

COMPUTER SYSTEMS :

PAPERS FOR

ROGER NEEDHAM

COMPUTER SYSTEMS :

PAPERS FOR

ROGER NEEDHAM

To mark
50 Years in Cambridge

5 Years at Microsoft Research

Edited by: Andrew Herbert and Karen Spärck Jones
Cambridge, February 2003

© Microsoft Research Limited 2003

Copyright in this compilation is owned by Microsoft Research Limited. The papers
comprising in this compilation are copyright of the respective authors. All rights are
reserved.

This publication may not be copied, reproduced, published or distributed in whole
or in part in any form or by any means without the prior written consent of the
holder of the copyright, requests for which should be addressed to Microsoft
Research Limited.

 ix

Editors’ Note

Our invitations for this volume asked for short papers on any technical topic of each
contributor’s choosing likely to be of interest to Roger. The papers could be on an area of
current research, a conjecture about the future, or an historical reflection.

We are very grateful to the contributors for their enthusiastic and rapid responses.

x

 xi

Contributors

Martín Abadi
University of California, Santa Cruz, CA, USA

Ross Anderson
University of Cambridge, England

Jean Bacon
University of Cambridge, England

Andrew Birrell
Microsoft Research—Silicon Valley, CA, USA

Christopher Bishop
Microsoft Research Ltd, Cambridge, England

Michael Bond
University of Cambridge, England

Alan Bundy
University of Edinburgh, Scotland

Mike Burrows
Microsoft Research—Silicon Valley, CA, USA

Luca Cardelli
Microsoft Research Ltd, Cambridge, England

David Clark
MIT, Cambridge, MA, USA

John Crowcroft
University of Cambridge, England

Ewen Denney
QSS Group Inc, NASA, Moffet Field, CA, USA

Dorothy Denning
Naval Postgraduate School, Monterey, CA, USA

Peter Denning
Naval Postgraduate School, Monterey, CA, USA

Sandy Fraser
Bernardsville, NJ, USA

Li Gong
Sun Microsystems, Santa Clara, CA, USA

Jim Gray
Microsoft Research, San Francisco, CA, USA

David Hartley
Cambridge, England

Andrew Herbert
Microsoft Research Ltd, Cambridge, England

Tony Hoare
Microsoft Research, Cambridge, England

Andy Hopper
University of Cambridge, England

Pierre Jansen
University of Twente, Enschede, Netherlands

Anita Jones
University of Virginia, Charlottesville, VA, USA

Butler Lampson
Microsoft Research, Redmond, WA, USA

Peter Landrock,
 Århus University, Denmark

Hugh Lauer
TeraRecon, Inc., Concord, MA, USA

Paul Leach
Microsoft Corporation, Redmond, WA, USA

Stewart Lee
Orillia, Ontario, Canada

Ian Leslie
University of Cambridge, England

Roy Levin
Microsoft Research—Silicon Valley, CA, USA

Derek McAuley
Intel Research, Cambridge, England

Robin Milner
University of Cambridge, England

Ken Moody
 University of Cambridge, England

Bob Morris
Dartmouth College, Hanover, NH, USA

xii

Sape Mullender
Lucent Technologies, Murray Hill, NJ, USA

John Naughton
Open University, Milton Keynes, England

Lawrence Paulson
University of Cambridge, England

Brian Randell
University of Newcastle, England

Rick Rashid,
Microsoft Research, Redmond, WA, USA

Stephen Robertson
Microsoft Research Ltd, Cambridge, England

Jerome Saltzer
Massachusetts Institute of Technology,
Cambridge, MA, USA

Mahadev Satyanarayanan
Carnegie Mellon University, Pittsburgh, PA,
USA

Gustavus Simmons
Sandia Park, NM, USA

Fred Schneider
Cornell University, Ithaca, NY, USA

Michael Schroeder
Microsoft Research—Silicon Valley, CA, USA

Jonathan Smith
University of Pennsylvania, Philadelphia, PA,
USA

Karen Spärck Jones
University of Cambridge, England

Graham Steel
University of Edinburgh, Scotland

Robert Taylor
Woodside, California, USA

David Tennenhouse
Intel Research, Santa Clara, CA, USA

Chuck Thacker
Microsoft Corporation, Redmond, WA, USA

David Wheeler
University of Cambridge, England

John Wilkes
HP Labs, Palo Alto, CA, USA

Maurice Wilkes,
University of Cambridge, England

 Cont’d xiii

Table of Contents

Martín Abadi On Access Control and Data Integration....................... 1

Ross Anderson. Michael Bond
... Protocol Analysis, Composability and Computation 7

Jean Bacon, Ken Moody Access Control in Distributed Systems....................... 11

Andrew Birrell....................... Implementing Condition Variables with Semaphores 19

Chris Bishop.......................... Clumps, Clusters and Classification............................ 27

Mike Burrows........................ How To Implement Unnecessary Mutexes 39

Luca Cardelli Bioware Languages ... 45

David Clark The Economics of Open Systems................................ 53

Jon Crowcroft........................ From Universe to Global Internet 59

Dorothy Denning................... Needham-Schroeder Goes To Court 63

Peter Denning........................ Principles for Reliable Operating Systems.................. 65

Sandy Fraser.......................... Time-Sharing and Virtual Circuits.............................. 69

Li Gong On Cross-Platform Security .. 73

Jim Gray Distributed Computing Economics 77

David Hartley The Titan Influence ... 83

Andrew Herbert..................... Middleware? Muddleware! ... 89

Tony Hoare............................ Grand Challenges for Computing Research................ 97

Andy Hopper Sentient Computing... 103

Anita Jones Cyber Security in Open Systems............................... 109

Butler Lampson Software Components: Only The Giants Survive 113

Peter Landrock Security Protocols ... 121

Hugh Lauer............................ Volume Rendering .. 127

Paul Leach et al A Conceptual Authorization Model 137

Stewart Lee............................ The Trouble with Standards 143

Ian Leslie Novelty in the Nemesis Operating System 145

Roy Levin.............................. A Technology Transfer Retrospective 151

Derek McAuley An Optical LAN.. 159

Robin Milner What’s in a Name? .. 167

Bob Morris The Cryptographic Role of the Cleaning Lady 173

xiv

Sape Mullender, Pierre Jansen
..Real Time in a Real Operating System......................175

John Naughton, Robert Taylor
..Zen and the Art of Research Management183

Lawrence PaulsonThe Descent of BAN..185

Brian RandellBrief Encounters ..189

Stephen Robertson, Karen Spärck Jones
..Retrieval System Models ...195

Jerome Saltzer........................Slammer: An Urgent Wake-Up Call..........................201

Mahadev SatyanarayananCaching Trust Rather Than Content205

Fred SchneiderLeast Privilege and More ...209

Michael D. SchroederUsing Sharing to Simplify System Management.......215

Gus Simmons.........................An RSA Related Number Theoretic Surprise............223

Jonathan Smith.......................Application-Private Networks227

Graham Steel, Alan Bundy, Ewen Denney
..Using the CORAL System...233

David TennenhouseBinding and Rate Adaption in Packet Networks239

Chuck ThackerTechnologies for Portable Computing245

David WheelerMultiple Alternative Voting.......................................253

John Wilkes............................The Semiotics of Umbrellas.......................................257

Maurice Wilkes......................Computers for Specialized Application Areas...........261

Roger Needham’s Publications..263

 xv

Foreword
Rick Rashid
Senior Vice President, Microsoft Research

I first encountered Roger Needham almost 20 years ago while lecturing in an advanced
course on distributed systems being held in Glasgow during the summer of 1983. I must
admit that I felt just a bit out of place lecturing alongside the likes of Gerald Le Lann, Jim
Mitchell and Roger Needham. Roger had become head of Cambridge University’s fabled
Computer Laboratory just three years earlier–about the same time I had received my
Ph.D.

When I heard Roger lecture for the first time I was taken aback by his remarkable and
very unusual speaking style. I’ve since seen it described in the press as “deliberate and
thoughtful” and it is all of that. Listening to a lecture in computer science can sometimes
make you feel as though you are chasing after the words trying to piece together the
speaker’s meaning. When Roger spoke I found myself hanging on each word wondering
with great anticipation what would come next. The wait was usually worthwhile. That
summer in 1983 I discovered to my delight Roger’s keen insight, dry wit and ability to
turn the English language into his personal plaything:

An improvement is something your program will not work with and a bug fix is
something it will not work without.

Looking back, I still find it hard to believe that 20 years later I would be running a large
research organization for Microsoft and would have the privilege of working with Roger
on a daily basis as Managing Director of our Cambridge research laboratory. It has been
quite a journey.

Early career

Roger Needham was born in 1935. He received a scholarship to study mathematics at
Cambridge University and arrived on campus in 1953. Roger received his B.A. in
Mathematics and Moral Science (Philosophy) in 1956 and his Diploma in Numerical
Analysis and Automatic Computing in 1957, in the last year of the EDSAC 1 computer.

I’ve heard the story told that while studying for his Ph.D. Roger lived in a caravan with
his wife Karen Spärck Jones with whom he also collaborated on several papers. The
reason for their unorthodox living arrangements was that while completing his Ph.D.
Roger and Karen also undertook the building of their own house. Despite this rather
strenuous side occupation, Roger completed his PhD at Cambridge in 1961. This was on
automatic classification and information retrieval, exciting new and interdisciplinary
areas. At the time, Roger was working with the Cambridge Language Research Unit,
which was investigating machine translation, automated retrieval, and the like. He joined
the University’s Mathematical Laboratory–what is now known as the Computer
Laboratory – in 1962, as a Senior Assistant in Research.

Although his Ph.D. was on an applications topic, Roger’s career has been that of a classic
– almost prototypical – “systems” computer scientist. It is hard to pin him down to a
single area. Roger has made significant contributions to areas such as operating systems,
networking, distributed systems, computer security and multimedia. In an interview for

xvi

SIGSoft’s Software Engineering Notes published in January, 2001, Roger is quoted as
saying:

I regard myself as a systems person, not an OS person, nor a communications
systems person. I think all three systems require the same kind of skills.

During his career Roger has had a knack for apparently being at the right place at the right
time, working with the right collaborators and hitting on the right idea. Roger is fond of
saying that:

Serendipity is looking for a needle in a hay stack and finding the farmer’s
daughter.

The reality is that his consistent contributions have had nothing to do with serendipity but
rather his personal talents and ability to draw to himself talented people and find ways to
inspire and motivate them.

The first major system Roger worked on following his Ph.D. was TITAN. The
Laboratory, under Maurice Wilkes, was providing the software for hardware built by
Ferranti (subsequently ICT/ICL). TITAN was the earliest computer system to employ
cache memory and its operating system was the first multi-access system written outside
the US to go into public use. Roger first worked with David Wheeler on design
automation, and then became involved in building the operating system. One of Roger’s
enduring innovations was the use of a one way function to protect its password file –
something virtually every modern computer system does today. The TITAN file system
also introduced the notion of full backup and restore and the ability to do incremental
backups.

Computing in the 1960s and early 1970s was a “full contact sport.” In keeping with his
“systems” image – Roger was not above doing anything that might be required to keep his
operating system running. In addition to developing TITAN’s software, he enjoys telling
the story of the miserable day he sat in an air conditioning unit pouring water from a
bucket over a pile of bricks to cool the system and keep it running for users.

As a member of staff. Roger also began to teach, initially for the Diploma and later, when
Cambridge accepted Computer Science as a degree subject, to undergraduates; and he
began to take PhD students, now to be met round the world.

CAP, Rings and the Cambridge Model Distributed System

Building on lessons learned from Titan, in the late 1960s Roger began to concentrate on
protection – providing fine-grained access control to resources between users, between
users and the operating system and between operating system modules From the early
1970s he worked with Maurice Wilkes and David Wheeler on the design and construction
of the CAP computer, an experimental machine with memory protection based on
capabilities implemented in hardware. Once the machine was running in 1975, Roger
then led the development of the machine’s operating system and was responsible for
many innovations in computer security. The CAP project received a British Computer
Society Technical Award in 1977. As the Internet moves toward adoption of a common
web services infrastructure there is renewed interest in capability based access control
today.

 xvii

Working with Maurice Wilkes, David Wheeler, Andy Hopper and others, Roger was also
involved in the construction of the Cambridge Ring (1974) and its successor the
Cambridge Fast Ring (1980). The 10 megabit per second Cambridge Ring put the
Computer Laboratory at the forefront of high speed local area networking and distributed
computing research. The Cambridge Fast Ring ran at 100 megabits per second – still the
typical speed of local computer networks more than 20 years later – and helped to inspire
the creation of the ATM switching networks in use today.

The software developed to run on top of the Cambridge Ring was no less remarkable than
the hardware. The Cambridge Model Distributed System on which Roger worked with
Andrew Herbert and others was an innovative distributed software environment
exploiting the Ring. It included computing components such as a Processor Bank, File
Server, Authentication Server, Boot Server etc. and was an early model for what we
would today call “thin client computing.”

This line of work on distributed systems was taken further in the 1980s in work with Ian
Leslie, David Tennenhouse and others on the Universe and Unison projects, where
independent Cambridge Rings that sat at several UK sites were interconnected by satellite
(Universe) and high speed point-to-point links (Unison) to demonstrate wide area
distributed computing. Both rings were used to do real-time voice and video applications
(the Cambridge “Island” project) – another “first.”

There were several commercial and academic deployments of Cambridge Rings spun out
from the Computer Laboratory. It is believed that a derivative of the Cambridge Ring still
runs part of the railway signalling system at London’s Liverpool Street Station!

Head of Department, Computer Laboratory

Roger had been promoted to Reader in Computer Systems in 1973, and was made
Professor in 1981. When Maurice Wilkes retired in 1980, Roger became Head of
Department. In addition to his personal scientific achievements, Roger oversaw the
growth and maturation of Cambridge University’s Computer Laboratory during an
important part of its history. When he took over as Head of Department, the Laboratory
had a teaching and research staff of 10 and just over 40 Ph.D. students. Ten years later, in
1990, the teaching and research staff had grown to 27 and the number of Ph.D. students
had more than doubled. Roger is quoted as referring to this as the Laboratory’s

“halcyon days” - an expanding Laboratory and no external interference.

Though the Laboratory's strength was in systems, and Roger himself was a “systems”
scientist, he encouraged new areas to develop, for example, formal methods, and language
and information processing. One topic of research Roger particularly promoted at
Cambridge was the intersection of multimedia systems and networking. As a result,
Cambridge became one of the first research laboratories in the world where
teleconferencing and video mail became regular tools for research.

Roger continued in the 1980s and 90s to be interested in all aspects of computer systems,
but was especially concerned with security. He participated in every one the ACM
Symposia on Operating Systems Principles, and is believed to be the only person to have
achieved a 100% attendance record. With Ross Anderson and others he significantly
developed and expanded Cambridge research into computer security. He took an active

xviii

role in creating a security programme at the Newton Institute and hosting an annual
Security Protocols Workshop, which he continues to do from Microsoft. He has recently
combined his intellectual and (left wing) political interests as a Trustee of the Foundation
for Information Policy Research. He has also emphasised, in a related spirit, in his 2002
Saul Gorn Lecture at the University of Pennsylvania and Clifford Paterson Lecture at the
Royal Society, that doing system security properly is as much about people as about
machines.

Referring to Roger’s impact on the Computer Laboratory on the occasion of his Honorary
Doctorate from the University of Twente in 1996, Sape Mullender wrote:

Needham works as a catalyst. When he is around, systems research gets more
focus and more vision. He brings out the best in the people around him. This
helps to explain why, for as long as I can remember, the Cambridge University
Computer Laboratory has been among the best systems research laboratories in
the world. This is recognized even by Americans, although their national pride
doesn’t always allow them to admit that MIT, Stanford, Berkeley, Cornell, and the
rest of them, have something to learn abroad, in Cambridge.

Public Service

Roger began his public service career in the 1960s as a member of the Science Research
Council's Computing Science Committee. His public service activities ramified in the 80s
and 90s, extending into all kinds of government and other boards and committees. He
says he has found some of them fun - the Alvey Committee, for example, had the
opportunity to drive a large national computing research programme; some were
interesting, like the Research Council's Individual Merit Promotion Panel; and some were
keeping a particular show on the road. He has felt the obligation to do these things; he has
also enjoyed learning and deploying the skills required to do them effectively. His most
recent challenge has been chairing a Royal Society Working Party on intellectual
property.

Roger was able to exploit these skills, and what he had learnt about the University while
Head of Department, as Pro Vice-Chancellor from 1996-1998, with a remit on the
research side of the University's operations. This had all kinds of interesting side-effects,
like chairing Electors to Chairs across the University and so getting snapshots of what's
hot in pharmacology, or economic history, or Spanish.

The list of awards and honors Roger has received for both his personal achievements and
his contributions to Cambridge and to the field is impressive including being named
Fellow of the British Computer Society, Fellow of the Royal Society, Fellow of the Royal
Academy of Engineering and Fellow of the ACM. Roger was also awarded the CBE
(Commander of the Order of the British Empire) for his services to Computer Science in
2001.

Working with industry

One constant of Roger’s career has been his consistent connection to industrial research
and development. He was a Director of Cambridge Consultants in the 1960s, and for ten
years on the Board of Computer Technology Ltd. He was a consultant to Xerox PARC

 xix

from 1977-84 and to Digital’s System Research Center from 1984-97. From 1995-97 he
was a member of the international advisory board for Hitachi’s Advanced Research
Laboratory, and on the Board of UKERNA from its inception until 1998.

Spin-offs from the Computer Laboratory had begun in the 1970s, contributing to the
“Cambridge Phenomenon”. When Roger was Head of Department he fostered these
connections, welcoming the idea of a Laboratory Supporters Club and becoming one of
the “Godfathers” for Cambridge entrepreneurs.

Some of Roger’s most famous papers were conceived during consulting trips and
sabbaticals working at industrial research laboratories. The secure authentication system
he described in his 1978 paper with Mike Schroeder of Xerox PARC became the basis for
systems such as Kerberos – still in use today – and represented a turning point in
distributed system security research. Working with Digital Equipment’s Mike Burrows
and Martin Abadi, he created the first formalism for the investigation of security protocols
to come into wide use (also called the BAN logic, named for its authors). Roger also
made contributions to Xerox’s Grapevine project and Digital’s AutoNet project.

Roger valued his longstanding connections with these company research centres. He was
also able to observe the business of running a research centre - how, and also how not, to
– at first hand.

In 1995 Roger was asked in an interview how he viewed the relationship between
academic work and industrial work in computer science:

If there wasn’t an industry concerned with making and using computers the
subject wouldn’t exist. It’s not like physics - physics was made by God, but
computer science was made by man. It’s there because the industry’s there.

I didn’t realize it at the time but I would soon become the beneficiary of Roger’s positive
attitude toward working with industry.

By the mid 90s, too, Roger was finding university life, squeezed between a rampant audit
culture and a lack of money, less and less satisfying. Doing something new without either
of these features, and with positive advantages of its own, looked very attractive.

Microsoft Research Cambridge

My personal history intersected again with Roger’s almost 14 years after my first meeting
with him in 1983. In 1991 I left Carnegie Mellon University where I had been teaching
for 12 years and joined Microsoft to start its basic research laboratory: Microsoft
Research. From the beginning, Nathan Myhrvold, who had hired me as the first lab
director, had contemplated creating a laboratory in Europe to complement the one we
were building in the United States. For the first 5 years of Microsoft Research’s growth
our Redmond facility was small enough that our first priority was to build it up to critical
mass. By 1996 we had grown to over 100 researchers and it was time to consider
expanding outside the US.

