corresponds
to the event x at the left boundary, and the transition sell corresponds to the event y at the right boundary.
An absence of colour indicates the trivial event €, so for example the transition open corresponds to the
trivial event at both boundaries, and bake corresponds to the trivial event at the right boundary.

baxe Q?e@ sell Foll
diges
Baker:U —V = Q% cose | QY Eater:V =1 = Q¥ MT o
. 0?”\1 l 0 . . HOV\%‘\\I
Closed O oy

Let Eater be the morphism of Span(RGraph) pictured above on the right. The apex has two vertices, one
in which the system is hungry, and another in which it is full. If hungry, the system may eat to become
full, and if full may digest to become hungry. Finally, when it is hungry the system may buy food. The
legs are again indicated by the colouring, with the right leg omitted entirely since in this case there is
nothing to indicate. The transition buy corresponds to event y at the left boundary, and that is all.

Please define \authorrunning 7

Now, composing our two systems along their shared boundary V yields:

bake *’“"' bm ¥rode
woye/‘;“\"auccoﬁ@ Waste = (Open, Full)

- Success = (Open Hunary)
EateroBaker:U — 1 = Q% < Tdle = (Closes, \:?:)
Hunger = (Closed, Humgry)

Tdle uh%ef

The unlabelled transitions arise from combinations of open,close, eat, and digest — those transitions
corresponding to the trivial event at the boundaries. The bake transitions are those in which the Baker
system bakes, and the trade transition corresponds to the Baker subsystem selling bread and the Eater
subsystem buying it — activities which must be synchronised in the composite system. The legs of the
span are indicated by the colouring, and we see that every bake transition involves the event x along
the left boundary. The transition trade is coloured yellow to draw attention to the fact that it is the
coincidence of the two yellow transitions in the component systems, and it has trivial boundary effects.

3 Situated Transition Systems

Given aresource theory A, in this section we show how transition systems with boundary can be equipped
to generate A-valued material histories as transitions occur. The double category (A of concurrent
transformations plays an essential role, allowing us to combine the histories generated by component
spans into the history generated by their composite through horizontal composition in A .

We begin by situating the boundaries of our transition systems. In Span(RGraph) the possible events
(edges) along a boundary (reflexive graph) serve to synchronise and constrain the behaviour of the larger
system. From the material point of view, the relevant part of a boundary event is whether or not any
resources leave or enter the system, and if so which ones. This information is captured by the monoid
A°*® of A-valued exchanges, which is equivalently a reflexive graph with a single vertex where the unit /
of the monoid is the trivial edge.

Definition 1. Let A be a resource theory. Then an A-situated boundary (U, ¢y) consists of a reflexive
graph U together with a reflexive graph homomorphism ¢y : U — A°®. Call @y the situation of U in A.

We understand ¢y (x) to describe the resources that cross the boundary as part of the event x, and
thus constitute its material effect. We will depict A-situated boundaries as graphs with edge labels drawn
from A°®, defining the situation of the boundary in A. Since A°® has only one vertex, we do not need
to label the vertices. Edges with no label are understood as having label /, and we continue to omit the
trivial edges from our depictions. For X € A°® we adopt the convention of writing X for the A-situated
boundary with a single vertex and a single nontrivial edge, which is mapped to X by the situation. For
example the B-situated boundary flour® is depicted below on the left. The boundary with two vertices
and two nontrivial edges — one from each vertex to the other — which are both mapped to I by the situation
is depicted below on the right.

/!
Qe "

Now to situate entire transition systems we associate each transition with a cell of | A describing the
corresponding material effect. The left and right boundaries of this cell must match the labels in A°® of
the left and right boundary events, respectively, so that any material exchanges entailed by those events
are present in the material history of the transition. In order to make this precise we view A as a span

8 Please define \titlerunning

of reflexive graphs. Specifically, define (A) to be the reflexive graph with vertex set A in which an edge
«:A— Bisacell of A with top boundary A and bottom boundary B. Then there is a span

) l

AO.

(A)

where & (o) and &;(a) are the left and right boundary of o, respectively. The trivial edges of (A) are
given by the vertical identity cells. Situated transition systems are now defined as follows.

