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Abstract6

We formalize the simulation paradigm of cryptography in terms of category theory and show7

that protocols secure against abstract attacks form a symmetric monoidal category, thus giving8

an abstract model of composable security definitions in cryptography. Our model is able to9

incorporate computational security, set-up assumptions and various attack models such as colluding10

or independently acting subsets of adversaries in a modular, flexible fashion. We conclude by using11

string diagrams to rederive no-go results concerning the limits of bipartite and tripartite cryptography,12

ruling out e.g. composable commitments and broadcasting. On the way, we exhibit two categorical13

constructions of resource theories that might be of independent interest: one capturing resources14

shared among n parties and one capturing resource conversions that succeed asymptotically.15
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1 Introduction22

Modern cryptographic protocols are complicated algorithmic entities, and their security23

analyses are often no simpler than the protocols themselves. Given this complexity, it would24

be highly desirable to be able to design protocols and reason about them compositionally,25

i.e. by breaking them down into smaller constituent parts. In particular, one would hope26

that combining protocols proven secure results in a secure protocol without need for further27

security proofs. However, this is not the case for stand-alone security notions that are28

common in cryptography. To illustrate such failures of composability, let us consider the29

history of quantum key distribution (QKD), as recounted in [70]: QKD was originally30

proposed in 80s [8]. The first security proofs against unbounded adversaries followed a31

decade later [9, 58, 59, 75]. However, since composability was originally not a concern, it was32

later realized that the original security definitions did not provide a good enough level of33

security [48]—they didn’t guarantee security if the keys were to be actually used, since even34

a partial leak of the key would compromise the rest. The story ends on a positive note, as35

eventually a new security criterion was proposed, together with stronger proofs [6, 72].36

In this work we initiate a categorical study of composable security definitions in crypto-37

graphy. In the viewpoint developed here one thinks of cryptography as a resource theory:38

cryptographic functionalities (e.g. secure communication channels) are viewed as resources39

and cryptographic protocols let one transform some starting resources to others. For instance,40

one can view the one-time-pad as a protocol that transforms an authenticated channel and a41

shared secret key into a secure channel. For a given protocol, one can then study whether it42

is secure against some (set of) attack model(s), and protocols secure against a fixed set of43

models can always be composed sequentially and in parallel.44
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This is in fact the viewpoint taken in constructive cryptography [56], which also develops45

the one-time-pad example above in more detail. However [56] does not make a formal46

connection to resource theories as usually understood, whether as in quantum physics [19,45],47

or more generally as defined in order theoretic [37] or categorical [23] terms. Instead,48

constructive cryptography is usually combined with abstract cryptography [57] which is49

formalized in terms of a novel algebraic theory of systems [55].50

Our work can be seen as a particular formalization of the ideas behind constructive51

cryptography, or alternatively as giving a categorical account of the real-world-ideal-world52

paradigm (also known as the simulation paradigm [39]), which underlies more concrete53

frameworks for composable security, such as universally composable cryptography [16] and54

others [3, 4, 44, 49, 52, 61, 68]. We will discuss these approaches and abstract and constructive55

cryptography in more detail in Section 1.156

Our long-term goal is to enable cryptographers to reason about composable security at the57

same level of formality as stand-alone security, without having to fix all the details of a machine58

model nor having to master category theory. Indeed, our current results already let one define59

multipartite protocols and security against arbitrary subsets of malicious adversaries in any60

symmetric monoidal category C. Thus, as long as one’s model of interactive computation61

results in a symmetric monoidal category, or more informally, one is willing to use pictures62

such as Figure 1d to depict connections between computational processes without further63

specifying the order in which the picture was drawn, one can use the simulation paradigm to64

reason about multipartite security against malicious participants composably—and specifying65

finer details of the computational model is only needed to the extent that it affects the66

validity of one’s argument. Moreover, as our attack models and composition theorems are67

fairly general, we hope that more refined models of adversaries can be incorporated.68

We now highlight our contributions to cryptography:69

We show how to adapt resource theories as categorically formulated [23] in order to reason70

abstractly about secure transformations between resources. This is done in Section 3 by71

formalizing the simulation paradigm in terms of an abstract attack model (Definition 2),72

designed to be general enough to capture standard attack models of interest (and more)73

while still structured enough to guarantee composability. This section culminates in74

Corollary 6, which shows that for any fixed set of attack models, the class of protocols75

secure against each of them results in a symmetric monoidal category. In Theorem 9 we76

observe that under suitable conditions, images of secure protocols under monoidal functors77

remain secure, which gives an abstract variant of the lifting theorem [79, Theorem 15]78

that states that perfectly UC-secure protocols are quantum UC-secure.79

We adapt this framework to model computational security in Appendix C.2 in two80

ways: either by replacing equations with an equivalence relation, abstracting the idea81

of computational indistinguishability, or by working with a notion of distance. In the82

case of a distance, one can then either explicitly bound the distance between desired83

and actually achieved behavior, or work with sequences of protocols that converge to84

the target in the limit: the former models working in the finite-key regimen [78] and85

the latter models the kinds of asymptotic security and complexity statements that are86

common in cryptography. In the former case we show that errors compose additively87

in Lemma 18, and in Theorem 19 and in Corollary 20 we show that protocols that are88

correct in the limit can be composed at will.89

Finally, we apply the framework developed to study bipartite and tripartite cryptography.90

We reprove the no-go-theorems of [55, 57, 71] concerning two-party commitments (and91

three-party broadcasting) in this setting, and reinterpret them as limits on what can be92
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achieved securely in any compact closed category (symmetric monoidal category). The93

key steps of the proof are done graphically, thus opening the door for cryptographers to94

use such pictorial representations as rigorous tools rather than merely as illustrations.95

Moreover, we discuss some categorical constructions on resource theories capturing aspects96

of resource theories appearing in the physics literature. These contributions may be relevant97

for further categorical studies on resource theories, independently of their usage here.98

In [23] it is observed that many resource theories arise from an inclusion CF ↪→ C of free99

transformations into a larger monoidal category, by taking the resource theory of states.100

We observe that this amounts to applying the monoidal Grothendieck construction [63]101

to the functor CF → C hom(I,−)−−−−−−→ Set. This suggests applying this construction more102

generally to the composite of monoidal functors F : D → C and R : C → Set.103

In Example 1 we note that choosing F to be the n-fold monoidal product Cn → C104

captures resources shared by n parties and n-partite transformations between them.105

In Appendix C.1 we model categorically situations where there is a notion of distance106

between resources, and instead of exact resource conversions one either studies approximate107

transformations or sequences of transformations that succeed in the limit.108

In Appendix C.3 we discuss a variant of a construction on monoidal categories, used in109

special cases in [35] and discussed in more detail in [27, 38], that allows one to declare110

some resources free and thus enlarge the set of possible resource conversions.111

1.1 Related work112

We have already mentioned that cryptographers have developed a plethora of frameworks113

for composable security, such as universally composable cryptography [16], reactive sim-114

ulatability [3, 4, 68] and others [44, 49, 52, 61]. Moreover, some of these frameworks have115

been adapted to the quantum setting [7, 64, 79]. One might hence be tempted to think that116

the problem of composability in cryptography has been solved. However, it is fair to say117

that most mainstream cryptography is not formulated composably and that composable118

cryptography has yet to realize its full potential. Moreover, this proliferation of frameworks119

should be taken as evidence of the continued importance of the issue, and is in fact reflected120

by the existence of a recent Dagstuhl seminar on this matter [15]. Indeed, the aforementioned121

frameworks mostly consist of setting up fairly detailed models of interacting machines, which122

as an approach suffers from two drawbacks:123

In order to be more realistic, the detailed models are often complicated to reason in terms124

of and even to define, thus making practicing cryptographers less willing to use them.125