It was in the fall of 1996 as we were considering European expansion that we learned
through the grapevine that Roger Needham was willing to consider taking the position of

xx

Director of that lab. When I first heard the news I was tremendously excited. I couldn’t
imagine a better person to anchor this new venture.

In December, Nathan Myhrvold, Chuck Thacker, Roger Needham and I all met for a day
in a hotel near the San Francisco airport to talk about starting the lab and by the end of the
meeting it was clear we were moving forward. By April of 1997 the lab was announced
with much fanfare and in October of 1997 Microsoft Research Cambridge officially
opened with Roger Needham as its Managing Director.

In its first temporary space in the middle of Cambridge, the Microsoft lab was close to the
Computer Laboratory. Their two new buildings in west Cambridge are also close
together, striking additions to the growing West Cambridge campus, and with their people
interacting as Roger wanted.

In a 1999 interview for the book “Inside Out–Microsoft–In Our Own Words,” Roger
talked about the new lab he had started:

I had a complete restart of my career at age 62, when I was asked to open MSR at
Cambridge. I asked Rick what he wanted me to do. He said, “Hire the best
people and help them to do what they are good at.” Nathan Myhrvold added, “If
every project you start succeeds, you have failed.”

One of the most important rules of this research game is that unless you can get
some of the best people in the field, you should not bother.

I spent 35 years at Cambridge surrounded by brilliant people, and I rarely had
sufficient money to hire them. That is why I enjoy this job so much.

Just as he was able to build the strength of the Computer Laboratory during the 1980s and
1990s, Roger did a stellar job hiring “some of the best people in the field” and in so doing
turning Microsoft Research Cambridge into one of the premier institutions in Europe and
a strong engine for innovation within Microsoft. Technology from Microsoft Research
Cambridge is now embedded in many of Microsoft’s key products including Visual
Studio, Microsoft Office and Microsoft Windows. Coming full circle, one of the earliest
Cambridge technologies incorporated into Microsoft’s products was an information
retrieval engine–the field in which Roger received his Ph.D. nearly 40 years earlier.

In celebration of Roger Needham

This volume celebrates Roger’s 50 years at Cambridge and 5 years at Microsoft and the
tremendous impact he has had on so many people in our field. In it you will find a variety
of work contributed by some of the top computer scientists in the world – all of whom
have worked with Roger or been touched or influenced by Roger’s work. This volume
has been a labor of love and friendship and deep admiration. Enjoy.

 1

On Access Control, Data Integration,
and Their Languages

Martín Abadi
University of California,

Santa Cruz, California, USA.

This note considers the goals and features of recent languages for access control in
distributed systems. In particular, it relates those languages to data integration.

Languages for access control

Access control is central to security, and in computer systems it appears in many guises
and in many places. Applications, virtual machines, operating systems, and firewalls often
have their own access-control machinery, with their own idiosyncrasies, bugs, and
loopholes. Physical protection, at the level of doors or wires, is another form of access
control.

Over the years, there have been many small and large efforts to unify models and
mechanisms for access control. Beyond any tiny intellectual pleasure that such
unifications might induce these may conceivably contribute to actual security. For
example, when there is a good match between the permissions in applications and those in
the underlying platforms, access control mechanisms may have clearer designs, simpler
implementations, and easier configurations. The benefits are however far from
automatic�the result is sometimes more problematic than the sum of the parts�and
there probably will always be cases in which access control resorts to ad hoc programs
and scripts.

Those efforts have sometimes produced general languages for access control (e.g., [2–
5,7,9,10]). The languages are flexible enough for programming a wide variety of access
control policies (for example, in file systems and for digital rights management). They are
targeted at distributed systems in which cryptography figures prominently. They serve for
expressing the assertions contained in cryptographic credentials, such as the association of
a principal with a public key, the membership of a principal in a group, or the right of a
principal to perform a certain operation at a specified time. They also serve for combining
credentials from many sources with policies, and thus for making authorization decisions.
More broadly, the languages sometimes aim to support the nebulous task of trust
management.

Several of the most recent language designs rely on concepts and techniques from logic,
specifically from logic programming: Li et al.’s D1LP and RT [9,10], Jim’s SD3 [7], and
DeTreville’s Binder [4]. These are explicitly research projects. Languages with practical
aims such as XrML 2.0 include some closely related ideas, though typically with less
generality and simpler logic. This note will focus on Binder.

One might question whether the use of these sophisticated languages would reduce the
number of ways in which access control can be broken or circumvented. Policies in these

2

languages might be difficult to write and to understand�but perhaps no worse than
policies embodied in Perl scripts and configuration files. There seem to be no hard data on
this topic.

A look at Binder

Binder is a good representative of this line of work. It shares many of the goals of other
languages and several of their features. It has a clean design, based directly on that of
logic-programming languages.

Basically, a Binder program is a set of Prolog-style logical rules. Unlike Prolog, Binder
does not include function symbols; in this respect, Binder is close to the Prolog fragment
Datalog. Also, unlike Prolog, Binder has a notion of context and a distinguished relation
“says.”

For instance, in Binder we can write:

may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)
may-access(p,o,Rd) :- good(p)

These rules can be read as expressing that any principal p may access any object o in read
mode (Rd) if Bob says that p may do so or if p is good.

Here only :- and says have built-in meanings. The other constructs have to be defined or
axiomatized. As in Prolog, :- stands for reverse implication (“if”). As in previous logical
treatments of access control, says serves to represent the statements of principals and their
consequences [1]. Thus, Bob says may-access(Alice,Foo.txt,Rd) holds if there is a statement
from Bob that contains a representation of the formula may-access(Alice,Foo.txt,Rd). More
delicately, Bob says may-access(Alice,Foo.txt,Rd) also holds if there is a statement from Bob
that contains a representation of the formula may-access(Alice,Foo.txt,RdWr), and another
one that contains a representation of the rule

may-access(p,o,Rd) :- may-access(p,o,RdWr)

The author of an access control policy need not be concerned with the details of how
formulas are associated with piles of bits and network protocols. In particular, says
abstracts from the details of authentication. When C says S, C may send S on a local
channel via a trusted operating system within a computer, on a physically secure channel
in a machine room, on a channel secured with shared-key cryptography, or in a certificate
with a public-key digital signature.

Each formula is relative to a context. In our example, Bob is a context (a source of
statements). Another context is implicit: the local context in which the formula applies.
For example,

may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

is to be interpreted in the implicit local context, and Bob is the name for another context
from which the local context imports statements. This import relation might be construed
as a form of trust.

 3

There is no requirement that predicates mean the same in all contexts. For example, Bob
might not even know about the predicate may-access, and might assert
peut-lire(Alice,Foo.txt) instead of may-access(Alice,Foo.txt,Rd). In that situation, one may
adopt the rule:

may-access(p,o,Rd) :- Bob says peut-lire(p,o)

On the other hand, Binder does not provide much built-in support for local name spaces.
A closer look reveals that the names of contexts have global meanings. In particular, if
Bob exports the rule

may-access(p,o,Rd) :- Charlie says may-access(p,o,RdWr)

the local context will obtain

Bob says may-access(p,o,Rd) :- Charlie says may-access(p,o,RdWr)

without any provision for the possibility that Charlie might not be the same locally and for
Bob. Other systems, such as SDSI/SPKI [5], include more elaborate naming mechanisms.

Distributed access control as data integration

In the database field, a classic problem is how to integrate multiple sources of data. The
basic problem set-up is that there is a collection of databases, each defining some
relations, and one wants to do operations (in particular queries) on all of them. The query
language may be some variant of Prolog, or of its fragment Datalog. Modern versions of
the problem address the case where some or all of the sources of data provide semi-
structured objects�on the Web in XML, for instance. The languages vary accordingly.

Each database may expose a different interface and export its data in a different format. In
systems such as Tsimmis [6,11], wrappers translate data from each source into a common
model. Mediators then give integrated views of data from multiple (wrapped) sources.
For instance, the following is a mediator, written in the language MSL (Mediator
Specification Language) of Tsimmis:

<cs_person {<name N> <relation R> Rest1 Rest2}>@med :-
 <person {<name N> <dept ‘CS'> <relation R> | Rest1}>@whois
 AND decompose_name(N, LN, FN)
 AND <R {<first_name FN> <last_name LN> | Rest2}>@cs

This mediator defines an information source med in terms of two others, whois and cs. A
query to med on cs_persons results in two queries, one on whois and one on cs, plus a call
on the external predicate decompose_name. In expressions of the form <...>@s, s is a site:
a constant or a variable that represents an information source. The details, which are
unimportant for present purposes, can be found in Papakonstantinou’s dissertation [11].

MSL and Binder have more in common than their proximity to Datalog. Both deal with
multiple sources of data (sites or contexts). In Binder, access control policies may be
regarded as mediators that integrate data from multiple contexts. Each context may define
some relations (good, may-access, etc.), so we may as well regard contexts as databases.
However, the databases may be implemented by certificates, rather than with big tables.
(So revocation and negation can be difficult.) There is even a remarkable syntactic

4

similarity between MSL and Binder, at least at the level of abstract syntax: @ in MSL is
analogous to “says” in Binder, and we may read P@s as s says P.

These similarities suggest the possibility of exploiting ideas and methods from databases
in security. For instance, we may borrow implementation techniques and some theory. We
may also borrow some language design. The thought of basing access control on semi-
structured data is inevitable but somewhat frightening. More conservatively, languages
for access control may incorporate important query-language constructs that go beyond
first-order logic and Datalog, for example for aggregating data.

While MSL and Binder have similarities in syntax and semantics, their pragmatics are
quite different. In short, the two languages are used in different environments, for
different purposes, and under different constraints.

• Work on data integration seems to assume a messy but benign world. This attitude
may sometimes motivate pragmatic shortcuts, for example the plausible
assumption that two relations with the same name in different sites might be
intended to mean the same unless stated otherwise.

• In security, on the other hand, we tend to regard data from foreign contexts with a
healthy dose of distrust. While users may work around mistakes in data
integration, and tolerate them as ordinary bugs, mistakes in access control are
vulnerabilities, often with serious consequences.

The term “views,” so often used in data integration, suggests that each source of data
provides part of the truth on a whole. The literature on data integration explores two
possible approaches [8]:

• global-as-view (GAV): each relation in the mediator schema is defined by a query
over the data sources;

• local-as-view (LAV): the data sources are defined by queries over the mediator
schema.

Both approaches have benefits in data integration. On the other hand, Binder seems to fit
only the GAV model; it is not clear how the LAV model might apply in distributed access
control.

Security is primarily a property of systems, not a property of languages. The observation
that some “security languages” resemble some “data integration languages” seems
intriguing, and perhaps useful, but it mostly ignores the systems for which the languages
were invented.

Nevertheless, distributed access control is at least partly about data integration. We may
therefore hope that advances in data integration, and more broadly in databases, would
eventually be of some benefit in security. We may even imagine that we will be able to
dispense with much of the special machinery for access control, relying instead on
systems for data integration and the like (by subsumption). Whether that outcome would
be good, rather than merely interesting, remains open to debate.

 5

Acknowledgments

I am grateful to John DeTreville, Phokion Kolaitis, Butler Lampson, Roger Needham, and
Wang-Chiew Tan for discussions that contributed to this note and to Mike Burrows for
comments on the presentation of a draft.

References

1. ABADI, M., BURROWS, M., LAMPSON, B. AND PLOTKIN, G., ‘A calculus for access
control in distributed systems,’ ACM Trans. on Programming Languages and Systems
vol. 15, no. 4, September1993, pp. 706-734.

2. BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J. AND. KEROMYTIS, A.D., The KeyNote trust-
management system, version 2, IETF RFC 2704, September 1999.

3. BLAZE, M., FEIGENBAUM, J. AND LACY, J., ‘Decentralized trust management,’ Proc.
1996 IEEE Symposium on Security and Privacy, pp. 164-173.

4. DETREVILLE, J., ‘Binder, a logic-based security language,’ Proc. 2002 IEEE
Symposium on Security and Privacy, pp. 105-113.

5. ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B. AND YLÖNEN, T,.
SPKI certificate theory. IETF RFC 2693, September 1999.

6. GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN, A., SAGIV,
Y., ULLMAN, J.D., VASSALOS, V. AND WIDOM, J., ‘The TSIMMIS approach to
mediation: data models and language,’ Journal of Intelligent Information Systems, vol.
8, no. 2, pp. 117-132, 1997.

7. JIM. T., ‘SD3: A trust management system with certified evaluation,’ Proc. 2001 IEEE
Symposium on Security and Privacy, pp. 106-115.

8. LENZERINI, M., Slides of the invited tutorial ‘Data integration: a theoretical
perspective,’ given at the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2002, available at:
http://www.dis.uniroma1.it/~lenzerin/homepagine/publifile.html.

9. LI, N., GROSOF, B.N. AND FEIGENBAUM, J, ‘Delegation logic: A logic-based approach
to distributed authorization,’ ACM Trans. on Information and System Security
(TISSEC), February 2003, to appear.

10. LI, N., MITCHELL, J.C. AND WINSBOROUGH, W.H., ‘Design of a role-based trust-
management framework,’ Proc. 2002 IEEE Symposium on Security and Privacy,
pp. 114-130.

11. PAPAKONSTANTINOU, I.G., ‘Query processing in heterogeneous information systems’.
Doctoral Dissertation, Stanford University, 1997, available at:
http://www.db.ucsd.edu/people/yannis.htm.

6

 7

Protocol Analysis, Composability and Computation

Ross Anderson, Michael Bond
 University of Cambridge, England

Security protocols — early days

The study of security protocols has been associated with Roger Needham since 1978,
when he published the seminal paper on the subject with Mike Schroeder [1].

The problem they investigated was how to distribute cryptographic keys in a network of
computers. One solution is to have an authentication service with which all the principals
share a key; then if Alice wants to chat with Bob (for example) she can call the service
and get two encrypted messages containing the same session key — one encrypted under
the key she shares with the service so she can read it, and one encrypted under the key
Bob shares with the service so Bob can read it. She can now send the second of these to
Bob to establish secure communication. The mechanism that Needham and Schroeder
designed for this evolved into Kerberos, which is now part of Windows and is probably
the most widely used of all authentication protocols.

Security protocols are now embedded in a great many applications, but it is common to
find unexpected bugs in them. For example, many banks used to encrypt each customer’s
PIN using a key known to their ATMs and write it on the ATM card magnetic strip. The
idea was to provide a limited service when the network was down. Years later, a villain
discovered that the account number and the encrypted PIN were not linked: he could
make up a bank card with his own encrypted PIN but someone else’s account number,
and loot their account. He went on to steal a lot of money, and once in prison wrote a
manual telling everyone else how to do it too. The banks had to spend millions on
changing their systems.

Clarifying the assumptions

Researchers started to gnaw away at the protocols described in the literature and found
fault with essentially all of them. The failure to bind protocol elements was one frequent
problem; another was that old messages could be replayed. In the case of the original
Needham-Schroeder protocol, for example, the freshness of the key generated by the
server was guaranteed to only one of the principals. This was not necessarily an attack, as
its inventors only claimed to protect honest insiders from dishonest outsiders. However, it
led to a debate about the assumptions underlying security protocol design. Do we protect
only against outsiders, or against insiders? Against the malicious, or the merely careless?
For example, if we use timestamps to guarantee protocol freshness, are we vulnerable to
principals who carelessly let their clocks run slow? Do we only consider an attacker to
have won if he can impersonate an authorised principal, or do we need to stop people
abusing the protocol mechanisms to perform a service denial attack?

The early attacks led to a second seminal paper, which Roger wrote with Mike Burrows
and Martin Abadi in 1989 [2], and which introduced a logic of authentication. This

8

enables an analyst to formalise the assumptions and goals of a security protocol, and to
attempt to prove its correctness. When a proof cannot be found, the place at which one
gets stuck often shows where an attack can be mounted. This style of analysis turned out
to be very powerful, and a large literature quickly developed in which the “BAN Logic”
and other formal tools were developed and extended to tackle a range of problems in
protocol design.

One of the remarkable things about the study of security protocols is that they have not
become a solved problem. One might think that managing the objects associated with
authenticating users over a network — passwords, keys and the like — was a fairly
compact problem which would have been done to death within a few years. However, the
more we dig, the more we find.

Since 1992, Roger has hosted a protocols workshop every Easter. Early events dwelled on
matters of authentication and logic, but by the mid-90s, the growing interest in electronic
commerce was yielding papers on mechanisms for micropayments, bets, streaming media,
mobile communications and electronic voting. Later years brought work on PKI, trust
management and copyright enforcement. More and more problems come along as more
and more businesses reinvent themselves online; threat models have also become more
realistic, with dishonest insiders displacing the mythical ‘evil hacker on the Internet’.

Dishonest insiders, and the composition problem
Over the last two years, we have been exploring exactly how one might re-engineer
cryptography to cope with dishonest insiders. One conclusion is that the analysis of
security protocols must be extended to application programming interfaces. This is
because the crypto keys used in authentication and payment protocols are often kept in
separate hardware security processors, or at least in cryptographic libraries, to which
access can be restricted using physical or logical mechanisms. However, an interface has
to be exposed to the application program, which will occasionally be suborned — whether
by a corrupt insider, or by malware. How much harm can be done, and how can we limit
it?

Protecting protocols was hard enough, and yet the typical protocol consists of 3–5
messages exposed to manipulation. The API of a modern crypto library or hardware
cryptoprocessor may contain 30–500 callable functions, many with a range of options.
This provides a very rich and complex environment for mischief.

Attacks often involve using two separate mechanisms provided by the cryptoprocessor for
different purposes, each of which could be innocuous by itself but which combine to
cause trouble. For example, it is common to compute a customer PIN by encrypting the
account number with a ‘PIN derivation key’: the cryptoprocessor then returns the PIN
encrypted with a PIN storage key, so that the application has no access to its clear value.
So far, so good. Then there is another transaction that can be used to encrypt a
communications key under the terminal key loaded in an ATM. Here things start to go
wrong, as the cryptoprocessor does not distinguish between a terminal key and a PIN
derivation key; it considers them both to be of the same type. The upshot is that an
attacker can supply the device with an account number, claiming that it is a
communications key, and ask for it to be encrypted under the PIN derivation key.

 9

Attacks like this extend protocol analysis all the way to the composition problem — the
problem that connecting two systems that are secure in isolation can give a composite
system that leaks. This had previously been seen as a separate issue, tackled with different
conceptual tools.

Differential protocol analysis
We are now working on the second generation of API attacks, which exploit the
application syntax supported by the cryptographic service. These attacks are even more
powerful, and at least as interesting from the scientific point of view. PIN generation
provides a neat example here too. In more detail, the standard PIN computation involves
writing the result of the encryption as a hex string and decimalising it. As some banks like
to let customers change their PIN to a more memorable number, there is a provision to
add an offset to give the PIN that the customer actually enters:

 Account number: 8807 0123 4569 1715
 PIN derivation key: FEFE FEFE FEFE FEFE
 Encrypted account number: A2CE 126C 69AE C82D
 Natural (decimalised) PIN: 0224
 Offset: 6565
 Customer PIN: 6789

The typical implementation requires the programmer to send the cryptoprocessor the
account number, a table describing the decimalisation (here, ‘0123 4567 8901 2345’)
and the offset. The processor returns the PIN, encrypted under the PIN storage key.