Definition 2. Let A be a resource theory, and let (U,¢y) and (V, ¢y) be A-situated boundaries. Then
an A-situated transition system (R,¢g) : (U,¢y) — (V,¢y) consists of a morphism U <— R — V of
Span(RGraph) together with a reflexive graph homomorphism @ : R — (A) that we call the situation of
R in A. We require ¢ to be coherent with respect to ¢y and @y in the sense that the following diagram
of reflexive graph homomorphisms commutes:

U R Vv
¢Ul ld’R lﬂ’v
AO. <A> AO.

o 3

We understand ¢r as assigning a collection of resources to each state of R, and assigning to each
transition of R a concurrent transformation of resources whose left and right boundary coincide with the
material effect of the left and right boundary events. We depict situated transition systems by giving the
underlying span of reflexive graphs as before, with the legs indicated by the colouring. We indicate the
action of @ by labelling the vertices (edges) of the apex with the object of A (cell of IAI) that ¢ maps
them to. For example we can refine our earlier bread-themed example to be ‘5-situated, with the new
Baker system given by:

bﬂ\@p’
oven > Oven @ bread
Baker : flour® — bread® = Q Blour? CW°U sellg M&I l e oo | Quread
openy
o,
O\le? Oven ® boread
where the edge labels are the following cells of B :
oven breag"
oven bread” Leead ovn breadh
bake, = sell, = \ L—bm/” close, = open, = \
OVEN badh oven lorea)"

OV read bread™

The left boundary is given by the graph with a single vertex and one nontrivial edge, which is mapped to
flour® by the situation, indicating that flour enters the system as part of that event. The right boundary is
similar, with the single nontrivial edge mapped to bread® by the situation, indicating that bread leaves the
system. The apex has two vertices for each n € N which indicate whether the system is open for business
or not, and that it currently has » units of bread in stock. The two states in which the sytem has n units
of bread are mapped to oven ® bread” by the situation. The edges are similarly indexed: the system may
open and close while retaining its stores of bread via open,, and close,. When open the system may bake

Please define \authorrunning 9

bread via bake,, in which case we see that flour enters the system from the left, and may also sell any
bread it has via sell,,, in which case bread leaves from the right.
We continue by defining a B-situated Eater as follows:

____—> buad———-—*bna(\ ® bread

Eater:bread” -1 = bread® o o « o
Q N / o '\s ‘

ea\-i

where the edge labels are the following cells of |5 :

beg bread” bresd bread"
buy, = bmAc—T eat, = digest, =
bread bread buadh bread"

There are two states for each n € N in which the system is hungry, and one in which it is full. In the nth
iteration of each of these states, the system posesses n bread. If in a hungry state and posessing at least
one bread, the eat, transitions allow it to eat and enter a full state. From a full state the digest,, transitions
allow the system to become hungry, leaving the amount of bread unchanged, and finally if the system is
hungry then the buy,, transitions allow it to acquire more bread along the left boundary, with the legs of
the span indicating that when this happens bread must enter the system along the left boundary.

To compose A-situated transition systems (R, §r) : (U, ¢y) — (V, ¢v) and (S, @s) : (V,¢v) — (W, ow)
we compose the underlying spans by pullback as in Span(RGraph), and define the composite situation
Osor : So R — (A) by horizontal composition: @s.g(,1') = @r(z) | ¢s(¢’). This is well-defined because
the situations are coherent. In particular this means that d; o ¢ = dy o @s, which says precisely that the
right boundary of @g(7) is the left boundary of ¢g(¢') for edges (z,#') of SoR. Composition of situated
transition systems is associative because composition in Span(RGraph) and horizontal composition in
[Aj are both associative. Notice also that paths in a situated transition system have vertically composable
material effects, with the composite giving the effect of the entire sequence of transitions.