Perhaps more importantly it is not always clear whether the results proven in a particular126

model apply more generally for other kinds of machines, whether those of a competing127

framework or those in the real world. It is true that the choice of a concrete machine128

model does affect what can be securely achieved—for instance, quantum cryptography129

differs from classical cryptography and similarly classical cryptography behaves differently130

in synchronous and asynchronous settings [5, 46]. Nevertheless, one might hope that131

composable cryptography could be done at a similar level of formality as complexity132

theory, where one rarely worries about the number of tapes in a Turing machine or of133

other low-level details of machine models.134

Changing the model slightly (to e.g. model different kinds of adversaries or to incorporate135

a different notion of efficiency) often requires reproving “composition theorems” of the136

framework or at least checking that the existing proof is not broken by the modification.137
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In contrast to frameworks based on detailed machine models, there are two closely related138

top-down approaches to cryptography: constructive cryptography [56] and its cousin abstract139

cryptography [57]. We are indebted to both of these approaches, and indeed our framework140

could be seen as formalizing the key idea of constructive cryptography—namely, cryptography141

as a resource theory—and thus occupying a similar space as abstract cryptography. A key142

difference is that constructive cryptography is usually instantiated in terms of abstract143

cryptography [57], which in turn is based on a novel algebraic theory of systems [55].144

However, our work is not merely a translation from this theory to categorical language, as145

there are important differences and benefits that stem from formalizing cryptography in terms146

of an well-established and well-studied algebraic theory of systems—that of (symmetric)147

monoidal categories:148

The fact that cryptographers wish to compose their protocols sequentially and in parallel149

strongly suggests using monoidal categories, that have these composition operations as150

primitives. In our framework, protocols secure against a fixed set of attack models results151

in a symmetric monoidal category. In contrast, the algebraic theory of systems [55] on152

which abstract cryptography is based takes parallel composition and internal wiring as153

its primitives. This design choice results in some technical kinks and tangles that are154

natural with any novel theory but have already been smoothed out in the case of category155

theory. For instance, in the algebraic theory of systems of [55] the parallel composition156

is a partial operation and in particular the parallel composite of a system with itself is157

never defined1 and the set of wires coming out of a system is fixed once and for all2. In158

contrast, in a monoidal category parallel composition is a total operation and whether159

one draws a box with n output wires of types A1, . . . An or single output wire of type160 ⊗n
i=1 Ai is a matter of convenience. Technical differences such as these make a direct161

formal comparison or translation between the frameworks difficult, even if informally and162

superficially there are similarities.163

We do not abstract away from an attacker model, but rather make it an explicit part164

of the formalism that can be modified without worrying about composability. This165

makes it possible to consider and combine very easily different security properties, and166

in particular paves the way to model attackers with limited powers such as honest-but-167

curious adversaries. In our framework, one can first fix a protocol transforming some168

resource to another one, and then discuss whether this transformation is secure against169

different attack models. In contrast, in abstract cryptography a cryptographic resource170

is a tuple of functionalities, one for each set of dishonest parties, and thus has no prior171

existence before fixing the attack model. This makes the question “what attack models is172

this protocol secure against?” difficult to formalize.173

As category theory is de facto the lingua franca between several subfields of mathematics174

and computer science, elucidating the categorical structures present in cryptography opens175

up the door to further connections between cryptography and other fields. For instance,176

game semantics readily gives models of interactive, asynchronous and probabilistic (or177

quantum) computation [21, 22, 80] in which our theory can be instantiated, and thus178

further paves the way for programming language theory to inform cryptographic models179

of concurrency.180

1 While the suggested fix is to assume that one has “copies” of the same system with disjoint wire labels,
it is unclear how one recognizes or even defines in terms of the system algebra that two distinct systems
are copies of each other.

2 Indeed, while [69] manages to bundle and unbundle ports along isomorphism when convenient, it seems
like the chosen technical foundation makes this more of a struggle than it should be.
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Category theory comes with existing theory, results and tools that can readily be applied181

to questions of cryptographic interest. In particular the graphical calculi of symmetric182

monoidal and compact closed categories [74] enables one to rederive impossibility results183

shown in [55,57,71] purely pictorially. In fact, such pictures were already often used as184

heuristic devices that illuminate the official proofs, and viewing these pictures categorically185

lets us promote them from mere illustrations to rigorous yet intuitive proofs. Indeed,186

in [57, Footnote 27] the authors suggest moving from a 1-dimensional symbolic presentation187

to a 2-dimensional one, and this is exactly what the graphical calculus already achieves.188

The approaches above result in a framework where security is defined so as to guarantee189

composability. In contrast, approaches based on various protocol logics [29–34] aim to190

characterize situations where composition can be done securely, even if one does not use191

composable security definitions throughout. As these approaches are based on process calculi,192

they are categorical under the hood [62, 65] even if not overtly so. There is also earlier work193

explicitly discussing category theory in the context of cryptography [12,13,25, 26,40, 42, 43,194

47,66,67,76,77], but they concern stand-alone security of particular (kinds of) cryptographic195

protocols, rather than categorical aspects of composable security definitions.196

2 Resource theories197

We briefly review the categorical viewpoint on resource theories of [23]. Roughly speaking,198

a resource theory can be seen as a SMC but the change in terminology corresponds to a199

change in viewpoint: usually in category theory one studies global properties of a category,200

such as the existence of (co)limits, relationships to other categories, etc. In contrast, when201

one views a particular SMC C as resource theory, one is interested in local questions. One202

thinks of objects of C as resources, and morphisms as processes that transform a resource to203

another. From this point of view, one mostly wishes to understand whether homC(X, Y ) is204

empty or not for resources X and Y of interest. Thus from the resource-theoretic point of205

view, most of the interesting information in C is already present in its preorder collapse. As206

concrete examples of resource-theoretic questions, one might wonder if207

some noisy channels can simulate a (almost) noiseless channel [23, Example 3.13.]208

there is a protocol that uses only local quantum operations and classical communication209

and transforms a particular quantum state to another one [20]210

some non-classical statistical behavior can be used to simulate other such behavior [1]211

In [23] the authors show how many familiar resource theories arise in a uniform fashion:212

starting from an SMC C of processes equipped with a wide sub-SMC CF , the morphisms of213

which correspond to “free” processes, they build several resource theories (=SMCs). Perhaps214

the most important of these constructions is the resource theory of states: given CF ↪→ C,215

the corresponding resource theory of states can be explicitly constructed by taking the objects216

of this resource theory to be states of C, i.e. maps r : I → A for some A, and maps r → s217

are maps f : A → B in CF that transform r to s as in Figure 1a.218

We now turn our attention towards cryptography. As contemporary cryptography is both219

broad and complex in scope, any faithful model of it is likely to be complicated as well. A220

benefit of the categorical idiom is that we can build up to more complicated models in stages,221

which is what we will do in the sequel. We phrase our constructions in terms of an arbitrary222

SMC C, but in order to model actual cryptographic protocols, the morphisms of C should223

represent interactive computational machines with open “ports”, with composition then224

amounting to connecting such machines together. Different choices of C set the background225

for different kinds of cryptography, so that quantum cryptographers want C to include226
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quantum systems whereas in classical cryptography it is sufficient that these computational227

machines are probabilistic. Constructing such categories C in detail is not trivial but is228

outside our scope—we will discuss this in more detail in section 5.229

Our first observation is that there is no reason to restrict to inclusions CF ↪→ C in order230

to construct a resource theory of states. Indeed, while it is straightforward to verify explicitly231

that the resource theory of states is a symmetric monoidal category, it is instructive to232

understand more abstractly why this is so: in effect, the constructed category is the category233

of elements of the composite functor CF → C hom(I,−)−−−−−−→ Set. As this composite is a (lax)234

symmetric monoidal functor, the resulting category is automatically symmetric monoidal235

as observed in [63]. Thus this construction goes through for any symmetric (lax) monoidal236

functors D F−→ C R−→ Set. Here we may think of F as interpreting free processes into an237

ambient category of all processes, and R : C → Set as an operation that gives for each object238