The designers do not seem to have realised that a crooked programmer can manipulate the
decimalisation table and the offset as well as the account number. A multitude of attacks
follow. For example, one can send in an account number with a decimalisation table of
‘1111...11’ to find out the ciphertext corresponding to a clear PIN of ‘1111,’ and then
with a decimalisation table of ‘0111...11’ to see if there is a zero in the first four digits
of the encrypted account number (if so, the PIN, and thus the ciphertext output, will be
different). By manipulating the decimalisation table further, he can get all the digits in the
PIN, and by then playing with the offset he can get their order. In total, the attack requires
only 15–25 unprivileged cryptoprocessor transactions to discover the PIN on a single
target account.

This second type of attack takes protocol analysis into yet another realm: that of
differential attacks. Over the last ten years, a number of techniques have been invented for
attacking cryptographic systems by bombarding them with inputs with chosen differences.
For example, in differential cryptanalysis, one analyses the changes in the output of the
encryption algorithm; while with differential power analysis, one measures changes in the
current consumption or electromagnetic emissions of the equipment. Now we have
examples of how consecutive runs of a protocol can leak information if the inputs are
suitably chosen. The resulting ‘differential protocol analysis’ appears to be very powerful
against application-level crypto.

It will take us some time to figure out the general lessons to be drawn from attacks like
this, the robustness principles that designers should use to avoid them, and the analysis
techniques that might assure us of a particular design’s soundness. The randomisation of
all protocols (another feature of Roger’s work) is likely to be important.

10

Quantitative analysis and multiparty computation
Various researchers have speculated about whether there might one day be a quantitative
analysis of protocol security. This might be feasible for PIN processing applications as we
can measure the information leakage per transaction in terms of the reduction of entropy
in the unknown PIN. This leads in turn to a possible real-world application of an attack
previously considered theoretical.

Gus Simmons wrote extensively on covert channels in protocols. One such channel that is
always present is the ‘balking channel’ — when one of the principals in a protocol signals
something by halting and refusing to continue. This is normally considered unimportant
as its information capacity is only a third of a bit per transaction. But with systems
designed to cope with large transaction volumes, this need no longer hold. For example, a
Trojanned cryptoprocessor could balk when it sees a predetermined PIN. If the PIN length
were eight digits, this would be unlikely to hinder normal operation, but at a thousand
transactions a second, a programmer could quickly find a number in a typical nine-digit
account number range with just this PIN, and open an account for it. Once this kind of
problem is appreciated, one can start to look for attacks that involve inducing rare error
conditions that cause the cryptoprocessor to abort a transaction. (They exist.)

A third emerging link is between protocol analysis and secure multiparty computation. In
application-level crypto we may have several inputs to a computation, some of them
coming from an untrusted source, and we have to stop users manipulating the
computation to get outputs useful for bad purposes. In the PIN decimalisation example
above, one might try to solve the problem by blocking tables such as 1111...11. Yet an
attacker can get by with scarcely more work by using two normal-looking tables that
differ slightly (another kind of differential attack). We might therefore think that if we
can’t sanitize the inputs to the computation, perhaps we can authenticate them, and use
only those tables that real banks actually use. But building every bank in the world into
our trust base is what we were trying to avoid by using cryptography!

Conclusion
The protocol work that started off a quarter of a century ago may have seemed at the time
like a minor detail within the larger project of designing robust distributed systems. Yet it
has already grown into the main unifying theme of security engineering. Application-
level protocols, and especially those from which an attacker can harvest data over many
runs, open up new problems. The resulting analysis techniques are set to invade the world
of composable security, and the world of multiparty computation. The influence, and the
consequences, of Roger’s contribution just keep on growing.

References
1. NEEDHAM, R.M. AND SCHROEDER, R.M., ‘Using encryption for authentication in

large networks of computers.’ Comm. ACM, vol. 21, no. 12, pp. 993-999, 1978.

2. BURROWS, M. ABADI, M. AND NEEDHAM, R.M., ‘A logic of authentication,’ ACM
Transactions on Computer Systems, vol. 8, no. 1, pp. 18-36, 1990.

 11

Access Control in Distributed Systems

Jean Bacon, Ken Moody
 University of Cambridge, England

Abstract

We trace the evolution of access control policy expression and implementation
mechanism from centralised operating systems, through locally distributed, LAN-based
systems, to large scale, widely distributed systems with independently developed
components. Current approaches to the latter favour role-based access control enforced
through encryption-protected certificates that have their roots in capability mechanisms.

Access control policy and mechanism

Access control is a crucial aspect of most computerised systems. Access control policy is
the specification of the rights of principals to access objects or use services. Access
control mechanisms implement the policies at runtime. There is a tension between
expressiveness of policy and efficiency and functionality of mechanism. We trace the
evolution of policy and mechanism from early centralised systems to current, large-scale,
widely distributed systems.

From the earliest operating system (OS) designs discretionary schemes have been
supported. Here, policy on service use is implicit and an object’s owner specifies its
access permissions. An access control list (ACL) associated with an object has been the
most usual form of policy specification; implementation is by checking the list on object
access. ACLs can be expressive, most generally containing any combination of groups
(with nesting) and principals. As systems grow and groups contain increasing numbers of
members the implementation becomes unacceptably slow, as shown for Grapevine [7].

For this reason the alternative of issuing authorised principals with capabilities has been
investigated. Capabilities are efficient to check, but how to manage and revoke them has
exercised the research community over many years. Signed authorisation certificates are
the most recent manifestation of capabilities.

Capabilities in centralised and distributed systems
The CAP operating system [10, 11, 12] was the culmination of capability-based OS
design. The CAP project explored how a general protection domain structure (as opposed
to nested rings) might be enforced and used to implement minimum necessary privilege
both in the use of services and in access to objects. But hardware support for protection is
expensive compared with off-the-shelf processors and, before the CAP project ended, the
emerging local area network technology was making distributed systems feasible and
changing the research focus.

Many distributed system designs such as the Cambridge Distributed Computing System
(CDCS) [13] Amoeba, Mach and Chorus have been based on capabilities. In CDCS,
capabilities were issued to authenticated principals to allow subsequent use of system
services. The CDCS file system (CFS) [6] was also capability-based, providing a

12

universal storage service on which any number of OS directory services could be built.
The MSSA (multi-service storage architecture) project [1, 9] extended this design
approach to provide a hierarchy of services above the lowest flat-file level. Specialised
continuous media services were supported as well as structured objects such as OS
directories, indexes, mail objects and general database objects.

Issues for capability-based access control

A capability contains an object name and some access rights. The necessary properties of
a capability are as follows:

1. Integrity. It is essential to protect capabilities from illegal construction,
tampering and theft. A principal must not be able to create a capability for
itself. The possessor of a capability must not be able to increase its access
rights. It should not be possible for a network eavesdropper to pick up and use
a capability.

2. Propagation. The transfer of capabilities should be controlled; for example,
should it be possible for a principal with a capability to pass a copy to some
other principal? It may be that this should be allowed only under system
control; that is, a principal should ask the system to create a capability
containing specified rights for some other principal. A mechanism is needed to
enforce such a policy.

3. Delegation. A specific example of the use of the capability transfer mechanism
is for a principal to delegate a subset of its rights to an object to another
principal. This may be for a specific purpose for a limited time, for example,
one may wish to delegate to a printing service the right to read a file only for
the time it takes to print that file.

4. Revocation. Capabilities are held by principals, or their agents, rather than
with objects. It may therefore be difficult for a system to keep track of all the
capabilities that exist for an object. Some may have been issued directly to
principals by the system; some may have been passed from one principal to
another. If the access control policy for an object is changed then some
capabilities may need to be revoked. Ideally, individual revocation should be
possible. The alternative is to revoke all the capabilities for an object, thus
forcing all principals to request new capabilities; the new access control policy
will determine which ones will succeed. This is simple to implement but
imposes avoidable overhead on the valid principals each time the access
control policy for an object is changed.

Capability generation and checking in distributed systems

In a distributed system capabilities may be used to prove a principal’s right to use a
service or access an object. If capabilities are to be transferred around a distributed system
it is no longer sufficient to protect them by hardware in the memory of individual nodes
of the system. Encryption techniques must be used instead. One scheme is as follows:
when an object is created, a secret (random number) is generated and stored with the
object. An encryption function, such as a one-way function, is available to the object
manager. When a capability is issued, the object name, rights and the secret are put

 13

through the encryption function and the result is stored in the capability as check digits.
When the capability is presented with a request to use the object, the object name and
rights from the capability and the stored secret are put through the encryption function.
The resulting number is compared with the check digits in the capability. If they are the
same, access may go ahead. If they are different then the capability has been tampered
with and is invalid. This scheme allows the object name and rights to be represented in
clear in the capability.

The four issues for capability-based access control highlighted above are only partially
addressed in the approach just described. The scheme protects capabilities from tampering
but not from theft. Propagation is as difficult as ever to control and capabilities may now
be transferred widely throughout a distributed system. Revocation cannot be selective; a
typical approach is to invalidate all existing capabilities by associating a new secret with
the object. Newly generated capabilities will use the new secret, old ones will fail the
encryption check and the principal must request a new capability.

Principal-specific capabilities
A simple extension of the scheme described above is to include the name of a principal in
the capability [8]. The principal’s name is put through the encryption function, together
with the object name and access rights, when the capability is issued and checked. We
then have a mechanism to enforce that only the principal whose name is embedded in a
capability for an object may access the object; a principal cannot use a capability it has
acquired by eavesdropping on network communication. Principal-specific capabilities
were used in two later Computer Laboratory projects, MSSA (mentioned above) and
OASIS (see below); in the latter, with the additional insight that the principal ID need not
be embedded in the capability provided that it is input to the encryption function.

The principal naming mechanism is based on the system’s authentication infrastructure; it
assumes that the identity of the principal making the request can be ascertained correctly
and that one principal cannot masquerade as another. But the IP address and port number
of the presenting principal are not sufficiently secure and some public key of the principal
is likely to be needed [14].

The transfer of capabilities can now be controlled; only the object manager with access to
the secret can generate capabilities. A principal must ask the object manager to generate a
new capability for some other principal. Selective revocation may be supported more
easily; for example, a ‘hot list’ of principals whose rights to access an object have been
revoked by a change in access control policy may be held with the object and checked
when a capability is presented.

Certificates and integration with a PKI
Over the years this approach has grown in popularity as systems have become larger and
more widely distributed. Capabilities have been implemented as standard, signed
certificates, for example, as X.509 authentication certificates with access control
information in the extension fields or, more recently, as X.509 authorisation certificates
[16]. The presenting principal may be challenged for knowledge of the private key
associated with the public key within the certificate, or public/private key encryption may
be used for communication, integrating access control with a standard PKI (public key
infrastructure).

14

Role-based access control (RBAC)

Managing the access rights of principals to objects becomes increasingly difficult as
systems grow in size and their user communities vary. The privileges of a group or “role”
are largely independent of the principals who are members, and these privileges change
slowly as an organisation evolves. This is the key idea behind role-based access control
(RBAC), in which access control policy assigns privileges to roles rather than to
individual principals. There are usually many fewer roles than principals in an
organisation, although a large organisation may have several thousand roles. Also, the
privileges associated with a particular role change less frequently than people join and
leave, or move to a new role within the organisation. RBAC therefore promises to be an
appropriate access control scheme for large-scale systems. An additional requirement for
managing access control in widely distributed applications is that heterogeneous,
independently developed and administered systems should interwork; that is, principals
managed by one system will need to use the services of others. Access to such privileges
must be negotiated between the systems. For example, the services may be associated
with e-government, where police, social services or health trusts may be authorised to
access certain electronic records managed by another agency.

Various RBAC models have evolved over the years, most notably [15], but there are few
architectures and implementations. If RBAC is to be adopted in practice, large-scale
engineering issues must be addressed.

OASIS: an open architecture for secure, inter-working services

The OASIS project at the Computer Laboratory draws these threads together. An
overview of OASIS is given in [2, 3], details of its architecture and engineering can be
found in [4] and a formal model is presented in [5].

OASIS is an access control system for open, interworking services in a distributed
environment, with services being grouped into domains for the purpose of management.
Services may be developed independently but service level agreements allow their secure
interoperation. OASIS is closely integrated with an active, event-based middleware
infrastructure. In this way we can notify applications of any change in their environment,
making it possible to ensure that security policy is satisfied at all times. A heartbeat
infrastructure means that failures of nodes or communications can be detected. The
receiver of an alarm that may (or may not) be delayed can take appropriate action.

OASIS is role based but has important differences from other RBAC schemes:

• Roles are service-specific; there is no notion of globally centralised administration
of role naming and privilege management.

• Roles may be parameterised, as required by applications.

• Roles are activated within sessions. An OASIS session is started by strong
authentication of a principal, and an initial role such as logged_in_user is created
as a side effect of authentication. Roles may have activation conditions that
require prerequisite roles, and a dependency tree of active roles is built up within a
session, see Figure 1.

 15

• All privileges are associated with roles. We use appointment instead of delegating
roles or privileges; the activation conditions of roles may include appointment
certificates. Persistent credentials (as opposed to session-limited role membership
certificates (RMCs)) are implemented as appointment certificates, which do not
confer privileges directly.

• We provide an active security environment. Constraints on the context can be
checked during role activation; the role may be deactivated, or use of a service
may be forbidden, if particular conditions become false subsequently.

service A

CR
role membership certificate

for principal P
issued by service A

RMC

prerequisite roles:
 P has a specified RMC issued by A
 P has a specified RMC issued by B
appointment certificates:
 P has a specified certificate
environmental constraints:
 parameter value/relationship
 the time is as specified by policy

P is issued an additional RMC by B

service B

CR

role membership certificate
for principal P

issued by service B

RMC

event channels
for revocation

CRRMC

new role membership certificate
for principal P

issued by service B

This is the policy specification by service B, in Horn clause form,
of the conditions for principal P to activate some role

administrative
database

for domain
of service B

 CR = credential record
RMC = role membership certificate

time service for
domain of service B

Appointment Certificate

Figure 1: OASIS role activation within a session

Although the OASIS architecture overcomes many problems, the expression and
management of policy, for role activation and service/object use, is still a major concern.
Policy may derive from multiple sources such as national legislation and local
management. Consistency must be ensured and evolution must be controlled. Our current
work is concerned with these issues and a web-based implementation is a basis for our
investigations.

Summary

Research on capabilities as an access control mechanism in centralised, then distributed,
systems has led directly to current, widely used, certificate standards. Roger Needham’s
work has been key at every stage in this development.

The need for large-scale, widely distributed systems comprising separately-developed,
independent, administrative domains leads to many new problems. These include how
access control policy can be negotiated, expressed and managed when principals’ work
spans several such domains. At present members of our group are working in two specific
application areas. In complex applications the privileges of a number of users change as

16

progress is made towards achieving one or more real-world tasks, possibly described by a
workflow. Access control policy must be integrated with the workflow specification, with
the enforcement mechanism responding as workflow subtasks are completed. More
speculatively, how mutually unknown principals and services might establish sufficient
trust to interwork is a challenging problem. We look forward to Roger’s insight on all of
these topics.

References

1. BACON J. M., HAYTON R. J., LO S. L. AND MOODY K., ‘Access control for a modular,
extensible storage service,’ Proc. IEEE SDNE, Services in Distributed Network
Environments, , Prague, June 94, pp. 108-114.

2. BACON, J., MOODY, K., BATES, J., HAYTON, R., MA, C., MCNEIL, A., SEIDEL, O. AND
SPITERI, M., ‘Generic support for distributed applications.’ IEEE Computer, pp. 68-
76, March 2000.

3. BACON, J. AND MOODY, K., ‘Towards open, secure, widely distributed services,’
Comm. ACM, vol. 43, no. 6, June 2002, pp. 59-63.

4. BACON, J., MOODY, K., AND YAO, W, ‘Access control and trust in the use of widely
distributed services.’ In Middleware 2001, Lecture Notes in Computer Science
2218, pp. 295-310, Springer 2001.

5. BACON, J., MOODY, K., AND YAO, W, ‘A model of OASIS role-based access control
and its support for active security.’ ACM Trans. on Information and System
Security, Vol. 5, No. 4, November 2002, pp. 492-540, ACM Press, New York, NY.

6. BIRRELL, A.D. AND NEEDHAM, R.M., ‘A universal file server.’ IEEE Transactions
on Software Engineering, vol. SE-6, no. 5, May 1990.

7. BIRRELL, A.D., LEVIN, R., NEEDHAM, R.M. AND SCHROEDER, M.D., ‘Grapevine: an
exercise in distributed computing.’ Comm. ACM, vol. 25, no. 4, 1982, pp. 260-274.

8. GONG., L., ‘A secure, identity-based capability system.’ Proc. IEEE Symposium on
Security and Privacy, Oakland, California, May, 1989, pp. 56-63.

9. LO, S.L., A Modular and extensible network storage architecture. PhD thesis,
University of Cambridge, Jan 1994 and Technical Report TR 326. Published by
CUP as a Distinguished Dissertation, ISBN 0-521-55115-3, 1995.

10. NEEDHAM, R.M., WALKER, R.D.H, ‘The Cambridge CAP computer and its
protection system. Proc. 6th Symposium on Operating Systems Principles,’ pp. 1-10,
November 1977, West Lafayette, Indiana, United States.

11. NEEDHAM, R.M., BIRRELL, A.D., ‘The Cap Filing System.’ Proc. 6th Symposium on
Operating Systems Principles, pp. 11-16, November 1977, West Lafayette, Indiana,
United States.

12. NEEDHAM, R.M., ‘The CAP project - an interim evaluation,’ Proc. 6th Symposium on
Operating Systems Principles, pp. 17-22, November 1977, West Lafayette, Indiana,
United States.

13. NEEDHAM, R.M. AND HERBERT, A.J., The Cambridge distributed computing
system, Addison Wesley, 1982, ISBN 0-201-14092-6.

 17

14. NEEDHAM, R.M. AND SCHROEDER, R.M., ‘Using encryption for authentication in
large networks of computers.’ Comm. ACM, vol. 21, no. 12, , 1978, pp. 993-999.

15. SANDHU, R.S., COYNE, E.J., FEINSTEIN, H.L. AND YOUMAN. C.E., ‘Role-based access
control models.’ Computer, vol. 29, no. 2, Feb. 1996, pp. 38-47.

16. TUECKE, S. ET AL. Internet X.509 Public key infrastructure — proxy certificate
profile. <draft-ietf-pkix-proxy-03>, April 2003.

18

 19

Implementing Condition Variables with Semaphores

Andrew D. Birrell
Microsoft Research—Silicon Valley, California, USA

Introduction

All of today’s popular systems for programming with multiple threads use designs based
around three data types:

• “Thread,” with operations Fork and Join

• “Lock” with operations Acquire and Release

• “Condition Variable” with operations Wait, Signal and Broadcast

This is true of PThreads, Java, and C#. It’s also true of their predecessors, Modula-3,
Modula-2+ and Mesa.

In 1984 a group of us at DEC SRC were implementing a new multi-processor operating
system: the system was Taos, the machine was Firefly and the language, which we
created, was Modula-2+. As part of that effort we implemented these data types. In doing
so we observed that the semantics of Acquire and Release were identical to those of a
binary semaphore1. Also, the semantics of Wait and Signal are tantalizingly similar to those
of a binary semaphore. So we thought we could provide a single abstraction in the kernel,
and present it as locks and condition variables in the language support layer. This paper is
the tale of what happened then.

The system we were building used what would nowadays be called a micro-kernel
architecture (the term hadn’t been invented then). The lead programmer for the kernel was
Roy Levin, and I was doing the user-mode thread support code (and the RPC system). We
were ably assisted in building the threads facility by a large and highly qualified cast of
other SRC employees, consultants, and passers-by, including Butler Lampson, Paul
Rovner, Roger Needham, Jerry Saltzer and Dave Clark.