Continuing our example, we may compose our ‘B-situated Eater and Baker transition systems to
obtain Eater o Baker : flour® — I. This transition system has four vertices for each pair n,m of natural
numbers, being those states in which the Baker has n bread and the Eater has m bread. The transitions
of this new system are mostly pairs of transitions of the components, the exception being that when the
Baker sells the Eater must buy due to the fact that these transitions are assigned to the same event along
the shared boundary bread®. Now, suppose that in our composite system the Baker begins with one bread
and that the Eater begins with none. Suppose further that events unfold as follows: First, the Baker sells
its bread to the Eater, which promptly eats it. Then, the Baker bakes more bread, and finally sells the
new bread to the Eater. This sequence of transitions corresponds to the following material history: below
on the left we see the history generated by the Baker, below in the middle the history generated by the
Eater, and below on the right we see the composite history generated by the system as a whole.

oven bread oven bread oven bread

L——bm)" brea)*—0
Slour®—0
H

bake
bwu)"-—T 5
bread® l

bread oven bread oven bread

ba\(a

Situated transition systems are now easily seen to form a category. We record:

10 Please define \titlerunning

Proposition 1. Let A be a resource theory. Then there is a category S(A) of situated transition systems,
defined as follows:

objects are A-situated boundaries.

arrows are A-situated transition systems, modulo coherent isomorphism of the underlying spans. That
is, for two A-situated transition systems (R, ¢g), (S, 9s) : (U,¢v) — (V, ¢y), say that (R, dg) ~ (S, ¢s)
in case there exists a reflexive graph isomorphism o : R = S such that

(i) o : R > S is an isomorphism of spans, in the sense that the following diagram commutes:

PAoN

U+—8S——V

(i) o : R = S preserves material histories, in the sense that there is a natural isomorphism 1 : ¢p —
P p
¢s o a (see Remark [I)).

Now an arrow of S(A) is a ~-equivalence class of situated transition systems.

the identity arrow on (U, ¢y) is given by the identity span U 2y My and the situation map ¢y, :
U — (A) sends7: A — Bin U to the horizontal identity cell for @y (z).

composition is as discussed above.

Remark 1. In the definition of S(A), an equilvalence (R, ¢r) ~ (S, ¢s) requires a natural isomorphism
1: Pr — s o, where @ and ¢s o o are reflexive graph homomorphisms of type R — (A). Natural
transformations are defined between functors, so the reader would be justified in thinking that we have
made a fatal mistake! All is in fact well, as we explain presently.

There is a well-known adjunction F : RGraph - Cat : U with F(G) being the category of paths in
a reflexive graph G, and U(C) being the underlying graph of a category C. Given two reflexive graph
homomorphisms f,g : G — U(C) define a natural transformation 1 : f — g to consist of a morphism
14 : f(A) — g(A) of C for each vertex A of G such that for every edget: A — Bof G, 10 f(t) = g(t)o1a
in C. Thus, the definition of natural transformation applies unchanged to reflexive graph homomor-
phisms whose codomain happens to be a category. Further, applying F to this situation yields a natural
transformation in the usual sense. Now (A) is clearly the underlying graph of a category, so in particular
it makes sense to ask for a natural isomorphism t : §g — ¢s o o. Every isomorphism in (A) has trivial
left and right boundary. We therefore require an isomorphism 14 : ¢r(A) = @s(0t(A)) in A=V A for
each vertex A of R such that ¢g(¢)1z = tads(o(¢)) in | A for each edge ¢ : A — B of R.

Intuitively, isomorphic objects of A denote the same collection of resources, only orgainzed dif-
ferently. Understood this way, our notion of equivalence (R, ¢g) ~ (S, ¢s) identifies situated transition
systems that differ only in the internal organization of their resources. More concretely, asking for strict
equality @ = ¢s o o does not result in a monoidal category. We would like S(A) to be monoidal, and our
notion of equality is just flexible enough to make this the case.

Proposition 2. If A is a resource theory then S(A) is a monoidal category.

Proof. See Appendix [A.T] O

Please define \authorrunning 11

4 Compact Closure and Accounting

In this section we consider the case in which our resource theory A is compact closed. From the per-
spective of accountancy, string diagrams over a resource theory are like ledgers, recording the material
history of the resources they concern [[18]]. In the partita-doppia (double-entry) method of accounting ev-
ery change to a ledger must consist of a matching credit (positive change) and debit (negative change), so
that the ledger remains balanced. This serves as a kind of integrity check: given a ledger we may attempt
to balance it by matching credits with debits and cancelling them out, and the ledger is well-formed in
case all entries may be cancelled in this way.