A of C the set R(A) of resources of type A.239

Explicitly, given symmetric monoidal functors D F−→ C R−→ Set, the category of elements240 ∫
RF has as its objects pairs (r, A) where A is an object of D and r ∈ RF (A), the intuition241

being that r is a resource of type F (A). A morphism (r, A) → (s, B) is given by a morphism242

f : A → B in D that takes r to s, i.e. satisfies RF (f)(r) = s. The symmetric monoidal243

structure comes from the symmetric monoidal structures of D, Set and RF . Somewhat more244

explicitly, (r, A) ⊗ (s, B) is defined by (r ⊗ s, A ⊗ B) where r ⊗ s is the image of (r, s) under245

the function RF (A) × RF (B) → RF (A ⊗ B) that is part of the monoidal structure on RF ,246

and on morphisms of
∫

RF the monoidal product is defined from that of D.247

From now on we will assume that F is strong monoidal, and while R = hom(I, −)248

captures our main examples of interest, we will phrase our results for an arbitrary lax249

monoidal R. This relaxation allows us to capture the n-partite structure often used when250

studying cryptography, as shown next.251

▶ Example 1. Consider the resource theory induced by Cn ⊗−→ C hom(I,−)−−−−−−→ Set, where252

we write ⊗ for the n-fold monoidal product3. The resulting resource theory has a natural253

interpretation in terms of n agents trying to transform resources to others: an object of this254

resource theory corresponds to a pair ((Ai)n
i=1, r : I →

⊗
Ai), and can be thought of as an255

n-partite state, depicted in Figure 1b, where the i-th agent has access to a port of type Ai. A256

morphism f̄ = (f1, . . . fn) : ((Ai)n
i=1, r) → ((Bi)n

i=1, s) between such resources then amounts257

to a protocol that prescribes, for each agent i a process fi that they should perform so that r258

gets transformed to s as in Figure 1c.259

3 As C is symmetric, the functor ⊗ is strong monoidal.
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In this resource theory, all of the agents are equally powerful and can perform all processes260

allowed by C, and this might be unrealistic: first of all, C might include computational261

processes that are too powerful/expensive for us to use in our cryptographic protocols.262

Moreover, having agents with different computational powers is important to model e.g.263

blind quantum computing [14] where a client with access only to limited, if any, quantum264

computation tries to securely delegate computations to a server with a powerful quantum265

computer. This limitation is easily remedied: we could take the i-th agent to be able to266

implement computations in some sub-SMC Ci of C, and then consider
∏n

i=1 Ci → C.267

A more serious limitation is that such transformations have no security guarantees—they268

only work if each agent performs fi as prescribed by the protocol. We fix this next.269

3 Cryptography as a resource theory270

In order for a protocol f̄ = (f1, . . . , fn) : ((Ai)n
i=1, r) → ((Bi)n

i=1, s) to be secure, we should271

have some guarantees what happens if, as a result of an attack on the protocol, something272

else than (f1, . . . , fn) happens. For instance, some subset of the parties might deviate from273

the protocol and do something else instead. In the simulation paradigm, security is then274

defined by saying that, anything that could happen when running the real protocol, i.e., f̄275

with r, could also happen in the ideal world, i.e. with s. A given protocol might be secure276

against some kinds of attacks and insecure against others, so we define security against an277

abstract attack model. This abstract notion of an attack model is one of the main definitions278

of our paper. It isolates conditions needed for the composition theorem 5. It also captures279

our key examples that we use to illustrate the definition after giving it. Note that proofs280

that aren’t immediate can be found in Appendix B.281

▶ Definition 2. An attack model A on an SMC C consists of giving for each morphism f282

of C a class A(f) of morphisms of C such that283

(i) f ∈ A(f) for every f .284

(ii) For any f : A → B and g : B → C and composable g′ ∈ A(g), f ′ ∈ A(f) we have285

g′ ◦ f ′ ∈ A(g ◦ f). Moreover, any h ∈ A(g ◦ f) factorizes as g′ ◦ f ′ with g′ ∈ A(g) and286

f ′ ∈ A(f).287

(iii) For any f : A → B, g : C → D in C and f ′ ∈ A(f), g′ ∈ A(g) we have f ′⊗g′ ∈ A(f ⊗g).288

Moreover, any h ∈ A(f ⊗ g) factorizes as h′ ◦ (f ′ ⊗ g′) with f ′ ∈ A(f), g′ ∈ A(g) and289

h′ ∈ A(idB⊗D).290

Let f : (A, r) → (B, s) define a morphism in the resource theory
∫

RF induced by F : D → C291

and R : C → Set. We say that f is secure against an attack model A on C (or A-secure) if292

for any f ′ ∈ A(F (f)) with dom(f ′) = F (A) there is b ∈ A(idF (B)) such that R(f ′)r = R(b)s.293

In the definition above we are asking for perfect equality which usually is too stringent a294

requirement for the purposes of cryptography. We will relax this requirement in Section C.2.295
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The intuition is that A gives, for each process in C, the set of behaviors that the296

attackers could force to happen instead of honest behavior. Then property (i) amounts to the297

assumption that the adversaries could behave honestly. The first halves of properties (ii) and298

(iii) say that, given an attack on g and one on f , both attacks could happen when composing299

g and f sequentially or in parallel. The second parts of these say that attacks on composite300

processes can be understood as composites of attacks. However, note that (iii) does not say301

that an attack on a product has to be a product of attacks: the factorization says that any302

h ∈ A(g ⊗ f) factorizes as in Figure 1d with g′ ∈ A(g), f ′ ∈ A(f) and h′ ∈ A(idB⊗D). The303

intuition is that an attacker does not have to attack two parallel protocols independently304

of each other, but might play the protocols against each other in complicated ways. This305

intuition also explains why we do not require that all morphisms in A(f) have F (A) as their306

domain, despite the definition of A-security quantifying only against those: when factoring307

h ∈ A(g ◦ f) as g′ ◦ f ′ with g′ ∈ A(g) and f ′ ∈ A(f), we can no longer guarantee that F (B)308

is the domain of g′—perhaps the attackers take us elsewhere when they perform f ′.309

If one thinks of F : D → C as representing the inclusion of free processes into general310

processes, one also gets an explanation why we do not insist that free processes and attacks311

live in the same category, i.e. that F = idC. This is simply because we might wish to prove312

that some protocols are secure against attackers that can use more resources than we wish313

or can use in the protocols.314

▶ Example 3. For any SMC C there are two trivial attack models: the minimal one defined315

by A(f) = {f} and the maximal one sending f to the class of all morphisms of C. We316

interpret the minimal attack model as representing honest behavior, and the maximal one as317

representing arbitrary malicious behavior.318

▶ Proposition 4. If A1, . . . , An are attack models on SMCs C1, . . . , Cn respectively, then319

there is a product
∏n

i=1 Ai attack model on
∏n

i=1 Ci defined by (
∏n

i=1 Ai)(f1, . . . , fn) =320 ∏n
i=1 Ai(fi).321

This proposition, together with the minimal and maximal attack models, is already expressive322

enough to model multi-party computation where some subset of the parties might do323

arbitrary malicious behavior. Indeed, consider the n-partite resource theory induced by324

Cn ⊗−→ C hom(I,−)−−−−−−→ Set. Let us first model a situation where the first n − 1 participants are325

honest and the last participant is dishonest. In this case we can set A =
∏n

i=1 Ai where each326

of A1, . . . , An−1 is the minimal attack model on C and An is the maximal attack model.327