Ground rules

I’m not going to give formal semantics for the threads operations here. You can read the
ones we wrote for Modula-2+ [1], or you can read the reasonably good description in
Chapter 17 of the Java Language Specification [3] (ignoring the stuff about re-entrant
mutexes). It’s worth reading those specifications sometime, but the following summary
should be enough for appreciating this paper.

• A condition variable, c, is associated with a specific lock, m. Calling c.Wait()
enqueues the current thread on c (suspending its execution) and unlocks m, as a
single atomic action. When this thread resumes execution it re-locks m.

1 Modula-2+ did not support the notion of re-entrant mutexes. If a thread holding m tried to acquire m
again, the thread would deadlock. This still seems like a good idea. Implementing locks with
semaphores is messier if for some reason you want to allow re-entrant locking, but it’s still not difficult.

20

• c.Signal() examines c, and if there is at least one thread queued on c then one such
thread is dequeued and allowed to resume execution; this entire operation is a
single atomic action.

• c.Broadcast() examines c and if there are any threads queued on c then all such
threads are allowed to resume execution. Again, this entire operation is a single
atomic action: the threads to be awoken are exactly those that had called c.Wait()
before this call of c.Broadcast(). Of course, the awoken threads have to wait in line
to acquire the lock m.

Note that these are the Mesa (and Modula, PThreads, Java and C#) semantics. Tony
Hoare’s original condition variable design [4] had the Signal operation transfer the lock to
the thread being awoken and had no Broadcast.

See Dijkstra’s 1967 paper [2] for a precise description of semaphore semantics. In
summary:

• A semaphore sem has an integer state (sem.count) and two operations, “P” and
“V.”

• sem.P() suspends the current thread until sem.count > 0, then decrements sem.count
and allows the thread to resume execution. The action of verifying that sem.count >
0 and decrementing it is atomic.

• sem.V() increments sem.count, atomically. For the special case of a binary
semaphore the increment is omitted if sem.count is already 1 (this is done by
setting sem.limit to 1).

It’s quite easy to implement semaphores very efficiently using a hardware test-and-set
instruction, or more modern interlocked memory accesses (such as the load-locked and
store-conditional features of the MIPS and Alpha architectures, or the analogous features
of modern Intel processors).

To give this historical tale a modern flavour, I’m going to use C# for the programming
examples (Java would be almost identical). In reality the implementations for the Firefly
were written in Modula-2+, and the actual data representation was somewhat different
than given here. I’m also going to ignore exceptions completely, to avoid cluttering the
code with try … finally statements.

Getting started

A semaphore is ideal for implementing a lock with the Modula or Mesa semantics. We
represent the lock directly as a semaphore, with its integer restricted to the range [0..1],
initially 1. The Acquire operation is exactly P and Release is exactly V:

 21

class Lock {
 Semaphore sm;
 public Lock() { // constructor
 sm = new Semaphore(); sm.count =1; sm.limit = 1;
 }
 public void Acquire() { sm.P(); }
 public void Release() { sm.V(); }
}

You can come quite close to implementing a condition variable in a similar way:

class CV {
 Semaphore s;
 Lock m;
 public CV(Lock m) { // Constructor
 this.m = m;
 s = new Semaphore(); s.count = 0; s.limit = 1;
 }
 public void Wait() { // Pre-condition: this thread holds “m”
 m.Release();
(1) —
 s.P();
 m.Acquire();
 }
 public void Signal() {
 s.V();
 }
}

Most of this is obvious. The condition variable is associated with a Lock m. Enqueueing a
thread on a condition variable is implemented by the s.P() operation. The only issues
occur in the area around (1). Recall that the semantics say that c.Wait should atomically
release the lock and enqueue the thread on c, which this code blatantly doesn’t do.

The critical case is where there is no thread currently enqueued on c, and some thread A
has called c.Wait() and has reached (1), then thread B calls c.Signal(). This calls s.V() which
sets s.count to 1. When thread A eventually gets around to calling s.P(), it finds that s.count
is 1, and so decrements it and continues executing. This is the correct behaviour. The
effect was christened the “wake-up waiting race” by Jerry Saltzer [5], and using a binary
semaphore ensures that A will not get stranded enqueued incorrectly on s.

However, this does have a side-effect: if a thread calls c.Signal() when no thread is inside
c.Wait(), then s.count will be left at 1. This mean that the next thread to call c.Wait() will
just decrement s.count and drop through, which isn’t really what the semantics said.
Fortunately, we were experienced enough to notice this problem immediately. You can
fix it by counting the calls of c.Wait() and the matching calls of c.Signal().The counter also
gives us a plausible implementation of c.Broadcast.

Of course, you need a lock to protect this counter. For the purposes of the current
description I’ll use another semaphore x in each condition variable. In a real
implementation you’d probably optimize to some form of spin-lock, perhaps combined

22

with a private agreement with the thread scheduler. Java and C# avoid this extra lock by
requiring that the caller of Signal or Broadcast holds c.m; we didn’t want this restriction in
Modula-2+.

class CV {
 Semaphore s, x;
 Lock m;
 int waiters = 0;
 public CV(Lock m) { // Constructor
 this.m = m;
 s = new Semaphore(); s.count = 0; s.limit = 1;
 x = new Semaphore(); x.count = 1; x.limit = 1;
 }
 public void Wait() { // Pre-condition: this thread holds “m”
 x.P(); {
 waiters++;
 } x.V();
 m.Release();
(1) —
 s.P();
 m.Acquire();
 }
 public void Signal() {
 x.P(); {
 if (waiters > 0) { waiters--; s.V(); }
 } x.V();
 }
 public void Broadcast() {
 x.P(); {
 while (waiters > 0) { waiters--; s.V(); }
 } x.V();
 }
}

This looks pretty good and we were happy with it for several weeks. But really, it rates
only as a “good try.” It took us a while to notice.

Fixing things up

The problem with the above implementation of condition variables again lies at position
(1), and there are actually two bugs there.

The first one we noticed is that there might be arbitrarily many threads suspended inside
c.Wait at (1). Although a call of c.Broadcast() would call s.V() the correct number of times,
the fact that it’s a binary semaphore means that s.count stops at 1. So all but one of the
threads at (1) would end up stranded, enqueued on s. We noticed this one day when Dave
Clark was visiting. The obvious fix is to declare that s is a general counting semaphore,
with unbounded s.count. That ensures the correct number of threads will drop through in
c.Wait.

 23

Unfortunately they might not be the correct threads. If 7 threads have called c.Wait and are
all at (1) when c.Broadcast is called, we will call s.V() 7 times and bump s.count to 7. If the
threads that are at (1) were to continue, all would be fine. But what if before that some
other thread were to call c.Wait()? Then that thread would decrement s.count and drop
through, and one of the 7 threads would end up enqueued on s. This most definitely
violates the specified semantics. Notice that c.Signal has the same problem.

So our next attempt was to use some form of handshake to arrange that the correct threads
drop through. We do this by introducing yet another semaphore h, a general counting
semaphore. This lets the signaller block until the appropriate number of threads have got
past the call of s.P() in Wait. The thread in c.Signal waits on h.P() until a thread has made a
matching call of h.V() inside c.Wait().

class CV {
 Semaphore s, x;
 Lock m;
 int waiters = 0;
 Semaphore h;
 public CV(Lock m) { // Constructor
 this.m = m;
 s = new Semaphore(); s.count = 0; s.limit = 999999;
 x = new Semaphore(); x.count = 1; x.limit = 1;
 h = new Semaphore(); h.count = 0; h.limit = 999999;
 }
 public void Wait() { // Pre-condition: this thread holds “m”
 x.P(); {
 waiters++;
 } x.V();
 m.Release();
(1) —
 s.P();
 h.V();
 m.Acquire();
 }
 public void Signal() {
 x.P(); {
 if (waiters > 0) { waiters--; s.V(); h.P(); }
 } x.V();
 }
 public void Broadcast() {
 x.P(); {
 for (int i = 0; i < waiters; i++) s.V();
 while (waiters > 0) { waiters--; h.P(); }
 } x.V();
 }
}

Now, by this time you’re probably thinking that this implementation is getting a bit
heavyweight. You’re probably right. But it’s worse than that.

24

I think that the above version of CV is formally correct, in that it implements the correct
semantics. However, it has a fundamental performance problem: there are necessarily two
context switches in each call of Signal, because the signalling thread must wait for the
signalled thread to call h.V() before the signalling thread can continue. We noticed this,
and worried about it. There are a lot of similar designs you can construct, but as far as we
could tell in 1984 all of them either give the wrong answer or have unacceptable
performance problems.

So eventually we gave up on the idea that we should build locks and condition variables
out of semaphores. Roy took the semantics of condition variables and implemented them
directly in the kernel. There it’s not difficult to do them: we built the atomicity of Wait as
part of the scheduler implementation, using the hardware test-and-set instructions to get
atomicity with spin-locks, and building the requisite queues through the thread control
blocks.

The sequel—NT and PThreads

Microsoft released Windows NT to the world in 1993. At SRC we observed that this was
a high quality kernel running on widely available hardware, and we decided it would be
good to port our Modula-3 development environment to NT. As part of this I volunteered
to implement Modula-3 threads on top of the Win32 API provided by NT. On the face of
it, this seemed like it should be easy. It turned out to be easy in the same way that building
condition variables out of semaphores was easy.

Even in 1993 the Win32 API provided lots of potentially useful features for concurrent
programming. There was a satisfactory design for multiple threads in an address space,
and a lot of synchronization primitives (events, mutexes, semaphores and critical
sections). Unfortunately, none of them was exactly what was needed for condition
variables. In particular, there was no operation that atomically released some object and
blocked on another one. I went through much the same sequence of bad solutions as we
went through in 1984 (memories are short). In this case, though, we couldn’t give up and
modify the kernel primitives. Fortunately, there is another solution, as follows.

You can indeed build condition variables out of semaphores, but the only way I know of
that is correct and adequately efficient is to use an explicit queue. If I have an object for
each thread, I can implement Wait by running a queue through the thread object, with the
head being in the condition variable object. Here’s an outline (to keep it simple, the
queue in this outline is LIFO; it should of course be roughly FIFO, allowing for thread
priorities).

class Thread {
 public static Semaphore x; // Global lock; initially x.count = 1; x.limit = 1
 public Thread next = null;
 public Semaphore s = new Semaphore(); // Initially s.count = 0; s.limit = 1;
 public static Thread Self() { … }
}

 25

class CV {
 Lock m;
 Thread waiters = null;
 public CV(Lock m) { // Constructor
 this.m = m;
 }

 public void Wait() { // Pre-condition: this thread holds “m”
 Thread self = Thread.Self();
 Thread.x.P(); {
 self.next = waiters;
 waiters = self;
 } Thread.x.V();
 m.Release();
 self.s.P();
(2) — m.Acquire();
 }
 public void Signal() {
 Thread.x.P(); {
 if (waiters != null) {
 waiters.s.V();
 waiters = waiters.next;
 }
 } Thread.x.V();
 }
 public void Broadcast() {
 Thread.x.P(); {
 while (waiters != null) {
 waiters.s.V();
 waiters = waiters.next;
 }
 } Thread.x.V();
 }
}

Mike Burrows encountered this problem one more time when implementing Posix
Threads (PThreads) for the DEC Tru64 operating system. Once again, the kernel
primitives didn’t include a suitable operation to let him build condition variables in an
obvious way, so once again he implemented them by running an explicit queue through
per-thread control blocks.

Optimising signal and broadcast

Since we’re considering this level of the threads implementation, I should point out one
last performance problem, and what to do about it. If Signal is called with the lock m held,
and if you’re running on a multi-processor, the newly awoken thread is quite likely to
start running immediately. This will cause it to block again a few instructions later at (2)
when it wants to lock m. If you want to avoid these extra reschedules, you need to arrange
to transfer the thread directly from the condition variable queue to the queue of threads

26

waiting for m. This is especially important in Java or C#, which both require that m is held
when calling Signal or Broadcast.

Conclusions

Well, history doesn’t really have conclusions. But it does have a tendency to repeat. It
will be nice if reading this anecdote prevents someone from repeating our mistakes,
though I wouldn’t bet on it.

Implementing condition variables out of a simple primitive like semaphores is
surprisingly tricky. The tricky part arises because of the binary atomic operation in Wait,
where the lock is released and the thread is enqueued on the condition variable. If you
don’t have a suitable binary operation available, and you attempt to construct one by
clever use of something like a semaphore, you’ll probably end up with an incorrect
implementation. You should either do the queuing yourself, or lobby your kernel
implementer to provide a suitable primitive.

Eager readers of the Win32 API will have noticed that NT version 4.0 and later provides
such a binary operation (SignalObjectAndWait). This is probably sufficient to do a simple
implementation of condition variables, but I’m not going to write it here. Using
SignalObjectAndWait does have the down-side that the object being released has to be an
NT kernel object, for example a kernel mutex or kernel semaphore. This makes it trickier
to use if you want to implement locks with the more efficient Win32 “critical section”
operations.

Finally, I should admit that this is an area where a small investment in formal methods
would help. With a formal specification of the underlying primitives and a formal
specification of the desired condition variable semantics, it should not be difficult to see at
least the correctness flaws in the buggy designs. Current formal methods would do less
well in detecting unacceptable performance penalties.

References

1. A. BIRRELL, J. GUTTAG, J. HORNING AND R. LEVIN, ‘Synchronization primitives for a
multiprocessor: a formal specification,’ In Proceedings of the 11th Symposium on
Operating System Principles (Nov. 1987), pp. 94-102.

2. E.W. DIJKSTRA, ‘The structure of the T.H.E. multiprogramming system,’ Comm. ACM
vol. 11, no. 5, May 1968, pp. 341-346.

3. G. GOSLING, B. JOY,G. STEELE, AND G. BRACHA, The Java Language Specification,
Second Edition, Sun Microsystems, 2000, pp. 429-447.

4. C.A.R. HOARE, ‘Monitors: an operating system structuring concept,’ Comm. ACM vol.
17, no. 10, Oct.1974, pp. 549-557.

5. J. SALTZER, Traffic control in a multiplexed computer system, PhD Thesis., Technical
Report MAC-TR-30, MIT, Cambridge, Mass, July 1966.

 27

Clumps, Clusters and Classification

Christopher M. Bishop
Microsoft Research Ltd, Cambridge, U.K.

Introduction

The clustering problem has been widely studied in many fields including information
retrieval, machine learning and statistics, and it remains an active area of research. Its goal
is to take a set of observations, or data points, and to partition them into groups such that,
in some appropriate sense, the similarity of points lying within a group is greater than the
similarity of points lying in different groups. The number of such groups is generally not
known in advance.

Clustering may be performed as a step towards data compression, as a pre-processing
stage for pattern recognition algorithms, to identify natural groupings in the data, and for
many other applications. Historically, the clustering problem was often referred to as
classification (Needham, 1965a). Today, in the machine learning community at least, the
term classification refers to the problem of assigning observations to one of a number of
predefined classes. This is typically achieved by constructing a model using a ‘training
set’ of examples each of which has been labelled (possibly by hand) with the desired class
or category.

In order to define an operational procedure for clustering it is necessary to quantify the
notion of similarity. It is clear that many definitions are possible, and that the choice will
necessarily be application dependent. In speech recognition for instance, training data
may be clustered based on Euclidean distance in the space of Mel Cepstral coefficients.
However, Euclidean distance need not always be an appropriate similarity metric, and
indeed even the triangle inequality may be inapplicable. Consider a problem involving
word clustering based on the frequency with which two words occur within 3 words of
each other in the Encyclopaedia Britannica. We might discover, for instance, that the
word “bank” is similar to “overdraft” and is also similar to “river,” even though “river”
and “overdraft” may be strongly dissimilar. For simplicity, however, we shall focus here
on the use of Euclidean distance as a measure of similarity.

The definition of a similarity metric alone, however, is insufficient to determine the
clusters within the data. We also need to prescribe how the similarity measure will be
used. For instance Needham (1965b) defines a B-clump as follows:

A set S is B-clump if no member has a resemblance greater than a threshold θ to
any non-member, and each member of S has a resemblance greater than θ to
some other member.

Many clustering algorithms aim to minimize a cost function which depends on the values
of the pairwise similarities of points in the data set, and the choice of this cost function

28

can have an important impact in determining the resulting set of clusters. However, other
approaches are also possible, for instance those based on geometrical properties of the
cluster boundaries.

An additional requirement is to be able to find numerical solutions within reasonable
computational time for the problems of interest, and this can easily rule out some
otherwise appealing strategies (Needham, 1965b). Even where it is computationally
feasible to minimize a cost function, it may be non-convex, and the solution found by
iterative strategies can depend upon the initialization due to the presence of multiple local
optima.

Example: K-means

One widely known clustering technique is the K-means algorithm, which aims to partition
the data set into K clusters each of which is summarized by a single prototype vector
which acts as a representative of all the data points assigned to that cluster. The prototype
vectors are first initialised (for instance by setting them equal to K randomly chosen
points from the data set), and then the algorithm proceeds iteratively, in which each
iteration comprises two successive phases. In the first phase the prototype vectors are held
fixed and each data point is assigned to the cluster whose prototype vector is closest. For
the second phase, the cluster assignments are fixed, and the prototype vectors are
recomputed to be the means of the corresponding clusters of data vectors. Note that the
algorithm must necessarily converge in a finite number of steps, since there is only a
finite number of possible partitions of the data. In fact the K-means algorithm is simply
minimizing a cost function given by the sum of squares of the Euclidean distances
between each data point and its corresponding prototype vector, in which the two phases
correspond to alternate minimization with respect to the class assignments and with
respect to the prototypes. An example of the K-means clustering algorithm applied to
some synthetic data in a two-dimensional space is shown in Figure 11.

We can illustrate the use of clustering in a simple data compression scenario by applying
the K-means algorithm to the compression of images, as shown in Figure 2.

From clusters to probabilities

One rather unsatisfying aspect of the K-means approach involves the ‘hard’ assignment of
data points to clusters. Consider two data points A and B, and suppose that, at some point
in the algorithm, A is much closer to prototype m than to any other, while B is only
slightly closer to prototype m than to the next nearest prototype. Nevertheless, both A and
B will be assigned exclusively to the prototype m. We might expect some benefit to be
had by taking account of the different degree of certainty associated with the assignments,
and indeed this proves to be the case as we shall see shortly. Furthermore, there are strong
reasons (Bernardo and Smith, 1994) to believe that probability theory provides the most
appropriate framework for quantifying such uncertainty.

1 The figures can be found at the end of paper.

 29

In fact the probabilistic version of K-means turns out to be another well known clustering
model called a Gaussian mixture. This is simply a model for the probability distribution of
the data comprising a linear superposition of Gaussian components, in which the
coefficients in the superposition (known as mixing coefficients) themselves have a
probabilistic interpretation. We can fit such a model to the data by optimizing the
parameters of the model (the centres, covariances and mixing coefficients) so as to
maximise the probability of the observed data. This approach is called maximum
likelihood.

While we could solve the maximum likelihood problem using standard non-linear
optimization strategies such as conjugate gradients, there exists a very elegant and general
approach to tackling such problems known as the EM (expectation-maximization)
algorithm. This is an iterative algorithm in which each step comprises two successive
phases. In the E phase, the parameters are held fixed and for each data point the posterior
probability of assigning that data point to each of the clusters is computed. These
probabilities (which are sometimes also called responsibilities since they reflect the
responsibility which each cluster takes for ‘explaining’ that data point) are non-negative
numbers which sum to one. They represent ‘soft’ cluster assignments, in contrast to the
hard assignments of K-means. In the M phase the probabilities are held fixed and the
parameters re-estimated. Each EM step is guaranteed to increase the likelihood function
(unless the model is already at a local maximum). Rather than giving the mathematical
formulation of this algorithm we provide a graphical illustration in Figure 3, using the
same data set as used in Figure 1.