While the credits and debits of partita-doppia accounting are usually positive and negative integers,
the technique applies in the context of any compact closed resource theory. The units 4 : I - A®A*
create matching credits and debits, and the cancellative process of balancing is performed via the counits
€4 :A*®A — I. The traditional setting [6]] is captured by the compact closed category Z whose objects
are the group of differences construction of the integers and in which there is a morphism between two
objects if and only if the corresponding integers are equal [[13} [1]].

The cells of | A| with I as their top and bottom boundary are called horizontal cells. The horizontal
cells of | A form a monoidal category H' A, with composition given by horizontal composition in [A
and the tensor product given by vertical composition in [Aj Think of H[Aj as a category of exchanges
— a point of view is developed in [19]. Isomorphic objects of H[Aj correspond to equivalent exchanges
([19], Lemma 3). If A is compact closed we encounter a formal version of the fact that if Alice gives
Bob negative five dollars, this is equivalent to Bob giving Alice positive five dollars. More generally,
that to get rid of a debit is in many ways the same thing as receiving a credit, and vice-versa.

Lemma 1. If A is compact closed then A° = (A*)* and A® = (A*)° in H A .
Proof. See Appendix O

There is a kind of causal structure present in H A, The corners allow us to bend wires down, but
not up, a formal reflection of the fact that I cannot give something away unless I have it. In particular
this means that S(A) need not be symmetric monoidal: For any A, B there is always a morphism of type
A°®B®* — B®* ® A°, pictured below on the left, but this is not always an isomorphism.

Ao:j CB‘ @ po
B* A »° 8°
If our resource theory A is compact closed, then H A is symmetric monoidal, with the inverse to the
problematic morphism given above on the right. This is a formal reflection of the way that debits allow

us to violate causality in everyday life: by incurring a debit I may give something away before I have it.
For similar reasons, H A need not be rigid, but if A is compact closed then it is.

Lemma 2. If A is compact closed then so is H A .
Proof. See Appendix [A.3] O

In fact, if A is compact closed, then S(A) is as well. While we might expect S(A) to be compact
closed for every A — inheriting the compact closed structure of Span(RGraph) — the geometry of H A
prevents this. Both Span(RGraph) and H A occur as subcategories of S(A), and it seems that structure
must be present in both of them in order to to manifest in S(A). It is interesting that for compact
closed resource theories the more flexible compact closed geometry is also present in the category of

12 Please define \titlerunning

situated transition systems. Perhaps the use of partita-doppia style debits and credits allows more flexible
“wiring” of real-world accounting systems than would otherwise be the case.

Lemma 3. If A is compact closed, so is S(A).
Proof. See Appendix [A.4 O

Now, the category S(Z) of Z-situated transition systems describes systems of partita-doppia accounts
in the sense of [16]]. The situation maps each state to an integer-valued account balance, and similarly
o . Ty 1 .
each transition corresponds to a cell of Z with top and bottom boundary the balance of the source
and target states, respectively. This ensures that any change in the account balance is reflected by value
entering or leaving the system along the boundaries, and vice-versa. Since Z is compact closed, we
obtain an analogue of the main theorem of [16] as a special case of Lemma 3] as promised:

Corollary 1. S(Z) is compact closed.

5 Conclusions and Future Work

We have introduced the idea of situating a transition system with boundary in a resource theory and
constructed a monoidal category S(A) of such systems over an arbitrary resource theory A. Further, we
have shown that when A is compact closed, S(A) is also compact closed, generalizing existing work
concering systems of partita-doppia accounts [16]. We feel that this in a promising new direction in the
study of concurrent systems, and have many ideas for future work.

If A is a model of a functional programming language, then an object of S(A) can be understood
as a very general sort of behavioural type. There is an extensive literature on behavioural types, and we
speculate that situated transition systems would be a good way to place this work in the wider context of
entire systems. If A is a model of a ledger system in the sense of [18]], then the material history generated
by an A-situated transition system can be seen as sequence of ledger transactions. It seems that this is
relevant to the study of smart contracts, since the ability to transact on the blockchain as they execute
is one of their defining features. More ambitiously, we wish to construct compositional models of the
systems one encounters in molecular biology, and we imagine that situated transition systems over a
resource theory of biomolecules would be a good setting for this.