Then, an attack on f̄ = (f1, . . . fn) : ((Ai)n
i=1, r) → ((Bi)n

i=1, s) can be represented by the328

first n − 1 parties obeying the protocol and the n-th party doing an arbitrary computation a,329

as depicted in the two pictures of Figure 2a, where k = n − 1 and f̄ |[k] :=
⊗k

i=1 fi. The330

latter representation will be used when we do not need to emphasize pictorially the fact that331

the honest parties are each performing their own individual computations.332

If instead of just one attacker, there are several independently acting adversaries, we333

can take A =
∏n

i=1 Ai where Ai is the minimal or maximal attack structure depending334

on whether the i-th participant is honest or not. If the set of dishonest parties can collude335

and communicate arbitrarily during the process, we need the flexibility given in Definition 2336

and have the attack structure live in a different category than where our protocols live. For337

simplicity of notation, assume that the first k agents are honest but the remaining parties338

are malicious and might do arbitrary (joint) processes in C. In particular, the action done339

by the dishonest parties k + 1, . . . , n need not be describable as a product
⊗n

i=k+1(ai) of340

individual actions. In that case we define A as follows: we first consider our resource theory341

as arising from Cn idk×⊗−−−−→ Ck × C
⊗−→ C hom(I,−)−−−−−−→ Set, and define A on Ck × C as the342
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product of the minimal attack model on Ck and the maximal one on C. Concretely, this343

means that the first k agents always obey the protocol, but the remaining agents can choose344

to perform arbitrary joint behaviors in C. Then a generic attack on a protocol f̄ can be345

represented exactly as before in Figure 2a, except we no longer insist that k = n − 1. Now346

a protocol f̄ is A-secure if for any a ∈ A(f̄) with dom(a) = (Ai)n
i=1 there is a b ∈ A(idB)347

satisfying the equation of Figure 2b.348

If one is willing to draw more wire crossings, one can easily depict and define security349

against an arbitrary subset of the parties behaving maliciously, and henceforward this is the350

attack model we have in mind when we say that some n-partite protocol is secure against351

some subset of the parties. Moreover, for any subset J of dishonest agents, one could consider352

more limited kinds of attacks: for instance, the agents might have limited computational353

power or limited abilities to perform joint computations—as long as the attack model satisfies354

the conditions of Definition 2 one automatically gets a composable notion of secure protocols355

by Theorem 5 below.356

▶ Theorem 5. Given symmetric monoidal functors F : D → C, R : C → Set with F strong357

monoidal and R lax monoidal, and an attack model A on C, the class of A-secure maps358

forms a wide sub-SMC of the resource theory
∫

RF induced by RF .359

So far we have discussed security only against a single, fixed subset of dishonest parties, while360

in multi-party computation it is common to consider security against any subset containing361

e.g. at most n/3 or n/2 of the parties. However, as monoidal subcategories are closed under362

intersection, we immediately obtain composability against multiple attack models.363

▶ Corollary 6. Given a non-empty family of functors (D Fi−→ Ci
Ri−−→ Set)i∈I with RiFi =364

RjFj =: R for all i, j ∈ I and attack models Ai on Ci for each i, the class of maps in
∫

R365

that is secure against each Ai is a sub-SMC of
∫

R.366

Using Corollary 6 one readily obtains composability of protocols that are simultaneously367

secure against different attack models Ai. Thus one could, in principle, consider composable368

cryptography in an n-party setting where some subsets are honest-but-curious, some might369

be outright malicious but have limited computational power, and some subsets might be370

outright malicious but not willing or able to coordinate with each other, without reproving371

any composition theorems.372

While the security definition of f quantifies over A(f), which may be infinite, under373

suitable conditions it is sufficient to check security only on a subset of A(f), so that whether374

f is A-secure often reduces to finitely many equations.375

▶ Definition 7. Given f : A → B, a subset X of A(f) is said to be initial if any f ′ ∈ A(f)376

with dom(f ′) = A can be factorized as b ◦ a with a ∈ X and b ∈ A(idB).377

▶ Theorem 8. Let f : (A, r) → (B, s) define a morphism in the resource theory induced by378

F : D → C and R : C → Set and let A be an attack model on C. If X ⊂ A(f) is initial,379

then f is A-secure if, and only if the security condition holds against attacks in X, i.e., if380

for any f ′ ∈ X with dom(f ′) = F (A) there is b ∈ A(idF (B)) such that R(f ′)r = R(b)s.381

Let us return to the example of Cn → C with the first k agents being honest and the382

final n − k dishonest and collaborating. Then we can take a singleton as our initial subset of383

attacks on f̄ , and this is given by f̄ |[k] ⊗ (
⊗n

i=k+1 id). Intuitively, this represents a situation384

where the dishonest parties k + 1, . . . , n merely stand by and forward messages between385

the environment and the functionality without interfering, so that initiality can be seen as386
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explaining “completeness of the dummy adversary” [16, Claim 11] in UC-security. In this case387

the security condition can be equivalently phrased by saying that there exists b ∈ A([idb])388

satisfying the equation of Figure 2c, which reproduces the pictures of [61]. Similarly, for389

classical honest-but-curious adversaries one usually only considers the initial such adversary,390

who follows the protocol otherwise except that they keep track of the protocol transcript.391

▶ Theorem 9. In the resource theory of n-partite states, if (f1, . . . fn) is secure against some392

subset J of [n] and F is a strong monoidal, then (Ff1, . . . , Fn) is secure against J as well.393

For instance, if the inclusion of classical interactive computations into quantum ones is394

strong monoidal, i.e. respects sequential and parallel composition (up to isomorphism), then395

unconditionally secure classical protocols are also secure in the quantum setting, as shown in396

the context of UC-security in [79, Theorem 15]. More generally, this result implies that the397

construction of the category of n-partite transformations secure against any fixed subset of [n]398

is functorial in C, and this is in fact also true for any family of subsets of [n] by Corollary 6.399

4 Applications400

Composable security is a stronger constraint than stand-alone security, and indeed many401

cryptographic functionalities are known to be impossible to achieve “in the plain model”,402

i.e. without set-up assumptions. A case in point is bit commitment, which was shown to be403

impossible in the UC-framework in [17]. This result was later generalized in [71] to show that404

any two-party functionality that can be realized in the plain UC-framework is “splittable”.405

While the authors of [71] remark that their result applies more generally than just to the406

UC-framework, this wasn’t made precise until [57]4. We present a categorical proof of this407

result in our framework, which promotes the pictures “illustrating the proof” in [71] into408

a full proof — the main difference is that in [71] the pictures explicitly keep track of an409

environment trying to distinguish between different functionalities, whereas we prove our410

result in the case of perfect security and then deduce the asymptotic claim.411

We now assume that C, our ambient category of interactive computations is compact412

closed5. As we are in the 2-party setting, we take our free computations to be given by C2,413

and we consider two attack models: one where Alice cheats and Bob is honest, and one where414

Bob cheats and Alice is honest. We think of as representing a two-way communication415

channel, but this interpretation is not needed for the formal result.416

▶ Theorem 10. For Alice and Bob (one of whom might cheat), if a bipartite functionality r417

can be securely realized from a communication channel between them, i.e. from , then418

there is a g such that
r

A B

=
r r

g

. (∗)419

Proof. If a protocol (fA, fB) achieves this, security constraints against each party give us420

fA =
r

sB

and fB =
r

sA

so that r = fA fB = fA fB =
r r

sB sA

◀421

4 Except that in their framework the 2-party case seems to require security constraints also when both
parties cheat.

5 We do not view this as overtly restrictive, as many theoretical models of concurrent interactive
(probabilistic/quantum) computation are compact closed [21,22,80].
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▶ Corollary 11. Given a compact closed C modeling computation in which wires model422

communication channels, (composable) bit commitment and oblivious transfer are impossible423

in that model without setup, even asymptotically in terms of distinguisher advantage.424

Proof. If r represents bit commitment from Alice to Bob, it does not satisfy the equation425

required by Theorem 10 for any f , and the two sides of (∗) can be distinguished efficiently426

with at least probability 1/2. Indeed, take any f and let us compare the two sides of (∗):427

if the distinguisher commits to a random bit b, then Bob gets a notification of this on the428

left hand-side, so that f has to commit to a bit on the right side of (∗) to avoid being429

distinguished from the left side. But this bit coincides with b with probability at most 1/2,430

so that the difference becomes apparent at the reveal stage. The case of OT is similar. ◀431

We now discuss a similar result in the tripartite case, which rules out building a broadcasting432

channel from pairwise channels securely against any single party cheating. In [55] comparable433

pictures are used to illustrate the official, symbolically rather involved, proof, whereas in our434

framework the pictures are the proof. Another key difference is that [55] rules out broadcasting435

directly, whereas we show that any tripartite functionality realizable from pairwise channels436

satisfies some equations, and then use these equations to rule out broadcasting.437

Formally, we are working with the resource theory given by C3 ⊗−→ C hom(I,−)−−−−−−→ where C438

is an SMC, and reason about protocols that are secure against three kinds of attacks: one439

for each party behaving dishonestly while the rest obey the protocol. Note that we do not440

need to assume compact closure for this result, and the result goes through for any state on441