If we consider a mixture of Gaussians whose covariance matrices are all given by ε times
the unit matrix, and we consider the limit ε � 0, then the EM algorithm becomes the K-
means algorithm (Bishop, 1995). In this limit, the means of the Gaussian components
become the prototype vectors, and the probabilities (which tend to 0 or 1) become the
hard cluster assignments. The E step then becomes the assignment phase while the M step
becomes the re-calculation step for the prototype vectors.

One of the many powerful aspects of the probabilistic approach is immediately apparent,
since we can easily obtain a whole raft of generalizations of K-means by considering for
example diagonal covariance matrices, common covariance matrices for all components,
mixtures of non-Gaussian distributions and so on, and then taking an appropriate
deterministic limit.

Model complexity

There remains the interesting problem of deciding on the appropriate number of clusters.
If our algorithm is based on the minimization of a cost function, we might naively think of
comparing a range of models having different numbers of clusters and then choosing the
model having the smallest (converged) value of the cost function. This approach,
however, suffers from a major flaw called over-fitting which favours overly complex
models. In K-means, for instance, this would lead us to choose a model with one
prototype vector per data point, since the cost function can then be reduced to zero. One
pragmatic approach is to measure the value of the cost function using new data which was
not used to fit the model (so called ‘hold out’ data). This approach avoids the over-fitting

30

problem but is wasteful of possibly expensive data, and in many cases can prove
computationally expensive.

How then should we decide on the number of clusters? One clue comes from the
predictive power of a proposed partitioning, as Needham (1965b) points out:

In a good classification, a lot follows from a statement of class membership, so
that in a particular application the predictive power of any classification that we
propose is a good test of its suitability.

This intuition can be formalised through the framework of lossless data compression.
Imagine each data point is expressed (for simplicity we consider the case of finite
precision) by a bit string of given length. Instead of transmitting the raw data we might
hope to achieve a lower data rate by first clustering the data set. Then we transmit the
(relatively small number of) prototype vectors followed, for each data point, by the
identity of the nearest prototype together with the error between the prototype and the
data point. It is not difficult to see that, if the data comprise tightly packed clusters, this
can lead to a significant reduction in the total number of bits which need to be transmitted.
Now if our model has many clusters then a lot of bits are needed to specify the cluster
identity, whereas if there are few clusters then the discrepancy between individual data
points and the cluster representatives can become large, again requiring many bits. We see
that there is a natural trade-off favouring models having some intermediate number of
clusters, and indeed choosing the model which leads to the shortest message length then
provides a principled approach to selecting the number of prototype vectors.

This minimum description length framework (Rissanen, 1978) in fact has a deep
relationship to the probabilistic viewpoint since the number of bits needed to code an
observation x under a distribution p(x) is related to -log p(x) (Shannon, 1948). The overall
message length corresponds to the marginal probability of the data given the model, in
which the model parameters (means, covariances and mixing coefficients in the case of a
mixture of Gaussians) have been integrated out with respect to appropriate prior
distributions. The optimal number of clusters, under the given probabilistic model, then
corresponds to the maximum of the marginal probability of the data.

It may not be immediately clear why the maximum of the marginal probability
corresponds to the required solution. For instance we might expect that the more complex
the model, in other words the greater the number of clusters, the better the model could fit
the data and hence the higher the probability of the data under the model. We can gain
some intuition as to why the marginal probability prefers a model of intermediate
complexity (having neither too few nor too many clusters) from the schematic illustration
in Figure 4.

Unfortunately the integrations required to evaluate the marginal probability are
analytically intractable. Although they could be computed numerically using Monte Carlo
techniques, in recent years powerful new deterministic approximation schemes based on
variational methods (Jordan et al., 1999) have been developed which provide a practical
alternative to numerical integration.

In fact we can take this approach a stage further and use variational methods to evaluate
the marginal probability as a function of the mixing coefficients and then optimize with

 31

respect to those coefficients (Corduneanu and Bishop, 2001). The result is that surplus
components in the mixture model are automatically pruned out by virtue of having their
mixing coefficients shrunk to zero. This leads to an algorithm for clustering which
simultaneously performs soft clustering of the data while determining the appropriate
number of clusters, and is illustrated in Figure 5.

It should be noted that this approach determines an optimal number of clusters from a data
representation perspective. However, in a particular application, for example information
retrieval, there will be some overall system performance measure for which the optimal
number of clusters may be different.

Current research directions

Clustering techniques such as mixtures of Gaussians make strong assumptions about the
cluster structure which may not always be appropriate. For this reason the last few years
have seen considerable interest in spectral methods based on the eigenspectrum of the
‘affinity’ matrix A of inter-point similarities. Needham (1965b) recognised this possibility
but considered it to be computationally impractical using the technology of the day
(which in part was still reliant on punched paper tape and cards).

There is clearly some relation between clumps and the eigenvectors of A […] In
matrices of the order likely to arise in classification problems, the solution of the
eigenproblem would almost be a research problem in itself.

Figure 6 shows an example of the spectral approach based on the recent algorithm of
Perona and Freeman (1998). Data clustering has come a long way in the last forty years.
Nevertheless, there are still many open problems, and insights developed in the 1960s
remain equally valid today.

References

[BERNARDO ET AL 94]
 BERNARDO, J.M. AND SMITH A.F.M., ‘Bayesian theory,’ Wiley, 1994.

[BISHOP 95]
 BISHOP, C.M., Neural networks for pattern recognition, Oxford University Press.

1995.

[CORDUNEAU 01]
 CORDUNEANU, A. AND C. M. BISHOP, C.M., ‘Variational bayesian model selection

for mixture distributions,’ In T. Richardson and T. Jaakkola (Eds), Proceedings of
the 8th International Conference on Artificial Intelligence and Statistics, 2001,
Morgan Kaufmann, pp27–34.

[JORDAN ET AL 99]
 JORDAN, M.I., Z. GHAHRAMANI, Z., JAAKKOLA, T.S. AND SAUL, L.K., ‘An

Introduction to Variational Methods for Graphical Models,’ In Learning in
Graphical Models, M. I. Jordan (Ed), MIT Press, 1999.

32

[NEEDHAM 65A]
 NEEDHAM, R.M., ‘Automatic classification: models and problems,’ In Mathematics

and Computer Science in Biology and Medicine, the Medical Research Council,
London, 1965, pp. 111–114.

[NEEDHAM 65B]
 NEEDHAM, R.M., ‘Applications of the theory of clumps, Mechanical Translations

vol. 8, 1965, pp.113–127.

[PERONA ET AL 98]
 PERONA. P. AND FREEMAN, W.T., ‘A factorization approach to grouping,’ In

Proceedings of the Fifth European Conference on Computer Vision, 1998, H.
Burkardt and B. Neumann (Eds.), pp. 655–670.

[RISSANEN 78]
 RISSANEN, J., ‘Modelling by shortest data description,’ Automatica, vol. 14, 1978,

pp. 465–471.

[SHANNON 48]
SHANNON, C., ‘A mathematical theory of communication,’ The Bell System Technical

Journal, vol. 27, 379–423 and 623–656.

 33

 (a) (b) (c)

 (d) (e) (f)

Figure 1. Illustration of the K-means clustering algorithm using a synthetic data set in
two dimensions for two clusters (K=2). (a) The data points shown in green together with
the initial prototype vectors shown as red and blue crosses. (b) In the first phase the data
points are assigned to the nearest cluster prototype, denoted by colouring the data points
blue or red. The magenta line indicates the ‘decision boundary’ between the two clusters.
(c) In the second phase the assignments are held fixed and the prototype vectors are re-
calculated by moving them to the mean of the corresponding cluster of data points. This
completes one iteration of the K-means algorithm. (d) In the next iteration the data points
are re-assigned to the clusters using the new decision boundary. (e) The new assignments
are then used to re-calculate the prototype vectors be setting them to the means of the
corresponding clusters. (f) The algorithm has now converged since re-calculation of the
data point assignments leaves them unchanged.

34

K = 2 K = 3

K = 10 Original image

Figure 2. Illustration of the K-means clustering algorithm applied to a simple image
compression problem. Here each pixel of an image is treated as a vector in the 3-
dimensional space of red, green and blue intensities. The set of pixel vectors is then
clustered using the K-means algorithm for various values of K. In each case we illustrate
the result by replacing the actual pixel intensity vector by the prototype vector of the
cluster to which it is assigned (a process known as vector quantization).

 35

 (a) (b) (c)

 (d) (e) (f)

Figure 3. Illustration of the EM algorithm for fitting a mixture of Gaussians, applied to
the same data set as used in Figure 1. (a) The data points are shown in green, and the red
and blue circles represent the initial 1-standard deviation contours of the two Gaussian
components. (b) After the first E step each data point has been assigned a probability of
belonging to each of the red and blue components. This is illustrated graphically by
colouring each data point with a proportion of blue ink corresponding to the probability
associated with the blue cluster, and the complementary proportion of red ink
corresponding to the probability associated with the red cluster (where the two
probabilities must sum to one). Thus a data point which is purely red would have
probability 1 of belonging to the red cluster and probability 0 of belonging to the blue
cluster, whereas purple data points have ambiguous cluster membership. (c) In the M step
the parameters (means and covariances) of the Gaussian components are re-calculated,
which simply involves fitting each component to the mean and covariance of the
corresponding distribution of coloured ink. The mixing coefficients (not shown) are also
re-calculated in the M step. (d) In the next E step the Gaussian components are held fixed
and the probabilities are updated. (e) In the next M step the probabilities are fixed and
the Gaussian component parameters updated. (f) This shows the situation after 15
complete iterations of the EM algorithm, with the model now close to convergence.

36

Figure 4. An illustration of why the marginal probability can be largest for models of
intermediate complexity. The graph shows schematically the marginal probability p(D|K)
of the data given some number K of components in the mixture model plotted against the
space of all possible data sets D. Here we imagine the data sets have been ordered so that
simpler data sets (having fewer clusters) are to the left of the horizontal axis while more
complex data sets are to the right. The marginal probability distribution for a ‘mixture’
model comprising one component is shown schematically in red. This only assigns
significant probability to simple data sets. Conversely a more complex model having three
components has the marginal probability distribution shown in purple. This is able to
provide a good fit to data sets comprising one, two or three clusters. The distribution in
blue represents a model of intermediate complexity having two components. Since these
distributions are normalized, the broader the distribution the smaller is its typical value.
If we observe a particular data set D0 we see that the highest marginal probability (the
blue dot) arises from the model having intermediate complexity, corresponding to two
clusters.

 37

(a) (b)

(c) (d)

Figure 5. Illustration of the use of variational methods to fit a mixture of Gaussians in
which the number of components is determined automatically. The model is initialized
using six components with means given by a random subset of the data points and
covariances set to a large multiple of the unit matrix. (a) The ellipses show the 1 standard
deviation contours for each of the six components after 3 iterations. (b) After 11 iterations
the different components are starting to take responsibility for different regions of the
data space. (c) After 20 iterations two of the components have had their mixing
coefficients driven to zero and no longer play a role. (d) After 100 iterations only three
components remain and the algorithm has converged.

38

(a) (b) (c)

Figure 6. Example of the spectral approach to clustering, for the same data set used in
Figures 1 and 3 above. (a) Plot of the affinity matrix A whose elements are defined by Aij
= exp(-d2

ij/2σ2) where dij is the distance between points i and j, and σ is a length scale..
(b) Plot of the components of the first eigenvector of the affinity matrix corresponding to
each of the 40 points in the data set. The horizontal line shows the threshold used to
partition the data into two clusters. (c) Assignments of data points to the two clusters, in
which points above the threshold in (b) have been coloured blue, and those below have
been coloured red.

 39

How to Implement Unnecessary Mutexes

Mike Burrows
Microsoft Research, Silicon Valley, Californa, USA.

Introduction

In languages like Modula, Java, and C#, it is common to write reusable modules. In order
to allow for multithreading, programmers typically protect the invariants of their modules
with mutexes (i.e., binary semaphores). These are used via language constructs like
synchronized in Java, or lock in C#.

Often, only one thread touches a particular object. An example is Java's StringBuffer class.
Typically, a thread creates a StringBuffer, uses it to create a new String, and then discards
the StringBuffer. All of the methods of StringBuffer acquire a mutex in order to allow
potential concurrent use from multiple threads, even though this almost never occurs.

When a mutex is used by only one thread, the mutex is unnecessary and could be
removed. Removal is desirable, because mutex operations typically involve hardware-
atomic instructions that are considerably more expensive than normal memory accesses.
We measured mutex acquisition at between 50 and 70 cycles on various Alpha systems;
whereas incrementing a memory location only takes four or five cycles. As a result,
applications can waste several percent of their CPU time on unnecessary synchronization.
However, one would not wish to allow programmers to specify whether they need to use
mutexes, because they may make mistakes, and even correct decisions may become
wrong in the future.

Various people have investigated static analysis techniques to identify unnecessary
mutexes and to translate compiled modules automatically so that unnecessary mutexes are
omitted [1]. An annoyance here is that the analysis can take some time, and is necessarily
conservative.

Hardware-atomic instructions have been avoided on uniprocessors by preventing context
switches during code sequences that should be atomic [2, 3]. But these techniques do not
help with multiprocessors, and require support from the scheduler.

It is also possible to enable hardware-atomic sequences only when the second thread is
created. The strategy fails in complex runtime systems, such as Java’s, which create
multiple threads in every application.

Goal

Our goal is to optimize mutexes for the case where they are not needed. That is, we
optimize for mutexes that are used by only one thread of control, yet we hope not to lose
significant performance when multiple threads access the mutex. It is a requirement that
the mutexes must function correctly with multiple threads, that the technique work on
both uniprocessors and multiprocessors, and that no unusual operating system support be
needed. We assume that loads and stores of individual words are atomic.

40

The technique

This section initially describes the technique, which seems slow at first sight.
Optimizations and refinements follow in the later paragraphs. In the description, we
assume that mutexes normally occupy a machine word, and are re-entrant, so each mutex
contains a lock nesting count. Re-entrant mutexes are odious, but are now almost
universal; they allow locked regions to be nested, and hence make it easier for the writer
of an object method to call another method without deadlocking, and without maintaining
that pesky monitor invariant.

The representation of each mutex M is modified to contain the thread identifier M.assoc of
some thread that has been associated with the mutex. The associated thread is typically
the last thread to have used the mutex. Initially, M.assoc is either null or identifies the
thread that created the mutex.

A thread C wishing to use the mutex proceeds as follows:
T loads the word for M
T checks whether (T == M.assoc)
If so, T updates the lock nesting count and stores the mutex back into its word.
Otherwise, T takes the slow path.

This is the fast acquire/release sequence. Notice that the fast path requires no memory
barriers, and no hardware-atomic operations.

When T is using the mutex, any other thread T' will fail to verify that (T' == M.assoc). In
this case, T' must obtain exclusive access to the mutex word. This is done at great cost, but
later refinements will guarantee that it is done infrequently.

T' must stop two classes of threads from touching M:
a) the associated thread, M.assoc
b) all other threads

We deal with case (b) first. With each mutex M, there is a supervisor mutex S(M) that
operates on normal principles—that is, it does not use the present technique. There could
be one supervisor mutex for all mutexes in the address space, or one supervisor mutex for
each mutex, or anything in between.

T' acquires the supervisor mutex S(M). Since all threads operating on M other than M.assoc
will attempt to acquire S(M), we can assume that once T' has acquired S(M), only T' and
M.assoc will operate on M.

T' now suspends the thread M.assoc (assuming M.assoc is non-null). The thread_suspend
operation is required by many garbage collectors, so no operating system changes should
be required provided the suspend operation is reference counted. T' must now verify that
the thread M.assoc is not in a fast acquire/release sequence on M, and if it is, it must
dislodge M.assoc. There are at least three ways to determine whether M.assoc is in a fast
acquire/release sequence:

1. If the sequence cannot be inlined, T' can compare the program counter of M.assoc
with the known address of the acquire/release sequence(s).

2. T' can look at the pattern of instructions around the M.assoc program counter to
determine whether it could possibly be an acquire/release sequence.

 41

3. The acquire/release sequence can be augmented to force each thread to set a per-
thread variable on entry to the sequence, and to reset it on leaving the sequence. T'
may then check this variable. This may slow down the acquire/release sequence
somewhat, but works even when a thread’s program counter cannot be obtained by
another thread.

All of these techniques have been tried and can be made to work.

In addition, T' may be able to determine that M.assoc is not operating on M by checking
that the address of M address is not in the appropriate register(s).

There is an extra complication on systems that allow asynchronous user-space trap
handlers (e.g. UNIX signal handlers, or VMS ASTs). The handler return sequence (the
“trampoline code”) must test whether it is about to return into the middle of an
acquire/release sequence.

If M.assoc is in an acquire/release sequence for M, it must be dislodged. This can be done
in any of three ways:

1. T' can resume M.assoc and suspend it anew, then test again to see whether it is in a
fast acquire/release sequence.

2. If the sequence is restartable, T' can move the program counter of M.assoc back to
the start of the sequence so that when awoken, M.assoc will re-execute the
sequence.

3. T' can interpret the state of M.assoc forward until it is out of the sequence. This
requires a machine code interpreter.

All of these techniques have been tried and can be made to work.

T' must now check M once more to ensure that the value of M.assoc did not change while it
was in the process of acquiring S(M) and suspending M.assoc. If M.assoc changed, T'
releases S(M), resumes the thread it stopped, and tries again.

If M.assoc is unchanged, T' now has exclusive access to M. It may now do one of two
things:

1. set M.assoc to T', so that T' becomes the associated thread, or
2. set a bit in M indicating that all further operations on M must use hardware-atomic

sequences.
In case (2), the format of the mutex word may be changed arbitrarily, provided that one
bit allows the associated thread format to be distinguished from the hardware-atomic
format. Thus, if the technique described here is merged with an existing mutex
implementation, only one spare bit need be found in the existing mutex word. The fast
acquire/release sequence must be modified to test this bit. The atomicity of loads and
stores guarantees that other threads will see either that the bit has been set, or that it has
not been set and M.assoc is not the thread’s identifier. The memory barrier in
thread_resume ensures that a thread that was once the associated thread will no longer
observe its thread ID in M.assoc.

Different designs may choose different approaches for choosing between (1) and (2). A
simple implementation may choose to revert to hardware-atomic operations if M.assoc is
non-null—this works reasonably well. A slightly more sophisticated implementation can
use a small (8 or 9 bit) saturating counter M.counter in the mutex. Each time the associated
thread acquires M on the fast path, it increments M.counter. Each time a thread suspends

42

the associated thread, it decrements M.counter by some constant K. If M.counter
underflows, T' chooses (ii), and otherwise chooses (i). K is calculated according to the
speeds of the various operations so that M.counter will underflow when the optimization is
not paying off. If Tfast is the time taken to acquire and release the mutex by the fast path,
Tatomic is the time taken to acquire and release the mutex using hardware-atomic
instruction, and Tsuspend is the time taken to suspend and resume the associated thread, we
want the time for K fast operations plus one suspend/resume to equal the time for K
operations using hardware-atomic sequences:
 K *Tfast + Tsuspend = K *Tatomic,

so:
 K = Tsuspend / (Tatomic – Tfast). Typically Tatomic is much bigger than Tfast, so
 K = Tsuspend / Tatomic.

We used K=200 in one implementation and K=� in another. (K=� means convert the
mutex as soon as the second thread touches it.)