It is currently rather painful to specify a situated transition system, and it would be worthwhile to
investigate various kinds of syntax that can be given semantics in S(A). A promising approach is interpret
arrows of H A as a sort of resource transducer using ideas developed in [2] — we hope to elaborate on
this in a future paper. Finally, “spancospans” of reflexive graphs allow us to talk about transition systems
with boundary in which the shape of the boundary may change over time [17]. It should be possible to
formulate situated transition systems with this capabilty, presumably by working with the intercategory
of spancospans [[11]].

References

[1] Samson Abramsky. Abstract scalars, loops, and free traced and strongly compact closed categories. In
International Conference on Algebra and Coalgebra in Computer Science, pages 1-29. Springer, 2005.

[2] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawet Sobocinski, and Fabio Zanasi. Diagrammatic alge-
bra: from linear to concurrent systems. Proceedings of the ACM on Programming Languages, 3(POPL):1-28,
2019.

Please define \authorrunning 13

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

B. Coecke, T. Fritz, and R.W. Spekkens. A mathematical theory of resources. Information and Computation,
250:59-86, 2016.

Robert Dawson and Robert Paré. What is a free double category like? Journal of Pure and Applied Algebra,
168(1):19-34, 2002.

Charles Ehresmann. Catégories structurées. Annales scientifiques de I’Ecole Normale Supérieure, 80(4):349—
426, 1963.

D. Ellerman. The mathematics of double entry bookkeeping. Mathematics Magazine, 58:226-233, 1985.

Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum
Petropolitanae, pages 128-140, 1741.

M. Fiore, S. Paoli, and D. Pronk. Model structures on the category of small double categories. Algebraic and
Geometric Topology, 8(4):1855-1959, 2008.

Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Sabadini, Filippo Schiavio, and Si-
mone Tini. Cospanspan(graph): a compositional description of the heart system. Fundamenta Informaticae,
171:221-237, 2020.

Marco Grandis and Robert Pare. Adjoint for double categories. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 45(3):193-240, 2004.

Marco Grandis and Robert Paré. Intercategories: a framework for three-dimensional category theory. Journal
of Pure and Applied Algebra, 221(5):999-1054, 2017.

David Jaz Myers. String Diagrams For Double Categories and Equipments. arXiv e-prints, 2016.

A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical Proceedings of the Cambridge
Philosophical Society, 119:447-468, 1996.

André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in Mathematics, 88(1):55 — 112,
1991.

P. Katis, N. Sabadini, and R.F.C Walters. Span(graph): A categorical algebra of transition systems. In Inz-
national Conference on Algebraic Methodology and Software Technology, pages 307-321. Springer, Berlin,
Heidelberg, 1997.

P. Katis, N. Sabadini, and R.F.C. Walters. On partita doppia. 1998.

Piergiulio Katis, Nicoletta Sabadini, and Robert FC Walters. A formalization of the iwim model. In Interna-
tional Conference on Coordination Languages and Models, pages 267-283. Springer, 2000.

Chad Nester. A Foundation for Ledger Structures. In Emmanuelle Anceaume, Christophe Bisiere, Matthieu
Bouvard, Quentin Bramas, and Catherine Casamatta, editors, 2nd International Conference on Blockchain
Economics, Security and Protocols (Tokenomics 2020), volume 82 of Open Access Series in Informatics
(OASlcs), pages 7:1-7:13, Dagstuhl, Germany, 2021. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

Chad Nester. The structure of concurrent process histories. In Accepted to the 23rd International Conference
on Coordination Models and Languages (COORDINATION 2021), To Appear.

Michael Shulman. Framed bicategories and monoidal fibrations. Theory and Applications of Categories,
20(18):650-738, 2008.

Michael A. Shulman. Constructing symmetric monoidal bicategories. arXiv e-prints, 2010.

R.J. Wood. Abstract pro arrows i. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 23(3):279—
290, 1982.