A ⊗ A shared between each pair of parties: we will denote such a state by by convention.442

▶ Theorem 12. If a tripartite functionality r can be realized from each pair of parties sharing443

a state , securely against any single party, then there are simulators sA, sB , sC such that444

r

sA

=
r

sB

=
r

sC

.445

Proof. Any tripartite protocol building on top of each pair of parties sharing can be drawn446

as in the left side of447

fA fB fC fA fB fB fC

448

Consider now the morphism in C depicted on the right: it can be seen as the result of three449

different attacks on the protocol (fA, fB , fC) in C3: one where Alice cheats and performs fA450

and fB (and the wire connecting them), one where Bob performs fB twice, and one where451

Charlie performs fB and fC . The security of (fA, fB , fC) against each of these gives the452

required simulators. ◀453

▶ Corollary 13. Given a SMC C modeling interactive computation, and a state on A ⊗ A454

modeling pairwise communication, it is impossible to build broadcasting channels securely455

(even asymptotically in terms of distinguisher advantage) from pairwise channels.456

Proof. We show that a channel r that enables Bob to broadcast an input bit to Alice and457

Charlie never satisfies the required equations for any sA, sB , sC . Indeed, assume otherwise458

and let the environment plug “broadcast 0” and “broadcast 1” to the two wires in the middle.459
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The leftmost picture then says that Charlie receives 1, the rightmost picture implies that460

Alice gets 0 and the middle picture that Alice and Bob get the same output (if anything461

at all)—a contradiction. Indeed, one cannot satisfy all of these simultaneously with high462

probability, which rules out an asymptotic transformation. ◀463

5 Outlook464

We have presented a categorical formulation of cryptography and thus provided a general,465

flexible and mathematically robust way of reasoning about composability in cryptography.466

Besides contributing a further approach to composable cryptography and potentially helping467

with cross-talk and comparisons between existing approaches [15], we believe that the current468

work opens the door for several further questions.469

First, due to the generality of our approach we hope that one can, besides honest and470

malicious participants, reason about more refined kinds of adversaries composably. Indeed,471

we expect that Definition 2 is general enough to capture e.g. honest-but-curious adversaries6.472

It would also be interesting to see if this captures even more general attacks, e.g. situations473

where the sets of participants and dishonest parties can change during the protocol. This474

might require understanding our axiomatization of attack models more structurally and475

perhaps generalizing it. Does this structure (or a variant thereof) already arise in category476

theory? While we define an attack model on a category, perhaps one could define an attack477

model on a (strong) monoidal functor F , the current definition being recovered when F = id.478

Second, we expect that rephrasing cryptographic questions categorically would enable479

more cross-talk between cryptography and other fields already using category theory as480

an organizing principle. For instance, many existing approaches to composable crypto-481

graphy develop their own models of concurrent, asynchronous, probabilistic and interactive482

computations. As categorical models of such computation exist in the context of game483

semantics [21, 22,80], one is left wondering whether the models of the semanticists’ could be484

used to study and answer cryptographic questions, or conversely if the models developed by485

cryptographers contain valuable insights for programming language semantics.486

Besides working inside concrete models—which ultimately blends into “just doing com-487

posable cryptography”—one could study axiomatically how properties of a category relate488

to cryptographic properties in it. As a specific conjecture in this direction, if one has an489

environment structure [25], i.e. coherent families of maps
A

for each A that axiomatize the490

idea of deleting a system, one might be able to talk about honest-but-curious adversaries491

at an abstract level. Similarly, having agents purify their actions is an important tool in492

quantum cryptography [53]—can categorical accounts of purification [18,25,28] be used to493

elucidate this?494

Finally, we hope to get more mileage out of the tools brought in with the categorical495

viewpoint. For instance, can one prove further no-go results pictorially? More specifically,496

given the impossibility results for two and three parties, one wonders if the “only topology497

matters” approach of string diagrams can be used to derive general impossibility results498

for n parties sharing pairwise channels. Similarly, while diagrammatic languages have been499

used to reason about positive cryptographic results in the stand-alone setting [12, 13, 47],500

can one push such approaches further now that composable security definitions have a clear501

6 Heuristically speaking this is the case: an honest-but-curious attack on g ◦ f should be factorizable as
one on g and one on f , and similarly an honest-but-curious attack on g ⊗ f should be factorisable into
ones on g and f that then forward their transcripts to an attack on id ⊗ id.
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categorical meaning? Besides the graphical methods, thinking of cryptography as a resource502

theory suggests using resource-theoretic tools such as monotones. While monotones have503

already been applied in cryptography [81], a full understanding of cryptographically relevant504

monotones is still lacking.505
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A Background710

A.1 Monoidal categories and string diagrams711

We assume that the reader is familiar with category theory in general and with monoidal and712

compact closed categories in particular, so we will briefly recall the main concepts, mostly713

to explain the notation and string diagrams used. General references for category theory714

include [2, 10, 11, 51, 54, 73] and string diagrams are surveyed in [74]. However, a working715

cryptographer might find it easier to consult texts which are written with some applications716

in mind and introduce string diagrams concurrently with categories, such as [24,36,41].717

Let C be a symmetric monoidal category (SMC). Roughly speaking, this means that718

we have a class of objects A, B, C, . . . , and a class of morphisms f, g, h, . . . . We also have719

functions dom and cod that give us the domain and codomain of morphisms, and we write720

f : A → B to express that A = dom(f) and B = cod(f). Morphisms can be composed721

sequentially, i.e. whenever f : A → B and g : B → C there is a morphism g ◦ f = gf : A → C.722

In addition, there is a monoidal product ⊗ on objects and morphisms, that sends f : A → B723

and g : C → D to f ⊗ g : A ⊗ C → B ⊗ D. For each object there should be an identity724

morphism idA : A → A, and there should be a special object I called the tensor unit. This725

data is subject to some constraints: composition should be (strictly) associative and unital,726

and the monoidal product should be associative, commutative and unital up to coherent727

isomorphisms, see [11, Section 6.1] for the precise details. Moreover, ◦ and ⊗ should cooperate728

in that the equations (g ◦ f) ⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h) and idA⊗B = idA ⊗ idB hold. We will729

assume throughout that the variables C and D denote strict SMCs, meaning that associativity730

and unitality of ⊗ holds up to equality. This is mainly for notational convenience—first, any731

SMC is equivalent to a strict one and second, the theory we put forward could be developed732

without assuming strictness at the cost of some notational overhead. As an example of a733

(non-strict) SMC the reader could think e.g. of the category Set of sets and functions between734

them, with the monoidal structure given by cartesian product, or the category VectR of real735

vector spaces and linear maps between them, with the monoidal structure given by tensor736

product.737

The tersely sketched structure of a SMC is naturally internalized in the graphical calculus738

we use, which provides a sound and complete method for reasoning about them. Thus the739

reader less familiar with SMCs is invited to trust their visual intuition as it is unlikely to740

lead them astray. In this graphical calculus, we will denote a morphism f : A → B as
A

B

f ,741

and composition and monoidal product as742

A

C

g ◦ f =

A

C

g

f

A ⊗ C

B ⊗ D

f ⊗ g =

A

B

C

D

f g743

https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1109/tit.2008.921674
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Special morphisms get special pictures: identities and symmetries are depicted as744

A

A

A

A

B

B

745

whereas the identity on the tensor unit is denoted by the empty picture. In general, a746

morphism might have multiple input/output wires747

. . .

. . .

A1

B1

An

Bm

f748

In particular a morphism I → A1 ⊗ · · · ⊗ An will have no incoming wires. We will call such749

morphisms states on A1 ⊗ · · · ⊗ An and depict them as triangles instead of boxes:750

f

. . .