If K is chosen well, mutexes that do not benefit from the optimization will be converted
quickly to use the hardware-atomic sequences, and performance should not suffer. One
could conceive of applications that create new mutexes, use them just long enough to
force them to be converted and then discard them, causing the application to be slowed
down. We have found no such applications among the Java spec benchmarks and C server
applications we tried. If this were a serious concern, one could arrange to detect this
dynamically. When it occurs, new mutexes may be created so that they always use
hardware-atomic instructions.

One could imagine converting mutexes back depending on the usage pattern, but we have
not implemented this, and it seems unlikely to be of practical value.

Memory barriers are not needed in the fast-path sequences because the operating system
thread suspend/resume must perform the necessary memory barriers when communicating
with whatever processor is running the target thread.

 Reducing the cost of finding a thread’s identifier

In the preceding section, each thread operating on mutex M is required to test whether the
thread identifier in the mutex, M.assoc, is equal to the thread’s own identifier. In one of
our implementations, where we controlled the code generator and had a large number of
integer registers, we were able to store the threads identifier in a general purpose register.
This makes the test quite cheap.

When the code generator cannot be changed, or when the processor has too few integer
registers, it may take a significant number of cycles to obtain the thread ID. In one of our
implementations, it required a seven cycle operation, which significantly exceeded the
time for the rest of the fast acquire/release sequence.

In order to optimize this case, we chose to store not the thread ID, but the high order bits
of the stack pointer. When these match the current thread’s stack pointer, we can be sure
that it is the associated thread. When the bits do not match, the thread reads its stack
bounds and checks them. If the value in the mutex is within bounds, the value can be
updated to match the current stack pointer value. We found that this optimization worked
well, and produced a fast-path sequence of 5 cycles.

 43

In a system with a page size of 2P bytes, and where at least one guard page separates each
pair of stacks, two threads will differ in the high-order bits of their stacks even if the
bottom (P+1) bits are ignored. Thus, these (P+1) bits can be used for M.counter, a bit to
indicate which representation is in use, and two or three bits for a small lock nesting
count. In the rare case where the lock nesting count overflows, the mutex can be
converted to the hardware-atomic style.

A disadvantage of using stack pointers to identify threads is that they must be mapped
back to thread identifiers in order to allow the corresponding thread to be suspended or
resumed. The requirement is for a mapping from a stack page to a thread identifier, which
is best done with a balanced binary tree or a skiplist.

We implemented this scheme in a system where the client could choose where to put each
thread’s stack. In this case, we were forced to turn off the optimization if the client chose
to use stacks not separated by at least one page.

Results

We found that no real applications were measurably slowed down by using this technique.
Many applications show no change in performance—this is because most applications are
not limited by the speed at which mutex acquisition and release occur. Some applications
show a few percent speedup, and a few applications show more significant speedups, as
high as around 10%. Contrived examples can show speedups of a factor of three.

Almost all of the gain is obtained when K is set to infinity. That is, by choosing to convert
the mutex to use hardware-atomic instructions as soon as it is touched by the second
thread. However, we did observe some interesting beneficial effects with K=200. In
particular, we had assumed that a mutex with extremely high contention would not benefit
from this technique and would quickly be converted to use the previous scheme.
However, if the contention is high enough, this does not happen. Consider the code:

for (;;) {
 acquire (M);
 x++;
 release (M);
}

If multiple threads are running this code on a uniprocessor, the thread that has the current
time slice will saturate M.counter. At the next context switch, M.counter will be
decremented by K once, but this will not cause it to underflow. The thread running in the
next time slice will then saturate M.counter once more. This is of course a contrived
example, but in cases where locks protect fast operations, a similar effect may occur in
real applications.

We felt sure that the effect described in the previous paragraph could not pay off on a
multiprocessor. But on small-scale multiprocessors we found that the (contrived) loop
above did benefit from the technique. We found that threads took so long to wake up (that
is, the scheduler path was so long), that the associated thread had time to saturate the
counter before the previous associated thread could suspend it. We were unable to
confirm that this occurred in any real application.

44

Summary

We have constructed a mutex that is optimized for the case where only one thread uses it.
We achieved this by allowing only a designated thread to access the mutex until another
thread displaces it through the use of thread suspend and resume operations. This
technique provides a modest, but possibly valuable, gain in performance in situations
where code is written to work with multiple threads, but often is used by just one. It also
provides a gratifying increase in complexity that will entertain programmers for many
happy hours.

Acknowledgements

This work was done by Mike Burrows, Sanjay Ghemawat, and Mark Vandevoorde at
Compaq SRC. The technique is now used in Tru64 Alpha systems.

References

1. ALDRICH, J., CHAMBERS, C., SIRER, E.G. AND EGGERS, S., ‘Eliminating unnecessary
synchronization from Java programs.’ In Proc. of the Static Analyses Symposium,
pp. 19-38, Venice, Italy, September 1999.

2. MOSS, J. AND KOHLER, W., ‘Concurrency Features for the Trellis/Owl Language,’ In
European conference on object-oriented programming, June 1987, pp. 171-180.
Springer Verlag Lecture notes in computer science, number 276.

3. BERSHAD, B.N., REDELL, D.D. AND ELLIS, J.R., ‘Fast mutual exclusion for
uniprocessors,’ 5th Symposium on Architectural Support for Programming Languages
and Operating Systems (ASPLOS V), October 1992.

 45

Bioware Languages

Luca Cardelli
Microsoft Research Ltd, Cambridge England

Reflecting joint work with Ehud Shapiro and Aviv Regev,
Weizmann Institute of Science.

Preface

I have not operated, technically, in the research areas of direct interest to Roger
Needham, and therefore not with him. However, I have enjoyed at least one of the
research environments that he was instrumental in setting up and running. I will try here
to give a (possibly extreme) example of the kind of free research spirit that he has
encouraged. Incidentally, a basic technical notion in this note is the ‘pure names’ that
Roger pioneered in a slightly different context [4].

Introduction

This work can be seen as example of an emerging class of languages for describing, and
possibly programming, biological systems (bioware). A living cell is, to a rather
surprising extent, an information processing device [1]. One can envision describing
precisely such complex biological systems, and then driving simulation and analysis from
such descriptions. One can even imagine one day “compiling” bioware languages into real
biological systems, just like silicon chips are today compiled from hardware languages.

Biological systems, far from being unstructured chemical soups, employ membranes to
organize and isolate chemical reactions and their products. Hierarchies of membranes are
a necessary component of any description of such system. The π-calculus [3] has been
used to model chemical reactions [6]. As an extension [7], the ambient calculus [2], which
is based on a dynamic hierarchy of containers, can be used to model biological
interactions. (Stochastic aspects can be handled, but are not discussed here [5].)

We represent biological systems with a graphical (rather than textual) notation; this is
somewhat natural because of the aspect and hierarchical structure of many such systems.
It is also possible to provide a formal textual notation and related semantics, using
standard techniques from process calculi. Moreover, it is possible to provide a formal
graphical notation and related semantics, as a special case of Milner’s BiGraphs. But here
we just present a (formalizable) graphical notation: the graphical language of biographs.

Biographs

A biograph represents a biological system via three primitive constructions and eight
basic reactions. (The number of reactions could be reduced, but it then becomes harder to
program ‘instantaneous’ reactions.)

Membranes. For our purposes, a membrane is simply a boundary that confines reactions
to its interior, unless these are reactions that explicitly interact with a membrane as

46

discussed below. Graphically, a membrane may contain reagents or other membranes.
Membranes are nameless, but it useful to attach comments to them (e.g. “cell membrane”
or “virus capsid”).

Reagents. A reagent represents a biological (or, for the matter, chemical) entity that is
ready to interact with some other biological entity. Reagents typically represent protein
complexes that are ready to bind to each other and to transform each other as a result.
Rather than considering the countless protein structures that exists in reality, we take a
fixed set of primitive reagents, enumerated later, that can be used to express a large class
of interactions (the formalism is, in fact, Turing-complete). Each reagent is parameterized
by a number of binding sites. These binding sites are named by pure names [4] n1 … nk,
that is, names that have no structure other than their identity. Graphically, a reagent
encloses the future product of its activation inside a dotted line.

Binding. The binding of, e.g., a protein to a ligand, can be represented as a binding site (a
pure name) n that is privately shared by two reagents. A binding box represents a region
where a pure name n is privately shared. Unlike membranes, which have physical
existence, binding boxes are more of a bookkeeping device. A binding box for n can
graphically expand, contract, and cross other membranes and binding boxes, as long as
this process does not lead to revealing n or to confusing it with some other n.

Named Subsystems. This is meta-notation for subsystems, used when expressing general
interaction rules (named subsystems do not occur in specific system instances). The
notation below represents a subsystem (the dashed boundary) that is named P so we can
refer to it. Sometimes we need to apply a name replacement {m/n} (replacing m with n) to
a still undetermined subsystem; the name replacement then sits on the boundary, until
later when the subsystem is determined and the replacement can be applied.

Membrane reactions

We start by describing reagents that affect membranes. These reagents typically represent
protein complexes that sit on or across a membrane, and cause membranes to interact with

mmeemmbbrraannee

rreeaaggeenntt nn11 …… nnkk

((nn))

P
{{mm//nn}}

 47

each other. Graphically, these reagents are drawn inside the membrane that they actually
sit on or across, so that they are transported along with the membrane.

On the left of the reaction arrow we have the situation before the interaction, and on the
right we have the situation after the interaction.

The first reaction describes a membrane that enters another contiguous membrane,
through the interaction of two specific reagents, enter and accept, that have a common
binding site n. Here P and Q represent the residuals of the interacting reagents (which
could be void), while R and S represent whatever else is initially contained in the
membranes. The following two reactions describe the effects of reagents that cause
membranes to exit each other (exit and expel) or to merge (merge+ and merge-), each
based on a common interaction site n.

Site reactions

The next group of reactions do not affect membranes (although membranes may be
involved), but only affect reagents. In these reactions, reagents interact on a binding site
n, and can also exchange tokens m. These tokens can represent further binding sites, or
other entities that get passed along in reactions (e.g., electrons or small molecules).

PP
eenntteerr nn

RR

QQ
aacccceepptt nn

SS

PP

RR

QQ

SS

→→ EEnntteerr

PP
eexxiitt nn

RR

QQ
eexxppeell nn

SS

→→ PP

RR

QQ

SS

EExxiitt

→→ PP

RR

QQ

SS

PP
mmeerrggee++ nn

RR

QQ
mmeerrggee-- nn

SS

MMeerrggee

48

The first site reaction represents a pure chemical reaction: two molecules interact and
produce two other molecules, within the confines of some common solution (the two
molecules must be inside the same membrane, if any). The two complementary molecules
are indicated by n! and n?. The common name n means that they can interact, and the !,?
pair determines the direction of the interaction. In full, n!{m}(P) means that this is a
molecule that, when interacting, provides a token m to the other molecule, and transforms
itself into P. Instead, n?{p}(Q) means that this other molecule receives some token m, and
transforms itself into Q{m/p}. Here p is really a formal input parameter, and Q{m/p} is Q
where the formal p is replaced by the actual m.

The next two reactions are similar, but the interaction between reagents happens across a
membrane. The exchanged token m flows either down through a membrane (indicated by
‘_’) or up through a membrane (indicated by ‘^’).

Finally, we have a reaction where the token m flows through two sibling membranes
(indicated by ‘#’).

QQ
nn??{{pp}}

PP
nn!!{{mm}}

PP →→ LLooccaall
QQ

{{mm//pp}}

QQ
nn^̂??{{pp}}

PP
nn__!!{{mm}}

→→
SS

QQ
{{mm//pp}}

PP

SS

TToo cchhiilldd

QQ
nn__??{{pp}}

PP
nn^̂!!{{mm}}

→→
RR

QQ
{{mm//pp}}

PP

RR

TToo ppaarreenntt

 49

Repeat reaction and some abbreviations

A “repeat” reagent creates new copies of a given reagent or subsystem. This models,
abstractly, unbounded resources and processes.

Moreover, we use some graphical abbreviations, to simplify drawings:

Example: symporter

A symporter is a molecular channel. It binds two specific proteins, here called protein-P
and protein-Q, from outside the cell in either order, and then simultaneously transports
them inside the cell.

The symporter subsystem can repeat its behavior indefinitely (given sufficient energy,
which is not modeled), and persists within the cell. It is first written separately, and then

rreeaaggeenntt11

rreeaaggeenntt22

PP

rreeaaggeenntt11
rreeaaggeenntt22

PP ==

((nn))((mm))
((nn))

((mm))

== PP
PP

QQ
nn##??{{pp}}

PP
nn##!!{{mm}}

→→
SS RR

PP

SS RR

TToo ssiibblliinngg
QQ

{{mm//pp}}

PP
rreeppeeaatt

→→ PP RReeppeeaatt PP
rreeppeeaatt

50

indicated by name in the larger system below. Two interaction sites, bind-P and bind-Q,
represent the binding sites of the symporter with any instance of protein-P and protein-Q
respectively. Each repeated interactions uses a fresh pair of distinct tokens p,q, which
represent bindings with specific protein instances. After an instance of a protein is bound,
nothing can then interfere with that binding because nothing else knows the freshly
created pure names p,q. We write a symporter thus:

The whole system then looks like the picture below. Initially a cell contains a symporter
and whatever else, and is contiguous (that is, within the same surrounding membrane, if
any) with instances of protein-P and protein-Q. Note that the proteins are themselves
modeled as membranes: this is common because protein complexes can have a
complicated structure.

After a sequence of reactions, during which the proteins are bound in either order, the
proteins are both transported inside the cell membrane. Each reaction in the sequence is
an instance of one of the reactions explained previously.

Although this protocol works under ‘ordinary conditions’, it is not perfect, and one can
study ways in which it can be subverted. In fact, this is an important reason for modeling
biological systems in all their complexity: many drugs and natural defences work by
subverting natural pathways. We need to model biological systems in order to understand
them, but also to study how they can or cannot be tampered with at any level of
abstraction.

rreeppeeaatt

bbiinndd--PP##!!{{pp}}
bbiinndd--QQ##!!{{qq}}
aacccceepptt pp
aacccceepptt qq

((pp))((qq))

SSyymmppoorrtteerr ==

pprrootteeiinn--PP

bbiinndd--PP##??{{rr}}
eenntteerr rr

PP--bbeehhaavviioorr

pprrootteeiinn--QQ

bbiinndd--QQ##??{{ss}}
eenntteerr ss

QQ--bbeehhaavviioorr

→→**

CCeellll

CCeellll--bbeehhaavviioorr

SSyymmppoorrtteerr

pprrootteeiinn--PP

PP--bbeehhaavviioorr

pprrootteeiinn--QQ

QQ--bbeehhaavviioorr

CCeellll

CCeellll--bbeehhaavviioorr

SSyymmppoorrtteerr

 51

References

1. ALBERTS, B., BRAY, D., LEWIS, J., RAFF, M., ROBERTS, K., WATSON, J.D., Molecular
Biology of the Cell. Garland Publishing, 1994.

2. CARDELLI, L., GORDON, A.D., ‘Mobile Ambients,’ Theoretical Computer Science,
vol. 240/1, June 2000, pp. 177-213.

3. MILNER, R. Communicating and Mobile Systems: the Pi-Calculus, Cambridge
University Press, 1999.

4. NEEDHAM. R.M., ‘Names’, In S. MULLENDER, ed., Distributed Systems, pp 89-101.
Addison-Wesley, 1989.

5. PRIAMI, C., REGEV, A., SILVERMAN, W., AND SHAPIRO, E., ‘Application of stochastic
process algebras to bioinformatics of molecular processes,’ Information Processing
Letters. 80, 2001, pp. 25-31.

6. REGEV, A., SILVERMAN, W., AND SHAPIRO, E. ‘Representation and simulation of
biochemical processes using the pi-calculus process algebra,’ Proceedings of the
Pacific Symposium of Biocomputing 2001 (PSB2001), vol. 6, pp.459-470.

7. REGEV, A., Ph.D. Thesis, to appear.

52

 53

The Economics of Open Systems

David D. Clark
M.I.T. Laboratory for Computer Science

Cambridge, Massachusetts, USA

Introduction

Computer system designers have a set of principles and techniques they use in their trade:
modularity and interfaces, layering and dependency relationships. Breaking a large
system into parts so that they can be separately designed and built is among the most
basic of techniques to tame size and complexity.

However, systems are not just designed and built, they are operated in the real world, and
modularity matters here too. This paper is concerned with distributed systems that are
operated by multiple commercial providers in a profit-seeking context, such as the
telephone system and more recently the Internet. The central observation of this paper is
that in systems such as the Internet, modularity and interfaces shape not only the technical
design but the industry structure, and system designers would do well to consider the
desirability and viability of the industry structure their modularity induces.

The obvious starting point

How can I make money? That is the question that almost everyone asks when they think
about a commercial undertaking. But the system designer should ask a more sophisticated
set of questions. For a system to work, all the parts have to fit together, so the questions
have to address all the parts:

• What are the industry sectors defined by the interfaces?

• How does each of them make money?

• What sectors may not make (enough) money?

• Does the system fit together economically?

This is not a design space most technical engineers are familiar with.

Some examples

The industry structure of the Internet offers many illustrations of interfaces and industry
structure. One of the earliest examples is the interface between routers–the protocols that
exchange control and routing information. The creators of the first routers argued that
there was so much complexity and uncertainty in these router interfaces that it would not
be practical to standardize them. They needed to be kept proprietary, so that they could be
upgraded or replaced quickly. But this approach would have prevented the emergence of a
competitive market in router vendors, and the Internet designers strongly resisted the call
to leave those interfaces as closed, engineering interfaces. Without these interfaces,
companies like Cisco could never have come into existence.

54

Cisco, of course, is an equipment manufacturer, not a service provider. The open
interfaces that permit routers from different companies to interoperate also permit
different service providers (ISPs) to interoperate. (The business arrangement behind the
standards-based connection is another matter, of course.) We have now lived with
commercial ISPs for almost a decade, and the industry structure seems natural. It is
important to remember that there is no fundamental reason why it had to come out the
way it did: the number of and interrelation between the providers, and the degree of
vertical integration in the marketplace, is a result of the particular protocols and
interfaces. For example, a redesign of the Internet routing protocols was undertaken in the
1980s specifically to allow multiple competitive wide-area ISPs, as opposed to the prior
structure of NSFNet as the single wide-area service provider.

There are many other examples that can be found in the Internet. Internet routers both
forward packets and compute routes. The interface between these two functions is not
standardized, but is left as a proprietary interface, almost always an internal software
interface inside the router. So there is no separate set of companies that sell systems to
compute routes. One can debate if this alternative structure would have advantages, but it
cannot come into existence because the interfaces don’t allow it.

Consequences of economic modularity

The design rules for breaking a system into parts for technical reasons are fairly well
known. It is recognized that getting the modularity of a system right is a hard design
problem that requires skill and judgment. Good modularity is subjective, and a bit of an
art. In a system where the modules represent distinct business entities, the design
questions are expanded. It is still the case that the answers (and the resulting modularity)
will be subjective.

The first question is: “How will the business entity representing each module make
money?” Again, the communications industry provides a useful example. In the telephone
system, there is no business interface between the part of the telephone company that
provides the actual wires, and the part of the company that provides the telephone
“service”1. The money raised from selling the service covered the cost of the wires, and
this value transfer was inside the business module represented by the telephone company.
In the Internet, there is an open interface between the basic network service (provided by
the Internet protocol with its packet transport capability) and the higher level services
such as email, the Web, content in general, and so on. This open interface makes it easy
(indeed, it was the goal) for different players to provide the basic Internet service and the
higher level services on top. So each sector must separately have a strategy for making
money.