14 Please define \titlerunning

A Proofs Omitted

A.1 Proof of Proposition 2|

Proof. On objects, the tensor product of two situated boundaries (U, @y) and (V,¢y) is defined to be
(U xV,py @ ¢y) where ¢y @ ¢y : U x V — A°® is defined by ¢y ® ¢y (e,e') = ¢y(e) @ dpy(€'). The
unit object is defined by I = (1,¢;), in which ¢; : 1 — A°*® is forced to map the single trivial edge in
the terminal reflexive graph 1 to / € A°*. On morphisms, the tensor product of two situated transition
systems (R, ¢g) : (U,¢y) — (V,¢y) and (S, ¢s) : (U',y) — (V',¢y) is defined in terms of the tensor
products on Span(RGraph) and [A, specifically as (R,¢r) ® (S,0s5) = (R® S, Pras) : (U x U’ ¢y @
o) — (VxV' ¢y @ ¢y) in which Pres : RS — (A) is defined by Qres(t,t’) = ¢r(t) @ ¢s(t'). It is
straightforward to verify that the tensor product of two morphisms of S(A)) is again a morphism of S(A),
with the situations coherent as in:

UxU +—— RxS ——> VxV/

ou ®¢L’,l lﬂ’ms lfi)v Q¢yr
A 5 <A> A

It is similarly straightforward to show that our tensor product is associative and unital. To see that it
defines a functor -® _: S(A) x S(A) — S(A) suppose we have

(R,pg) : U =V (S,05):V =W (R, op):U — V' (8, o) : V' =W

Then (SoR)® (S’ oR') has vertices (A, B,A’,B") € Ry x So X R{, x S;, with 6; (A) = d(B) and 6; (A")
80 (B'). The accompanying situation is defined on vertices by ¢(sor)x(sor) (A, B,A’, B') = ¢r(A) ® ¢5(B)
o (A") @ ¢y (B'). Similarly (S® ') o (R®R') has vertices (A,A’,B,B’) € Ry x R}, x So x S;, with 6; (A)
8 (B) and 61 (A") = &) (B), with accompanying situation defined on vertices as ¢(sws)o(rar) (A,A’, B, B') =
Or(A) @ op (A") @ ¢s(B) ® ¢ (B'). The edges of (SoR)® (S'oR’) and (S® ') o (R®R') are defined sim-
ilarly, and there is an obvious reflexive graph isomorphism @ : (SoR) ® (§'oR') — (S®S")o (RQR') de-
fined by ot (A,B,A’,B") = (A,A’,B,B’) on vertices and a/(fy,15,13,t4) = (f2,13,12,14) on edges. « is guaran-
teed to be an isomorphism of spans, and there is a natural isomorphism 1 : @(sog)w(s0r") — P(S25)0(ROR') ©
ot with components 1y 5u.) : 0r(A) @ 05(B) © p (A') © 0 (B') — 0n(A) @ 9 (A) @ 05(B) ® b5 (B)
defined by 1 ® 6 ® 1. For any edge (#1,12,13,14) the required naturality square commutes as in

1

e |

and we conclude that our tensor product is functorial. S(A) is therefore a monoidal category. U

A.2 Proof of Lemma

Proof. For A° = (A*)*, the two halves of the isomorphism are given by:

A°—U~(A*)' and (A*)‘—Il— r

Please define \authorrunning 15

L

and

R
L=y

as required. A® = (A*)° similarly. O

then we have:

1
I

I
I

A.3 Proof of Lemma

Proof. 1t suffices to show that HEA} is both rigid and symmetric. For symmetry the interesting case is
the braiding map for A° ® B®, which has been dealt with in the body of the paper. The other cases are
trivial, with the details available in Lemma 3 of [[19]].

For rigidity, define the dual X* of an object X inductively: I* =1, (A°)* = A®, (A®)* = A°, and
(X®Y)*=X*®Y*. It suffices to give the unit and counit for the A° and A® cases. In one of them we

have:
A° r
po and a i

which are easily seen to satisfy the required equations:

i =
Hels—

For the other, the unit and counit are given by

and
A. AO

which again satisfy the required equations as in:

‘@ﬂﬁ_ﬁ___

16 Please define \titlerunning

e v

For I both unit and counit are given by 1;, and the inductive case is as in:

-3
(x®Y) f é); (xaY)* ;(,* ;
= and =
C (X®YY* - (x®Y) D i

Y*

A.4 Proof of Lemma

Proof. Suppose A is compact closed. Then by Lemma soisH [Aj Define the dual of an object (U, ¢y)
of (&) by (U,9u)" = (U.0) where 0;(x) = ¢u(x)". The unit nyg,) : 1 — (U.90) & (U.0u)" is
given by the unit in Span(RGraph) with situation map 7y 4, : U — (A) defined by 0 4, (x) = Mg, (x) :
I — ¢y (x) ® ¢y (x)*. This is coherent as in:

| vy A

UxU
¢zl lmwm ldw @y
A 5 (A) 5 A

The counits are given similarly, and the yanking equations hold because they hold in Span(RGraph) and
inH A .