A1 An

751

Note that the property idA⊗B = idA ⊗ idB becomes752

A ⊗ B

A ⊗ B

=
A

A

B

B

753

so that whether multiple wires are packaged into one or not is largely a matter of convenience.754

We will often omit labeling wires with the name of the object unless necessary, and at times755

the label will only give partial information.756

For Theorem 10 we will assume that our ambient category C is in fact a compact closed757

category. This means that C is an SMC, and we are also given for every object A an object758

A∗ and morphisms759

A∗ A

and A A∗ ,760

called cups and caps respectively, satisfying761

=

A

A

and =

A∗

A∗

762

Informally, this somewhat blurs the distinction between input and output wires, as one763

expects to happen if the boxes represent interactive and open computational processes. In764

particular, morphisms A → B correspond bijectively to states on A∗ ⊗ B, where the bijection765

is given by bending and unbending wires, and this correspondence should be seen as the766

categorical counterpart to the Choi–Jamiołkowski isomorphism from quantum information.767

We will briefly conclude this section by discussing functors between SMCs. A lax monoidal768

functor C → D between monoidal categories is a functor F : C → D equipped with natural769
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maps F (A) ⊗ F (B) → F (A ⊗ B) and a morphism ID → F (IC) subject to certain coherence770

equations that roughly say that it cooperates with the monoidal structures on C, D in771

a well-behaved manner. A strong monoidal functor is a lax monoidal one for which the772

structure maps F (A) ⊗ F (B) → F (A ⊗ B) and ID → F (IC) are isomorphisms. A monoidal773

functor (in either sense) is symmetric if it additionally cooperates with the symmetries.774

We will use graphical calculus of strong monoidal functors in the proof of Theorem 9, but775

otherwise do not refer to the detailed definitions nor use this graphical language, and hence776

we do not go into more detail here. Full definitions can be found e.g. at [50, Section I.1.2] or777

at [11, Section 6.4], and a graphical calculus for them is discussed in [60]. For us, all functors778

will be symmetric and either strong or lax monoidal, and we will specify which we mean779

whenever it makes a difference.780

B Proofs of Theorems 5 and 9781

▶ Theorem 5. Given symmetric monoidal functors F : D → C, R : C → Set with F strong782

monoidal and R lax monoidal, and an attack model A on C, the class of A-secure maps783

forms a wide sub-SMC of the resource theory
∫

RF induced by RF .784

Proof. We first prove the claim when F = idC. As the class of A-secure maps is a subclass785

of maps inside an SMC, it suffices to show it contains all coherence isomorphisms (and thus786

all identities) and is closed under ◦ and ⊗.787

For coherence isomorphisms we prove a stronger claim and show that all isomorphisms788

are A-secure. Let f : (A, r) → (B, s) be an isomorphism so that f is an isomorphism A → B789

in C, and consider f ′ ∈ A(f) with dom(f ′) = A. Then R(f ′)r = R(f ′)R(f−1)R(f)r =790

R(f ′)R(f−1)s, so it suffices to show that f ′f−1 ∈ A(idB). Property (i) of A implies that791

(f−1) ∈ A(f−1) so that property (ii) gives us f ′f−1 ∈ A(ff−1) = A(idB), as desired.792

Assume now that f : (A, r) → (B, s) and g : (B, s) → (C, t) are A-secure. Given h ∈793

A(g ◦ f) with domain A, factorize it as g′ ◦ f ′ as guaranteed by (ii). As f is A-secure, there is794

some b ∈ A(idB) with R(f ′)r = R(b)s and thus g′b ∈ A(g) by (ii) so that security of g implies795

the existence of c ∈ A(idB) such that R(g′b)(s) = R(c)t. Thus R(g′f ′)t = R(g′)R(b)s = R(c)t796

showing that g ◦ f is A-secure.797

To show that secure maps are closed under ⊗, let f : (A, r) → (B, s) and g : (C, t) → (D, u)798

be A-secure. Given h ∈ A(f ⊗g) with domain A⊗C, factorize it as h′ ◦(f ′ ⊗g′) as guaranteed799

by (iii). Then security of f and g gives us b ∈ A(idB) and d ∈ A(idD) so that R(f ′)r = R(b)s800

and R(g′)t = R(d)u. This implies that R(h)(r ⊗ t) = R(h′) ◦ (R(b) ⊗ R(d))(s ⊗ u), so801

h′ ◦ (b ⊗ d) ∈ A(idB ⊗ idD) witnesses that f ⊗ g is A-secure.802

To prove the claim for an arbitrary strong monoidal F , observe first that f : (A, r) → (B, s)803

is A-secure if, and only if F (f) : (F (A), r) → (F (B), s) is A-secure. The claim can now be804

deduced from the existence and description of pullbacks in the category of SMCs, but we805

give an explicit proof: the class of A-secure maps in
∫

RF contains all isomorphisms and is806

closed under composition because it is so in
∫

R. As F is strong monoidal, the square807

F (A ⊗ C) F (B ⊗ D)

F (A) ⊗ F (C) F (B) ⊗ F (D)

∼=

F (f ⊗ g)

∼=

F (f) ⊗ F (g)
808

commutes in C. If f : (A, r) → (B, s) and g : (C, t) → (D, u) are A-secure in
∫

RF , then809

F (f) and F (g) are A-secure in
∫

R. The case F = idC implies that F (f) ⊗ F (g) is A-secure810
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so that F (f ⊗ g) is A-secure as a composite of secure maps, which means that f ⊗ g is811

A-secure in
∫

RF as desired. ◀812

▶ Theorem 9. In the resource theory of n-partite states, if (f1, . . . fn) is secure against some813

subset J of [n] and F is a strong monoidal, then (Ff1, . . . , Fn) is secure against J as well.814

Proof. Let us first spell out explicitly how the domain and codomain of (Ff1, . . . , Ffn)815

depends on those of f̄ : if f̄ : ((Ai)n
i=1, r) → ((Bi)n

i=1, s), then Fr : F (IC) → F (
⊗n

i=1 Ai)816

induces a state on
⊗n

i=1 F (Ai) by precomposing with the isomorphism ID → F (IC) and817

postcomposing with the isomorphism F (
⊗n

i=1 Ai) ∼=
⊗n

i=1 F (Ai) stemming from the strong818

monoidal structure of F . This is the state that (Ff1, . . . , Ffn) transforms to the one induced819

by F (s). Let us now show that this transformation is secure provided that f̄ is.820

The heart of the argument is already apparent in the case of n = 2, so let us first show821

that if (fA, fB) is secure against a malicious Bob, so is (FfA, FfB). For this attack model,822

there is an initial attack, and the corresponding security constraint is depicted in Figure 2c.823

Then security of (FfA, FfB) can be shown graphically using the functorial boxes of [60] by824

considering the equations825

F

fA

r

A B =
fA

r

A B

F

=
b

s

A B

F

=
b

s

A B

F

826

where the second equation is security of the original protocol and the other two equations827

rely on F being strong monoidal. The case of an arbitrary n can be shown similarly by828

drawing a similar picture with n − 1 dips in the box. ◀829

C Further extensions of the framework830

C.1 Approximately correct transformations831

The discussion above has been focused on perfect security, so that the equations defining832

security hold exactly. This is often too high a standard for security to hope for, and833

consequently cryptographers routinely work with computational or approximate security. We834

model this in two ways. The first approach replaces equations with an equivalence relation835

abstracting from the idea that the end results are “computationally indistinguishable” rather836

than strictly equal. The latter approach amounts to working in terms of a (pseudo)metric,837

that quantifies how close we are to the ideal resource, so that one can discuss approximately838

correct transformations or sequences of transformations that succeed in the limit. The first839

approach is mathematically straightforward and we discuss it next, while the second approach840

takes the rest of this section. The second approach, while mathematically more involved, is841

needed to model protocols that are “close enough” to being computationally indistinguishable842

from the ideal, and thus to model statements in finite-key cryptography [78].843

Replacing strict equalities with equivalence relations is easy to describe on an abstract844

level as an instance of the theory so far: one just assumes that C has a monoidal congruence845

≈ and then works with the resource theory induced by Cn → C/≈ hom(I,−)−−−−−−→ Set with similar846

attack models as above. More explicitly, as long as each hom-set of C is equipped with an847

equivalence relation ≈ that respects ⊗ and ◦ in that f ≈ f ′ and g ≈ g′ imply gf ≈ g′f ′
848