In this structure, how do the ISPs make money? ISPs charge fees to the parties that attach
to them, roughly in proportion to the size of the access link they use. What ISPs cannot do
today is charge more for carrying “more valuable bits.” Competition drives prices toward
marginal cost, and squeezes out the options for value pricing. Some services, like

1. An interesting topic not explored in this paper is that recent regulatory tactics try to create such an
interface.

 55

television, require orders of magnitude more bits than others, like Internet telephony.
Looking at the typical monthly consumer expenditure for television and telephone, even a
rough calculation suggests that to capture a equivalent share of what the consumer is
willing to pay, a provider must charge a lot more for a “telephone call” bit than a
“television show” bit. This sort of value pricing does not work in the Internet today. ISPs
are being forced into being commodity carriers of undifferentiated bits.

There is an analogy to the well know history of the railroads, which used to charge more
to haul a ton of valuable product than a ton of rock. But when trucking and other forms of
competition entered the market, and skimmed off these valuable products, the railroads
were left with only the bulk, low value cargo unless they converted to a fee based only by
weight. Economic disruption followed. And that is what has happened with the Internet.
The “old” telephone companies were vertically integrated and provided both the wires
and the service. The revenue structure did not require them to “price the bits,” but only
the “telephone service.” As soon as an open interface was inserted into the industry
structure, those who looked ahead and saw the consequences realized that anyone who
had to “charge for the bits” as the only way to make money would make no money from
telephony, because there were so few bits to carry it compared to other services.

The fact that there are physical facilities at the base of the Internet–companies that
actually install and operate fibers, wires, and so on, signals another economic reality.
Owners of facilities are in a “sunk cost” industry. They spend money up front to install
these communication links, and then try to recover these costs from subsequent utilization
or resale. Industries with major sunk costs have to deal with the economic reality that
competition tends to drive prices toward marginal or incremental cost of providing
service, and prices based on incremental costs may not recover the sunk capital initially
invested. If industries with major sunk costs become highly competitive, there is a risk
that all the players go out of business. (In practical terms, what happens is that the weaker
ones go out of business or are acquired by the stronger players, until the competition is
not so demanding.)

So the open interface in the Internet architecture implies two painful facts for the ISPs and
the facilities providers on which they depend (if ISPs don’t own their own facilities).
First, the open interface has deprived them of an important opportunity for value pricing,
and second, it has imposed competition on a sector with major sunk costs. Both of these
signal economic stress. While it is not reasonable to expect an observer in the mid-90s to
predict the full trajectory of the industry, with over-exuberant investment in facilities,
followed by bankruptcy, an oversupply of long distance fiber that owners cannot even
afford to light, components of old-line telephone companies fighting for their economic
life, and major industry consolidation raising anti-trust concerns, all of these
consequences are consistent with the economic constraints imposed by slicing a
competitive open interface through the middle of what had been a stable, vertically
integrated industry.

The withering of openness

The pressures of commodity bit carriage and covering sunk costs may in fact drive toward
industry consolidation at the lower levels of the Internet industry–the ISPs and the
facilities providers that support them. What might this imply for the Internet interfaces?

56

The Internet interface, at the present time, seems to remain open. But if one ISP achieved
significant market power, it might be to its advantage to offer a “modified” or “enhanced”
or “just different” interface, and try to get a number of higher level service providers to
adopt this interface instead. By doing so, they both shut other ISPs out of the market and
shut out other higher-level service providers. So an erosion of competition among ISPs
might not just cause higher prices for Internet access, but might cause erosion in the entire
Internet model. It is for this reason that the possible lack of competition among broadband
ISPs is being so closely watched.

The paper started with a simple question: “How do I make money?” It continued by
observing that the more important (and sophisticated) question was: “How does every
sector make money?” We can now see the full import of this question. If an open interface
is seen as desirable to shape the market structure, but the sector on one side of this
interface is not in a market situation that can sustain competition, consolidation among
players may well lead to the consequence that this open interface is driven from the
marketplace by the actions of the dominant player. So thinking about how to ensure that
all the sectors can make money is a key to ensuring that the open architecture itself
survives.

Facing the design challenge

When we think about interfaces as a problem in economic design, what should our design
principles be? Experts in economics and business may have many suggestions, but a few
principles emerge from the discussion to this point.

Competition is a tool to impose discipline on the market. This discipline is a two-edged
sword. It can motivate players to invest and innovate; it can drive them out of business.
An example is end-point controlled routing, which is not a part of the Internet today.
There is no way for a consumer to route his traffic over one ISP rather than another. If this
feature were added, it might increase the total competitive pressures, and actually make
things worse for the ISPs. On the other hand, it would allow a provider with a new idea
for a service enhancement to bring it to the market and attract (and charge) users.
Consumers might be persuaded to pay more, in exchange for real innovation in value that
they cannot obtain today.

Price discrimination may be better than monopoly. Few would argue for a return to the
good old days of vertical integration, high margins and regulated monopoly. But if the
pressures on the facilities providers lead to consolidation and market exit by enough of
the ISPs, that might be the result. The alternative is to let the providers make a little more
money, with the hope that more competitors survive. Our instinct as consumers is to build
a system that appropriates all the excess utility to us. We may need to build mechanisms
that deliberately give up some of that to the providers. Allowing the sectors of the
industry with sunk costs to recover more of the value associated with consumer utility
may be the best compromise to insure a stable industry.

For example, the telephone system has the concept of a “normal” and “800” long distance
call. The idea is that different ends of the call can pay, depending (presumably) on which
end attaches more value to the call. The Internet has no such mechanism. Should Internet
packets have “which way is the value flowing” tags? Quality of Service (QOS) is the term

 57

in the Internet to describe the concept that some customers can obtain (presumably by
paying for it) better service. This is an obvious starting point for pricing tiers.

A debate of engineering and religion

By and large, Internet tools for price discrimination were resisted, and still are resisted,
because of the fear that incorporating them into the network would create uncontrollable
opportunities for the ISPs to impose new costs even on users who did not want them. If
there is a high value tier, one way to make it preferable is to degrade the low value tier,
and so on. This resistance, which is almost of religious quality in some network architects,
puts at a disadvantage those customers who would actually be willing to pay more for
better service. But the risk is real. The force that will resist abuse here is competition. So
designers face a dangerous gamble. If putting in these tools is sufficient to sustain
competition, then adding them is a good thing. But if competition fails anyway, adding
them may make monopoly pricing worse.

Creative market entrants are finding clever ways to bypass the architectural limitations of
the basic interfaces and impose price discrimination. Leaving a feature out of an interface
does not make it go away. It drives it under the covers, outside the architecture, but not
out of existence. We see ISPs today seeking ways to introduce value stratification, and
they will do this whether the building blocks are in the architecture or not. This raises the
question of whether this after the fact evolution is the right approach to achieve
economically motivated innovation, or whether we would have been better served to have
designed these sorts of value building blocks into the original open interfaces, so that the
facilities providers could have more directly had access to them.

We as system designers should make a conscious choice whether to design these sorts of
mechanisms and interfaces, or let them happen after we lose control.

58

 59

From Universe to Global Internet

Jon Crowcroft∗
 University of Cambridge, England

Introduction

The Universe project was a seminal research program that aimed at deploying the
Cambridge Distributed System (CDS) over the wide area. In retrospect, the goals were
similar to many of the now common test-bed projects in the world, to build from existing
ideas, and learn the key problems, and some tentative solutions, for future systems.

Universe sites ran a variety of operating systems and applications connected together by
10Mbps (million bits per second) local and wide area links. At this stage, at the start of
the 1980s, when the project spanned several institutions, academic and industrial, such
capacity was more than two orders of magnitude greater than that enjoyed by the early
Internet researchers. We are still learning from the results over 20 years later.

Research as you mean to develop

A feature of the Universe project was that the system was used by the participants. Many
research projects before (and after) entailed two systems: one for development, one for
research. In Universe, the operating systems, networks and applications under test were
the systems of choice. This is culturally commonplace now in the Computer Science
research community, but in those days, and in a large system where failures could disable
every day work in catastrophic ways; this was a high risk, but high payoff decision.

A number of features of the CDS were notable, and we look at these next.

Naming, addressing and routing

The Cambridge Distributed System architecture was notable for a clear separation of
concerns. Unsurprisingly, given the strong links maintained between Cambridge
distributed computing researchers and counterparts in the laboratories such as those run
by Xerox and the Digital Equipment Corporation (DEC), the network architecture was
much more elegant than the Internet Protocols, which had evolved in a narrower manner
from research at Bolt, Beranek and Neumann (BBN, a US research company responsible
for much of the early Internet development), centred around the problems of survivable
routing. It is clear from the first that: Universe had a clean design for names, and name-
servers operated 5 years before the Internet Domain Name System (DNS); an addressing
system that kept apart system identifiers and path identifiers; a routing system, which
seamlessly allowed the community to scale from a single university to many.

∗ The author worked on aspects of the Universe Project while at University College London, a partner, from
1981.

60

Protocols

The protocols in the Universe project are of historic interest since they include aspects of
the Internet Datagram Protocol, but also of the Broadband ISDN communications
approach of cell switching.

At the lowest level, at least on the site LANs, the mini-cell structure of the ring was a
given. In its full generality, this was a major advantage when it comes to fine grain
resource allocation on the network, including experiments with mixed data and voice (20
years before Voice-over-IP!).

Above this structure, both locally and in the Wide Area there were several choices. The
Universe project was “agnostic” with regard to network state versus end-to-end state, and
thus provided both.

For client-server applications employing Remote Procedure Call (RPC), there was the
Single Shot Protocol (SSP, a bit like the Internet’s User Datagram Protocol, UDP,
commonly used for RPC, albeit with a response; perhaps more like Transaction-
Transmission Control Protocol, T-TCP, whose author worked at a Universe partner site at
this time). For long lived flows, there was the Bye Stream Protocol (BSP) which was
semantically similar enough to the Internet’s Transmission Control Protocol (TCP), that
transport level relaying were implemented successfully.

Both SSP and BSP were capable of using state in the intermediate network: the ring-ring
bridges that connected local area networks together (a misnomer for surely they
implemented routing functions) assisted in the setup of the return path.

To enable the Internet protocol to run over the Universe infrastructure, a native framing
protocol known as the Universe Datagram was developed. This was really a concession to
a less well designed protocol suite, but a pragmatic one, since native internet applications
could then run over the Universe infrastructure, albeit without the resource management
advantages.

Resource management and policy

In Universe, the network was a distributed system no different than the processor farms,
storage servers, name servers, boot servers and so on. Ring-ring bridges booted from the
same place as file-servers. Thus it was natural to manage resource and policy for
management in the same way for any type of resource. Access to network routes, file
permissions, process capabilities are all unified. When built this way, why would one
consider any of these components differently?

Similarly, when it came to looking at quantitative resources (network, storage, processor
capacity), and associated policies, it was clear that there are no especial reasons to
manage these in different ways.

Now and then — universal expectations

In the last two and a half decades, we have seen the components of computing and
communications double (approximately) in performance every year in every dimension,

 61

be it processor speed (in line with Moore’s Law), memory, stable storage or
communications speed (and displays). The Internet was as important as the personal
computer because it connected all the users, information storage and processing together.
The Universe project pre-empted the performance in terms of numbers of users, services
and devices by 15 years.

 1970s 1980s 1990s 21st Century

Processor Kilo-Instructions Per Second (KIPS) MIPS GIPS TIPS

Storage Kilobytes (Kbps) MBytes Gbytes Tbytes

Networks Kilobits Per Second (Kbps) Mbps Gbps Tbps

Number of Devices Tens Hundreds Millions Billions (US)

Table 1: Performance Trends of Every Dimension

Other aspects of networking were presaged in more fundamental ways. At the physical
layer, most local area networks in the world today use twisted pairs of wire, as did the
Cambridge Ring.

The transmission substrate for most networks for the 1990s was Asynchronous Transfer
Mode (ATM), a cell switched system with whose units of transfer allowed for fine grain
control of delay, as did the Cambridge Ring1. This meant that voice and data integration
on the same communications resource (and processing environment) was straightforward
and natural. We have yet to regain this capability in the Internet of the 21st century!

Before the Universe Project (and for some time afterwards) a great many researchers
treated wide area network systems (geographically distributed over multiple
organisations) as if there was some important difference between them and local area
network. This was especially true of the telecommunications and broadcast networks that
evolved from the telephone system and analogue TV and Radio. In contrast, at the time in
a most revolutionary way, the Universe project had what we now call a “Control Plane”
which was as much a part of the distributed system as the management of any other
facility. This is now the standard approach to building signalling systems that control
network resources.

What more can we rediscover?

The US Academy of Science published a report recently entitled “Looking over the fence
at Network research.” There were two goals, one to see what Computer Scientists in other
areas could learn from the successes of networking and distributed systems research, and
vice versa. It was clear that there was more of the former than the latter. The National
Science Foundation recently published a report of a meeting to discuss network test beds,
which reaffirmed most of the principles which were exemplary in the Universe project.

1. albeit a very small cell, known as a mini-packet, of only 16 bits!

62

The EPSRC recently held an International Review of UK Computer Science and systems
(implicitly operating systems, security networks and distributed systems) were deemed
notable.

To summarise, we could say that the lessons were:

Be Realistic, to Get Real Results

You learn more from the practice of theory than from the theory of practice.

Nothing Scales an Experiment like Scale

The bigger we test a better idea, the better we learn about how much better it is,
bigger.

Network Control is a Distributed Application

If the idea doesn’t apply to itself, it ain’t computer science.

 63

Needham-Schroeder Goes To Court

Dorothy E. Denning
Naval Postgraduate School, Monterey, California, USA

“In 1978, Roger Needham of the University of Cambridge Computer
Laboratory and Michael Schroeder of the Xerox Palo Alto Research
Center published a seminal paper on protocols for remote key
distribution. Their paper was titled ‘Using Encryption and
Authentication in Large Networks of Computers’ and appeared in the
December issue of the Communications of the ACM. It provoked
considerable excitement in computing circles and was widely read.

Needham and Schroeder addressed the problem of how entities in a
computer network could establish a data-encrypting key (called a
conversation key in their paper) when they did not already share a
secret key-encrypting key. To solve the problem, Needham and
Schroeder introduced a trusted Authentication Server (AS). Each entity
has a private key-encrypting key that is shared with the AS. The AS
generates the conversation key and sends it to one entity enciphered
under its private key-encrypting key together with copies of the
conversation key enciphered under the private keys of the other
entities. The first entity can then forward the enciphered key to the
other parties with the encrypted message. Alternatively, it can provide
the key in advance. Needham and Schroeder showed how this could be
done in the context of both one-way (e.g. electronic mail) and two-way
communications.”

As a young assistant professor of computer science at Purdue University, I immediately
recognized the significance of the paper and made it required reading in my computer
security class. One of my students, Giovanni Sacco, found a security weakness in one of
the methods described in the paper. This led to our jointly writing a paper called
“Timestamps in Key Distribution Protocols,” which showed how timestamps could be
added to the Needham-Schroeder protocol to enhance its security. This paper was
submitted to the Communications of the ACM in November 1979 and published in August
1981.

About the same time I also co-authored a paper with Fred Schneider of Cornell University
that built on the Needham-Schroeder protocol. Titled “Personal Keys, Group Keys, and
Master Keys,” and later “The Master Key Problem,” the paper showed how group keys
could be generated and managed in order to allow for secure group communications in
broadcast networks.

While the entire security community recognized the value of Needham-Schroeder to
secure communications and, as the Internet evolved, to e-commerce and the future of the
Internet itself, it was considered a scientific and technical matter. It was not something to
discuss with colleagues and friends in other disciplines. They would be able to
communicate securely without concern for exactly how it was done. Even though the

64

public now appreciates the need for Internet security, few are interested in the details of
cryptographic algorithms and protocols.

Imagine my surprise then when about two years ago lawyers called me to talk about
Needham-Schroeder and various other cryptographic protocols, including my own. Not
only did they know about this highly technical work – they had delved into its inner
workings.

It turned out that Needham-Schroeder would become a significant piece of prior art in a
patent litigation case. The plaintiff in the case was arguing that patents of theirs dating
back to the early 1980s had been infringed. I was contacted by the lawyers for the defense
and eventually agreed to serve as an expert witness.

My initial reading of the claims in the patents was “How could they get a patent for this –
it had all been done!” I would quickly learn that proving this was not a simple matter.
After learning more about patent law than I ever thought I would need to know, I wrote a
report explaining why I thought the patents were not valid in the first place. In particular,
I showed that the patents’ claims were disclosed in prior art (and hence not novel) or were
obvious.

My report describes Needham-Schroeder and various other protocols for key
establishment. The opening two paragraphs of this paper are quoted almost verbatim from
that report.

The case went to trial and I was impressed with the judge’s understanding of the
technology and issues. I looked forward to testifying, but the two parties agreed on a
settlement just minutes before I was to be called to the witness stand.

In the end, I think the lawyers for the plaintiff realized the patents were on shaky ground.
The prior art was just too compelling. Had the case gone to completion and the judge
ruled the patents invalid, they would not have been in a good position for future litigation
involving those patents. I doubt the plaintiff was pleased with the settlement, but rather
viewed it as a better alternative to losing. We, on the other hand, went out and celebrated.

In 1978, Needham and Schroeder recognized the value of their work for network
communications. Little did they know that one day their work would also help defeat a
lawsuit.

 65

Principles for Reliable Operating Systems

Peter J. Denning
Naval Postgraduate School, Monterey, California, USA

�

Back in the summer of 1975, Dorothy Denning and I, then still newlyweds, spent a month
at Cambridge. During that time Roger Needham and I met daily to discuss topics in the
design of operating systems. We were searching for fundamental principles for reliable
systems. One fruit of those discussions was my paper, “Fault tolerant operating systems,”
in ACM Computing Surveys, December 1976. Two topics of our discussions have stuck
in my mind for all these years because the principles were sound and relevant to real
systems. They are interrupts and capability addressing.

Interrupts

Roger and I were concerned about the considerable variation in the interpretations of the
purpose and operation of interrupt systems, which had been a part of operating systems
since the Atlas at University of Manchester in 1959. We saw no clear consensus on their
design principles. The Atlas team called them interrupts because they were used to
interrupt normal processing to allow calls to operating system functions. Other operating
systems called them traps -- a metaphorical reference to a mousetrap springing in
response to a pre-set condition. In describing the Burroughs and Multics operating
systems, Elliot Organick called them unexpected procedure calls. In their seminal paper,
“Programming semantics for multiprocess computations,” Jack Dennis and Earl Van Horn
(DVH) called them exceptional conditions and linked them to the protected entry of any
routine providing a function for a class of objects. IBM referred to interrupts as
exceptions. By 1975 several leading language designers believed that every procedure
call, whether to the OS or not, should provide both a normal return and an exception
return. The common features of these interpretations were that interrupts gave safe access
to supervisory functions of the operating system, stopped programs that encountered error
conditions, enabled the operating system to divert to high priority functions, and relied on
the procedure calling mechanism. Roger and I were specifically interested in a uniform
interpretation of interrupt systems that accommodated these common features and gave
clear guidance on how the interrupt hardware and software should be designed for
reliability of the whole operating system.

In a nutshell, our conclusions were:

• Interrupt system is at a low kernel level, just above the procedure mechanism.

• The interrupt vector, which points to the routines for handling each type of
exception, should encode not only the handler entry points, but their proper
supervisor state and interrupt mask settings. The procedure mechanism should set
the specified supervisor state and masks on call, and restore them on return.