It remains to show that S(A) is symmetric monoidal. The braiding map oy ¢,),v.¢,) : (U,00) ®
(V,¢v) — (V,¢v) ® (U, ¢y) is given by the braiding in Span(RGraph) with situation map 6y ¢,),v.¢y) :

U xV — (A) defined by o(17.9,),v,6,) (%, Y) = Oy ()00 (v) * Pu(X) @ Oy (¥) = ¢v () @ ¢y (x). This is co-
herent as in:
lyxv

ouyyv
UXV +—— UxV — VxU
woa| [T P,

A T (&) —— A

That the braiding map is self-inverse follows from this being the case in Span(RGraph) and H[Aj O

B A Further Example

We would have liked to include the following example of a situated transition system. It is of a rather
different flavour than the Baker and Eater example, and we feel it illustrates the space of possibility
nicely. Consider the resource theory generated by atomic objects

{owl, mouse, ape, fruit, poop }

Please define \authorrunning 17

and by morphisms
gobble : owl ® mouse — owl poop : owl — owl ® poop die: owl — 1
munch : ape ® fruit ® fruit — ape poop : ape — ape ® poop die: ape — 1

Call this resource theory 3. Our example will elaborate the difference between diurnal animals (such
as apes) and nocturnal animals (such as owls) by means of a 3-situated transition system modelling
certain aspects of an owl:

S—\afvcow‘ 3 o u{\D poee Q mouse’
Owl : § — mouse® ® poop® = Q)
s [XA | o

where the edge labels are the following cells of | 3], with [J; the vertical (and horizontal) identity on I:

Oow! owl ow\ ow\
mouse®
feed = poop = [| starve = dead =7J; sleep = wake =
O Mo
owl owl owl

and a 3-situated transition system modelling those aspects of an ape:

Starve apz ———>an P (@I

Ape: S — (fruit® @ fruit®) ® poop® = ndw& /1,\&;\3
eoop®
where the edge labels are the following cells of | 3 :
aee ope ape ape
‘;N'.t:
feed = ‘"'“ poop = P°°?° starve = dead = [J; sleep = wake =
ope ape ope

The shared left boundary S represents the day/night cycle. The nontrivial event depicted as an arrow
from the left vertex to the right vertex corresponds to sunrise, and the other nontrivial event corresponds
to sunset. Our Ape is active only during the day, and our Owl is active only at night. While active,
our animals may feed and poop. As day becomes night, the owl wakes, and the Ape sleeps if it has
eaten, or starves if it has not. Conversely, as night becomes day, the Ape wakes, and the Owl sleeps or
starves depending on whether or not it has eaten. In the states where our Owl (Ape) is alive it’s material
history involves one instance of owl (ape), which dies when animal starves. When our animals feed the
appropriate food must enter the system, and when they poop it must leave the system.

Now, let &5 : S — S® S be the 3-situated transition system with trivial situation and whose underlying
span has apex S, left leg 15 : S — S, and right leg ds : S — S® S. Consider the composite system
Os(Ape ® Owl), in which a single owl and ape are govened by the same day/night cycle. Consider the
sequence of transitions in which, beginning during the day, the ape feeds, poops twice, and then sleeps
as the owl wakes. Next, the owl fails to find any mice and starves as the ape wakes. The material history

18 Please define \titlerunning

generated by this sequence of events is as follows:

ape owl
— foit®
— o

We invite the reader to play with this example, and to construct systems involving as many apes as

they feel comfortable with.

	Introduction
	Contributions and Related Work

	Preliminaries
	Monoidal Categories as Resource Theories
	Cornering and Concurrent Transformations
	The Algebra of Transition Systems with Boundary

	Situated Transition Systems
	Compact Closure and Accounting
	Conclusions and Future Work
	Proofs Omitted
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	A Further Example