(whenever defined) and g ⊗ f ≈ g′ ⊗ f ′, then working with Cn → C/≈ hom(I,−)−−−−−−→ Set results849
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in security conditions that replace = in C with ≈ throughout. If C describes (interactive)850

computational processes and ≈ represents computational indistinguishability (inability for851

any “efficient” process to distinguish between the two), one might need to replace C (and852

consequently functionalities, protocols and attacks on them) with the subcategory of C of853

efficient processes so that ≈ indeed results in a congruence.854

We now move to the metric case. If for each A the set of resources R(A) associated to855

it is not just a set but has the structure of a metric space, using this additional structure856

enables one to construct other resource theories where instead of transforming r ∈ R(A) to857

s ∈ R(B) exactly we are happy to be able to get (arbitrarily) close. While such approximate858

(or asymptotic) conversions are readily studied in the physics literature (see e.g. [19, V.A859

and V.B]), as far as we are aware this has not been formalized in the categorical context, so860

we first describe the situation without security constraints. As many interesting measures861

of distance in cryptography are in fact pseudometrics (non-equal functionalities might have862

distance 0), we work in a more general setting.863

▶ Definition 14. An extended pseudometric space is a pair (X, d) where X is a set and864

d : X × X → [0, ∞] is a function satisfying (i) d(x, x) = 0, (ii) d(x, y) = d(y, x) and (iii)865

d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. A short map (X, d) → (Y, e) is a function866

f : X → Y satisfying d(x, y) ≥ e(f(x), f(y)). We will denote the category of extended867

pseudometric spaces and short maps simply by Met. We equip Met with a monoidal868

structure where (X, d) ⊗ (Y, e) is given by equipping X × Y with ℓ1-distance, i.e. the distance869

between (x, y) and (x′, y′) is given by d(x, x′) + e(y, y′).870

Let R : C → Met be a symmetric monoidal functor. Given r ∈ R(A), s ∈ R(B) and ϵ > 0,871

a morphism f : A → B is an ϵ-correct transformation (A, r) → (B, s) if d(R(f)r, s) < ϵ. The872

resource theory
∫ Met

R of asymptotically correct conversions is defined as follows: an object873

is given by a pair (A, r) where A is an object of C and r ∈ R(A). A morphism (A, r) → (B, s)874

is given by a sequence (fn)n∈N of maps A → B in C that is eventually ϵ-correct for any875

ϵ > 0, i.e. for which R(fn)r → s as n → ∞.876

In some resource theories, the relevant asymptotic transformations are allowed to use877

more and more copies of the resource, so that instead of a sequence of maps A → B we have878

a sequence (fn)n∈N of maps A⊗n → B taking r⊗n to s in the limit. The theory developed879

here adapts easily to this variant as well, with essentially the same proofs.880

▶ Lemma 15. Let R : C → Met be symmetric monoidal. The composite (tensor product) of881

an ϵ-correct map with an ϵ′-correct map is ϵ + ϵ′-correct.882

Proof. Assume that f is an ϵ-correct transformation (A, r) → (B, s) and that g is an ϵ′-883

correct transformation (B, s) → (C, t). As R(g) is a short map, this gives d(R(gf)r, s) ≤884

d(R(gf)r, R(g)s) + d(R(g)s, t) < ϵ + ϵ′.885

Assume now that f : (A, r) → (B, s) is a ϵ-correct and that g : (C, t) → (D, u) is ϵ′-correct.886

Then d(R(f ⊗g)r⊗t, s⊗u) ≤ d((R(f)s, R(g)t), (s, u)) = d(R(f)r, s)+d(R(g)t, u) < ϵ+ϵ′. ◀887

▶ Theorem 16. The resource theory
∫ Met

R of asymptotically correct conversions induced888

by R : C → Met is a symmetric monoidal category.889

Proof. The coherence isomorphisms are given by constant sequences of coherence isomorph-890

isms of the resource theory induced by C R−→ Met → Set, and this implies that they satisfy891

the required equations of a SMC. Moreover, as they are exact resource conversions, they are892

also asymptotically correct. Thus it suffices to check that asymptotically correct conversions893

are closed under ◦ and ⊗. But this follows from Lemma 15: given two asymptotically correct894
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transformations and ϵ > 0, the two transformations are eventually ϵ/2-correct after which895

their composite (whether ◦ or ⊗) is ϵ-correct. ◀896

In particular, if C is Met-enriched, the functor hom(I, −) lands in Met so that one can897

discuss asymptotic transformations between states.898

While in resource theories one first tries to understand whether a given transformation is899

possible at all, once some resource conversion has been shown to be possible one might ask900

for more. In particular, in the asymptotic setting one might want the sequence (fn)n∈N to901

be efficient (and in particular computable) in n, and to converge to the target fast in terms902

of some measure of cost of implementing fn. One might even want to be able to give an903

explicit bound on the distance between R(fn)r and s, as is done for instance in finite-key904

cryptography [78]. However, such considerations are best addressed when working inside a905

specific resource theory rather than being hardwired into the definitions at the abstract level.906

Conversely, if one can show that a given asymptotic transformation is impossible even for907

such a permissive notion of transformation, the resulting no-go theorem is stronger than if908

one worked with “efficient” sequences.909

C.2 Computational security910

We now show that one can reason composably about computational security in such a metric911

setting. The proofs follow rather straightforwardly from the definitions we have by using912

the structure at hand: most importantly, from the triangle inequality of any metric space913

and the fact that our maps between metric spaces are contractive. For concrete models of914

cryptography, one might need to do nontrivial work to show that one has all this structure,915

after which our theorems apply.916

▶ Definition 17. Consider F : D → C and R : C → Met and an attack model A on C. For917

an ϵ > 0 and an ϵ-correct map (A, r) → (B, s), we say that f is an ϵ-secure transformation918

(A, r) → (B, s) against A if for any f ′ ∈ A(F (f)) with dom(f ′) = F (A) there is b ∈ A(idF (B))919

such that d(R(f ′)r, R(b)s) < ϵ.920

Let (fn)n∈N : (A, r) → (B, s) now define an asymptotically correct conversion in
∫ Met

RF .921

We say that (f)n∈N is asymptotically secure against A (or asymptotically A-secure) if it is922

eventually ϵ-secure for any ϵ > 0. Explicitly, (fn)n∈N : (A, r) → (B, s) is asymptotically secure923

if for any ϵ > 0 there is a threshold k ∈ N such that for any n > k and any f ′ ∈ A(F (fn))924

with dom(f ′) = F (A) there is b ∈ A(idF (B)) such that d(R(f ′)r, R(b)s) < ϵ.925

We now show that bounds on security compose additively.926

▶ Lemma 18. Let R : C → Met be lax monoidal and A an attack model on C. The composite927

(tensor product) of an ϵ-secure map with an ϵ′-secure map is ϵ + ϵ′-secure.928

Proof. We have already seen that ϵ-correctness behaves as desired in Lemma 15. As-929

sume that f is an ϵ-secure transformation (A, r) → (B, t) and that g is an ϵ′-secure930

transformation (B, s) → (C, t) against A. Given h ∈ A(g ◦ f) with domain A, fac-931

torize it as g′ ◦ f ′ as guaranteed by (ii). As f is A-secure there is some s ∈ A(idB)932

with d(R(f ′)r, R(b)s) < ϵ. Now g′b ∈ A(g) by (ii) so that security of g implies the933

existence of c ∈ A(idB) such that d(R(g′b)(s), R(c)t) < ϵ′. Thus d(R(g′f ′)t, R(c)t) ≤934

d(R(g′f ′)t, R(g′)R(b)s) + d(R(g′)R(b)s, R(c)t) < ϵ + ϵ′ as desired.935

Assume now that f is ϵ-secure transformation (A, r) → (B, t) against A and that g is936

ϵ′-secure transformation (C, t) → (D, u) against A. Given h ∈ A(f ⊗ g) with domain A ⊗ C937

factorize it as h′ ◦ (f ′ ◦ g′) as guaranteed by (iii). Then ϵ-security of f (ϵ′-security of g)938
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gives us b ∈ A(idB) so that d(R(f ′)r, R(b)s) < ϵ (d ∈ A(idD) so that d(R(g′)t, R(d)u) < ϵ′).939

Now d(R(h′) ◦ R(f ′ ⊗ g′)(r ⊗ t), R(h′) ◦ (R(b) ⊗ R(d))(s ⊗ u)) ≤ d(R(f ′ ⊗ g′)(r ⊗ t), (R(b) ⊗940

R(d))(s ⊗ u)) = d(R(f ′)r, R(b)s) + d(R(g′)t, R(d)u < ϵ + ϵ′ as desired. ◀941

We now give a composition theorem for asymptotically secure protocols.942

▶ Theorem 19. Given symmetric monoidal functors F : D → C, R : C → Set with F strong943

monoidal and R lax monoidal, and an attack model A on C, the class of asymptotically944

A-secure maps forms a wide sub-SMC of the asymptotic resource theory
∫ Met

RF induced945

by F and R.946

Proof. As with Theorem 5, it suffices to show that asymptotically secure maps contain all947

coherence isomorphisms and are closed under ◦ and ⊗. Moreover, the reduction from the948

general case to F = id is the same, so we assume that F = id. It is easy to see that whenever949

f is A-secure in the resource theory induced by C R−→ Met → Set, the constant sequence950

(f)n∈N is asymptotically A-secure. Thus security of coherence isomorphisms implies their951

asymptotic security.952

Assume now that (fn)n∈N : (A, r) → (B, s) and (gn)n∈N : (B, s) → (C, t) are asymptotic-953

ally A-secure. Given ϵ > 0, for sufficiently large n both fn and gn are ϵ/2-secure so that their954

composite is ϵ-secure by Lemma 18. The case for ⊗ follows similarly from Lemma 18. ◀955

▶ Corollary 20. Given a non-empty family of functors (D Fi−→ Ci
Ri−−→ Met)i∈I with R :=956

RiFi = RjFj for all i, j ∈ I and attack models Ai on Ci for each i, the class of maps in957 ∫ Met
R that is asymptotically secure against each Ai is a sub-SMC of

∫ Met
R.958

To make these abstract results closer to cryptographic practice, one would work within959

some explicit C and with (pseudo)metrics relevant for cryptographers. A paradigmatic case is960

given by metrics induced by distinguisher advantage, where one defines the distance between961

two behaviors as the supremum over all (efficient) distinguishers d of the probability of d962

distinguishing the two behaviors. If our starting category C contains processes that are not963

(efficiently) computable, such distinguisher metrics might not be contractive as composing964

two distinct behaviors with a very powerful behavior might help a distinguisher trying to tell965

them apart. However, as long as one restricts C (and consequently the behaviors available966

as resources, protocols and attacks) to behaviors that the relevant class of distinguishers can967

freely implement, this readily results in a Met-enrichment, as composing two morphisms with968

a fixed morphism available to the distinguishers cannot increase distinguisher advantage. For969

instance, if the metric is induced by distinguisher advantage of polynomial-time distinguishers,970

one should get a Met-enrichment on the subcategory of C corresponding to polynomial-971

time behaviors. Once one has specified a concrete C and a Met-enrichment on it, for any972

asymptotically secure protocol one can then discuss its speed of convergence, and in principle973

discuss which actual value of the security parameter is sufficiently secure for the task at974

hand.975

We now wish to prove a variant of Theorem 9 in the approximate setting, abstracting976

from [79, Theorem 18]. Again, we specialize to the n-partite resource theory of states, where977

our attack models consist of some subset J ⊂ {1, . . . , n} behaving maliciously. In this case,978

we assume our base categories to be Met-enriched, so that hom(I, −) lands in Met. In such979

a setting, a protocol is a sequence (f̄i)i∈N where each f̄i := (fi,1, . . . fi,n) is an n-tuple of980

morphisms.981

▶ Theorem 21. Let C and D be Met-enriched SMCs, and let F : C → D be a strong982

monoidal Met-enriched functor. If (f̄i)i∈N is an asymptotic transformation between two983

states of C that is asymptotically secure against J ⊂ {1, ṅ}, so is (F f̄i)i∈N.984
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Proof. Again, it suffices to prove security against initial attacks. Now, the proof of Theorem 9985

implies that if the desired equation in C holds up to ϵ > 0, so does the equation in D, so the986

claim follows. ◀987

As discussed in [79], the computational version above is not as strong as the result in the988

case of perfect security, as the assumptions of Theorem 21 are rather strong. For instance, if989

a protocol is secure against polynomial-time classical adversaries, it does not follow that it is990

secure against polynomial-time quantum adversaries. Correspondingly, if we use the metric991

induced by “polynomial-time distinguishers”, the inclusion of classical computations into992

quantum computations is not Met-enriched, as the distances might increase. However, if on993

the quantum side we use polynomial-time distinguishers, but on the classical side we use994

distinguishers that are able to simulate quantum polynomial-time machines, then protocols995

that are classically secure remain secure when thought of as quantum computations.996

C.3 Setup assumptions and freely usable resources997

Cryptographers often prove results saying that a given functionality is impossible to realize998

in the plain model but is possible with some setup. For instance, in [17] they show that bit999

commitment (BC) is impossible in the plain UC-framework but it is possible assuming a1000

common reference string (CRS)—a functionality that gives all parties the same string drawn1001

from some fixed distribution. In our viewpoint, claims such as these can be interpreted in1002

the categories we have already built: for instance, impossibility of commitments amounts1003

to non-existence of a secure map I → BC that builds bit commitments out of a trivial1004

resource I, and possibility of bit commitments given a common reference string amounts to1005

the existence of a secure protocol CRS → BC.1006

A related, but distinct matter is that sometimes cryptographers wish to make some (pos-1007

sibly shared) functionalities freely available to all parties without having to explicitly mention1008

them being used as a resource. For instance, so far in our framework all communication1009

between the honest parties has been mediated by the functionality r that they start from.1010

However, one might want to model situations where e.g. pairwise communication between1011

parties is freely available (as is standard in multi-party computation) and does not need to be1012

provided explicitly by the functionality one starts from. Put more abstractly, one might wish1013

to declare some set X of functionalities “free” and think of secure protocols that build s from1014

r and some functionalities from X just as maps r → s, without having to explicitly keep track1015

of how many copies of which x ∈ X was used. This is in fact something that happens quite1016

often in resource theories even before any security conditions arise, as it could happen that1017

the free processes CF are not quite expressive enough for the resource theory at hand. While1018

one could try to define a larger category of free processes directly, it might be technically more1019

convenient to obtain a larger class of free processes by allowing resource transformations to1020

consume a resource from some class that is considered free. This can be achieved via a general1021

construction on SMCs, a special case used in [35] when constructing the category of learners.1022

A special case also appears in the resource theory of contextuality as defined in [1], where1023

one first defines deterministic free processes, and probabilistic (but classical) transformations1024

d → e are then defined as transformations d ⊗ c → e where c is a non-contextual (and thus1025

free) resource. This construction is discussed more generally in [27, 38], but we modify it1026

slightly by allowing one to choose a class of objects as “parameters” instead of taking that1027

class to consist of all objects: this modification is important for resource theories as it lets1028

one can control which resources are made freely available.1029
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▶ Proposition 22. Let C be a SMC and X a class of objects that contains I and is closed1030

under ⊗. Then there is a SMC whose objects are those of C, and whose morphisms A → B1031

are given by equivalence classes of morphisms A ⊗ X → B in C with X ∈ X , where1032

f : A ⊗ X → B,f ′ : A ⊗ X ′ → B are equivalent if there is an isomorphism g : X → X ′ such1033

that f = f ′ ◦ (idA ⊗ g)1034

Sketch. The composites g ◦ f and g ⊗ f are depicted by1035

A X Y

C

f

g

A
X

B D

C
Y

f g

1036

It is easy to show graphically that these are well-defined and that this results in a SMC. ◀1037

Using Proposition 22 we can easily model protocols that have free access to some cryptographic1038

functionalities: one just declares a class X of functionalities (e.g. pairwise communication1039

channels) that is closed under ⊗ to be free. In that case a protocol acting on (An
i=1, r) can1040

be depicted by1041

r x

. . .

. . . . . .

f1 fn

1042

where x ∈ X is a free resource.1043
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