66

• Hardware condition detectors notify the dispatcher of faults and external device
signals. The detectors for faults could generally be synchronized with the system
clock but the detectors for external conditions could not.

• Failure to realize that external condition signals could occur simultaneously led to
interrupt dispatchers prone to arbitration failures.

The interrupt system itself consisted of detectors, a dispatcher, a mask, and a vector (list)
of interrupt handler routines. The detectors were hardware devices that monitored for
pre-set conditions and raised a signal when one occurred. The dispatcher, a combination
of hardware and microcode, selected one of the unmasked, raised conditions and invoked
a procedure call on the corresponding handler. The mask told which signals to respond
to. The vector listed the interrupt handler routines.

One of the open questions concerned the placement of the interrupt system in the
functional hierarchy of the operating system. Following the principle of layering, which
was gaining popularity since Edsger Dijkstra used it successfully in the THE system, we
concluded that the interrupt system belonged in the kernel just above the procedure
mechanism, which was just above the instruction set. The interrupt system had to be
higher than the procedure mechanism since the dispatcher calls procedures. It had to be
lower than everything else, since all other OS functions could define exceptional
conditions.

Another open question was how to get the dispatcher to safely enter the CPU supervisor
mode when it invoked an interrupt handler, and restore user mode upon return. Entry into
the supervisor state had to be coupled tightly to interrupt dispatching lest a separate
mechanism become a back door for intruders. We borrowed from the DVH capability
idea to describe a clean way to do this. The entries in the interrupt vector would encode
the entry point address, the target supervisor mode, and the target interrupt mask.
Procedure call would load the instruction pointer, mode, and mask registers
simultaneously from these data. Procedure return would restore the former values.

Still another open question was what kinds of conditions should be handled by the
interrupt system. Real systems recognized two categories of conditions: faults and
external signals. A fault condition meant that the running program could not continue
until the detected error was corrected; examples were memory parity, arithmetic,
addressing, protection, illegal instructions. An external signal meant that a peripheral
device (such as disk) needed an OS action before a deadline; examples were disk
completion, receipt of network packet, clock interruption. We did not see any good
alternative for separating these two kinds of conditions. Yet there was a crucial difference
between them. Errors could be detected in the CPU between instruction cycles; therefore,
the dispatcher always saw a stable set of error condition signals. In contrast, external
signals were unconstrained by the CPU clock; therefore, the dispatcher could witness
simultaneously arriving device signals and suffer arbitration failures. Arbitration failures
are a serious threat to reliability.

David Wheeler and other colleagues had documented arbitration failures that occur when
the dispatch circuit is unable to select, within a clock cycle, exactly one of several
simultaneously occurring incoming signals. Wheeler argued persuasively that, although
the probability of an arbitration failure might appear small (e.g., 1 in 100,000), it is only a

 67

matter of a few days before enough interrupts have been processed that a failure is nearly
certain. When the failure occurs, the CPU mysteriously hangs up, losing data and
requiring a complete cold-restart. Wheeler designed a threshold flipflop (TFF) for the
interrupt system that would pause the CPU clock until the TFF indicated it had reached a
decision, thereby averting the arbitration failure in exchange for an occasional delay of
more than one clock cycle until the TFF correctly registered an interrupt.

Capability addressing

Roger and I also discussed capability addressing and the structure of capability-based
operating systems. Invented by Dennis and Van Horn in 1966, capabilities were long,
protected, globally unique addresses for objects. Robert Fabry built a prototype capability
machine two years later. Within a few more years the Plessey Company built the System
250, a telephone switching computer that used capability addressing; they reported ultra-
high reliability, security, and resistance to software errors. Roger and his colleagues were
in the middle of a project to build CAP, a general-purpose capability machine and
operating system. Their own preliminary experiments had suggested that such a system
would be extremely reliable because errors could not spread outside the local address
space in which they occurred.

Roger was extremely worried about the complexity of the CAP operating system. It
appeared that the requirement that capabilities be hardware protected from alteration
could only be met by partitioning the memory of the machine into separate data and
capability parts, which then precipitated a similar partition of the operating system and its
data structures into separate data and capability parts. There was a significant problem of
maintaining consistency between data and their corresponding capabilities. The
complexity was further aggravated by the rigid interpretation of capabilities as “access
tickets” for objects. File owners seemed to find it more natural to control access to their
files with access control lists than to set up a daemon process to hand out capabilities on
request to qualified users. Roger and I discussed possible ways to reduce the complexity
to be competitive with other operating systems.

We concluded that the principle of hardware-protected capabilities was the source of
much complexity. If we could relax that principle, we could preserve the good features of
capability addressing without the cost of special memory or of partitioning. One way to
do this would be to use type-checking in compilers to verify that capability arguments
passed to system routines were in fact capabilities. The integrity of capabilities could be
guaranteed if the set of OS programs that used capabilities (all layers up through the
directory level) were all part of a trusted set assembled and verified by experienced
programmers. This might not prevent a determined hacker from penetrating the kernel
and modifying capabilities, but it would guarantee the proper use of capabilities for all
normal users. Unfortunately, the CAP hardware was already committed to memory
partitioning and the OS design was too far along for this to be a realistic option. Besides,
compiler technology had not evolved to the point where the required type-checking could
be trusted.

We also developed a hybrid access-control method that would combine features of access
control lists and access tickets. We observed that an access control list is permanent and
persists as long as the file exists. In contrast, a capability list can be a temporary structure

68

that lasts only as long as the associated computational process. After a process is created,
its capability list can be loaded (on demand) with capabilities dynamically constructed
from the access lists attached to the files holding the objects addressed by the process.
This hybrid generalized the standard virtual memory: the mapping tables contain
capabilities constructed on the fly from access control lists attached to files. This hybrid
was of great interest both to Roger and to Maurice Wilkes. But again the CAP project
was too far along to retrofit this.

In their 1979 follow-on book about the CAP operating system, Roger and Maurice
lamented that they were unable to reduce the complexity of the system enough to make it
competitive with more conventional operating systems. The main benefit, reliable and
secure object addressing and sharing, had too large a cost.

Was that the end for these ideas? Designing a system with the reliability of a capability
system at the cost of a conventional system? Far from it. These ideas are the backbone of
modern object oriented programming systems. The compilers use “handles” to refer to
objects – handles are like software capabilities – and type checking to assure that handles
are passed only to functions authorized to receive them. Objects can be dynamically
loaded from external files, to which conventional access lists control access. Although
these ideas did not make it in CAP, Roger can nonetheless take pleasure in seeing the
technology he helped to develop become a mainstay in computing.

�

 69

An Historical Connection between Time-Sharing and
Virtual Circuits

Sandy Fraser

Bernardsville, New Jersey, USA.

I left Ferranti for Cambridge University in 1966 after having spent six years inventing and
then developing Nebula, a language and compiler for commercial data processing. At
Cambridge, Maurice Wilkes was Professor and Head of the Mathematics Laboratory,
home of Edsac I and Edsac II, and in 1966 home of the Atlas computer known as Titan.
Sir Maurice, as he is known today, had been inspired by CTSS [1] to create a time-sharing
system for the Titan, and had assembled a team which included Roger Needham, David
Hartley and Barry Landy. I was very grateful to these gentlemen for accepting into their
midst a programmer and engineer without anything more than a BSc in Aeronautical
Engineering.

The Titan, constructed in Cambridge under the leadership of David Wheeler, had recently
become operational when I arrived. Peter Swinnerton-Dyer had astonished everyone by
creating a usable operating system, seemingly overnight after a period of much thought
and no contact with the machine. Peter’s operating system allowed the Titan to provide
computing service for the University. That service quickly acquired customers, including
physicists and chemists, some of whom at the time were engaged in the personality testing
task of performing long computations of great scientific importance on a machine that
was not quite convinced that it wanted full-time employment. But Maurice wanted time-
sharing and I was at once inducted into the team.

I do not recall anyone explaining to me that there was a management structure for the
Titan operating system project, other than Maurice’s leadership of the laboratory. Roger,
David and Barry had tables (substitutes for desks) clustered in one room and I was
assigned a table in an adjacent room. We all seemed to know what part of the operating
system we were responsible for. My task was to create a file system.

The basic architecture for the Titan operating system was already established. There was
to be a small kernel responsible for resource management, process creation and
scheduling, operation of peripherals, and administration of data transfers to and from disk.
The Atlas under Tom Kilburn’s guidance, it will be recalled, had pioneered virtual
memory and it was the operating system’s task to manage it. Each process had its own
address space and the machine distinguished between user-mode (virtual addressing) and
kernel-mode (absolute addressing). It had already been decided that the file system would
be implemented as a trusted suite of user-level programs with a system call interface to
the kernel. The File Master was the central component. It provided file directories,
managed disk space, coordinated access to files and administered a permissions control
system. Other programs in the suite were responsible for long-term file integrity, file
backup and file archiving on magnetic tape.

Two aspects of the file system were perhaps notable. The permissions control system was
unusually general. It allowed a user’s authority to be computed on the basis of simple

70

functional expressions stored as independent entries in a file directory. Whereas today a
file directory might contain a file descriptor or a symbolic link to a file, in the Titan
system a directory entry might be a ‘privacy arrangement.’ For example, there was one
function type which when decoded meant if the name of the program currently executing
is ‘xxxxx’ then activity ‘yyyy’ is authorized. The union of all such authorizations contained
in a user’s directory enabled file access or allowed the use of certain restricted system
functions.

The other unusual feature concerned the file backup and archiving system. As is now
common, an incremental backup system copied files to tape, and through a less frequent
process all ‘known’ files were copied onto archive tapes. A known file was one that had a
directory entry. If a user deleted the directory entry, the archive copy eventually
disappeared from the archive. A file title included a ‘class’ identifier as the last
component of its name. Three classes were defined – Permanent (P), Temporary (T) and
Archive (A). A file designated as class A would disappear from disk after two copies of
the file had been made on archive tape. When the class was changed from A to P the file
would automatically (with the invisible help of a computer operator) be restored to disk.

I will not elaborate further on the Titan file system. For interest one can refer to Maurice
Wilkes’ book and other publications [2,3,4,5]. By 1968 it was running well enough that
the new operating system was launched into service. That itself was not an easy task when
one considers that we were working with what amounted to being prototype hardware,
including David Wheeler’s tunnel diode cache memory, prototype software, which
implemented ‘time-sharing,’ at the time a new concept for British Computing, and a large
user population that spanned the University and had a heavy workload for the machine.
We scrambled and Maurice held the critics at bay.

My future in research was much influenced by the fact that the file system was a separate
program, that data transfers were separated completely from the administration of files,
and the fact that it was so much of a struggle to construct and maintain such a ‘mammoth
machine’ as the Atlas. Would it not be possible to assemble an interconnected collection
of smaller machines along with a separate machine for storing files, and operate on the
whole a time-sharing service for a large user community? I made some informal
measurements of traffic volumes and transfer rates to convince myself that this was a
plausible and interesting idea if a suitable interconnection method could be devised.

At some point in 1967-68 Roger and I were invited to participate in the very British sport
of educating and berating the Government in the princely surroundings of a London Club.
What would now be considered to be the Chief Information Officers of some of
England’s largest corporations paid for the meals and on each occasion invited to dinner a
senior politician or civil servant. The goal was to persuade the Post Office, which at that
time was the Government arm that operated the telephone system, to take time-sharing
seriously and to provide data communications service for its customers. In this era, data
communications meant allowing modems on the phone network. While I cannot say how
successful the Real-Time Club was, for that became its name, I can say that these
discussions of using the telephone network for data communication had a big impact on
me. It was the possibility that there might one day be a national communications service
devoted to computer communications that attracted my attention and curiosity.

 71

In May 1969 I moved to the United States. My interest in computing and file systems was
now expanding rapidly to include communications. Surely computing and
communications would become one, and computers would become as widespread as
telephones. Where better to go for an education in communications than Bell
Laboratories. However, when I arrived there I was surprised and disappointed to find that
Bell Labs, the research laboratory for world-wide communications, at the time had no
data network and only the smallest program of research on the topic. Andy Hall, my host
during those early days in America, encouraged my interest in computer communications
and we talked of a network that would link together the many mini-computers that were
then to be found at Bell Labs. Clearly, my ambition to build a network-based file system
would have to wait while I figured out how to network those mini-computers.

Henry McDonald became my mentor for a rapid education in the logic and science of the
telephone system. At this time there were three ongoing research interests that Bell Labs
had in data networking. Ed Newhall and Wayne Farmer were working on what would
soon be demonstrated as a token ring. Wes Chu (at the time just departed from Bell Labs)
had spawned an interest in stochastic models for statistically multiplexed traffic between
asynchronous terminals and a time-sharing system. Dave Weller and Carl Christianson
were working on a ring bus to connect peripherals with their mini-computer. I was excited
by the vision of a world-wide network that could carry telephony and data, and eventually
video. One need spend but a moment in Bell Laboratories to acquire a sense of grandeur
and possibilities. The telephone network was going digital, Bell Labs had tested a video
telephone on its network, digital switching was in the throes of being born,
microprocessors were on the horizon, and in this one research laboratory there was all the
expertise that it would take to create a single network that could bring an integrated
communications service for voice, video and data to every home and business throughout
the land.

By the Fall of 1969 I had learned enough of digital switching and wide area networking to
conceive of a switching machine and network access arrangement that might eventually
scale to large proportions with the performance and quality of service which was
husbanded so dearly by the operators of the Bell System [6,7]. Thus, there were born that
year notions of virtual circuit switching, asynchronous time-division multiplexing of cells,
window flow control, and the slotted ring. A network, called Spider, was in due course
constructed with connections to twelve computers, including one that served as a print
server and another as a file server. For the latter, which was based on Unix, we re-
implemented the Titan method of incrementally dumping files on magnetic tape. The
original goal had been to logically recreate the Titan file system, not as part of some new
large machine but as the networked hub of many small machines. To a limited degree that
goal had been reached. It was successful because some of the mini-computers had weak
operating systems and very limited storage. However, several years would pass before
network performance would be sufficient that distributed computing with shared file
storage would be seen as a competitive option.

I would like to conclude by thanking Roger and Maurice for their part in shaping my
career. By giving me the opportunity to be part of the Titan team, to benefit from the rich
environment that is Cambridge, and to join in the discussions of The Real Time Club,
they started my career down an ever widening path that, over the years, has brought great
pleasure and professional satisfaction.

72

References

1. CORBATO, F.J., ET AL., ‘The compatible time-sharing system: a programmer’s
guide,’ MIT Press, Cambridge, Mass., 1963.

2. BARRON, D.W., ET AL., ‘File handling at Cambridge university,’ AFIPS Conf.
Proc. Vol. 30 (SJCC 1967), pp. 163-167.

3. FRASER, A.G., ‘File integrity in a disc-based multi-access system,’ Operating
Systems Techniques, C.A.R.Hoare and R.H.Perrott, Eds., Academic Press, New
York, 1972, pp. 227-248. Also in Classic Operating Systems, Per Brinch Hansen,
Ed., Springer, New York, 2001, pp. 167-194.

4. HARTLEY, D.F., ‘The Cambridge multiple-access system user’s reference manual,’
Cambridge University Mathematical Laboratory, 1968.

5. WILKES, M.V., Time-sharing computer systems, Macdonald, London, 1968.

6. FRASER, A.G., ‘Early experiments with asynchronous time division networks,’
IEEE Network Magazine, January 1993, pp. 12-26.

7. FRASER, A.G., ‘The Origins of ATM,’ video tape, University Video
Communications , Stanford, California, January, 1994.

 73

On Cross-Platform Security

Li Gong
Sun Microsystems, Santa Clara, California, USA.

Why cross-platform security?

Today in any IT system installation of a non-negligible size, heterogeneity is a given.
From hardware platforms, to operating systems, to networking protocols, to applications,
one is bound to discover a variety of technologies for every layer of the system stack.
Heterogeneity has its advantages: it fosters innovation, competition, and it even has the
potential to improve security and reliability in that one may hope that the same error or
security hole does not exist in all of the different designs.

Heterogeneity also brings a number of problems for implementing security requirements.
For example, system administrators with different knowledge and skills are needed to
manage different systems. In addition, these different systems may offer vastly different
sets of security properties so that interoperability becomes difficult if not impractical.

The most important problem, though, is how to provide security support for application
developers. In other words, when developing an application that must run on a number of
different platforms (think about web services, for example), how does the developer
ensure that the required security properties can be correctly implemented and deployed
across the different platforms.

The primitive way to deal with heterogeneity is to find out the collection of the target
deployment platforms a priori and design a solution that works on this set of platforms.
However, a solution obtained this way does not apply to a new environment. It also needs
to change, usually with great difficulty, when a new target platform is added into the mix.
What is desirable is a systematic approach to cross-platform security.

Approaches to cross-platform security

The obvious idea towards cross-platform security is to find common ground among the
diverse systems that is sufficiently broad to implement needed security requirements. Let
us consider, bottom up, a number of common grounds from the system stack.

The one thing that is common to all systems, especially in today’s world of the Internet, is
a set of communication protocols such as TCP/IP. These protocols, however, are too low
level to represent basic system and security concepts such as files and file security.
Moreover, some devices may be equipped with 802.11 or Bluetooth, but not TCP/IP.

Next up, all systems have operating systems. The difficulty here is that there are multiple
systems that are widely used (think Unix and Microsoft Windows) where all have unique
characteristics. Moreover, just Unix alone has a number of different flavors, notably
Solaris from Sun Microsystems and HP/UX. Even Windows has incompatibilities among
its own versions, Win95, Win98, NT, and XP. What’s worse, more operating systems are

74

popping up and gaining widespread use, such as Linux and embedded Linux, Palm OS for
PDAs, and systems for mobile phones and other emerging devices. In other words, there
is not a lot of common ground to find at the OS level.

The most promising area for interoperability seems to beprogramming languages and
APIs. After all, implementing a language on different platforms is not too difficult a task.
Traditionally, we have had BASIC, Fortran, COBOL, and more popularly, C and C++.
However, none of these languages offers a security model. Java is perhaps the first widely
deployed programming language that has cross platform operation and security declared
as its two primary design goals. What also helps Java tremendously is the associated set
of APIs that can be used to implement just about any application, independent of the
underlying operating systems. If everyone adopted Java, cross-platform security would
have been a problem largely solved. For a while, this was indeed the dream of many
practitioners. Eventually, the harsh reality of commercial competition dictates that the
dream remains a dream. Support for Java on MS Windows – the platform with the largest
number of seats – cannot be guaranteed or expected. The same fate awaits C#, the
Microsoft competitor to Java, which is unlikely to become standard on all major
platforms.

Failing all the above, many folks are pushing so-called web services as the conceptual
layer for interoperability, where technologies like HTML and its variants are the basis for
interoperation. This approach is still evolving, so it is too early to write its obituary. But
the early-warning signs are already here: ASCII-based exchanges have severe limitations.
To be powerfully expressive, flexible, and extensible, exchanging text messages alone is
not enough. One must either exchange commands to be executed by the end systems (here
we must not replicate the shortcomings of CORBA) or communicate programs that can
run directly on the end systems, both of which lead us back to the problems we started
with.

What now?

Recently, a new interoperability approach has emerged as an open source community
effort, called JXTA, at jxta.org. JXTA attempts to describe entire systems completely
within a set of protocols. The basic elements are peers and messages. Through discovery,
peers can form groups, communicate with each other, share contents, and so on.
Everything stored or communicated is in the form of a message. JXTA is designed to be
independent of networking protocols, operating systems, and programming languages. In
other words, truly cross platform.

In this environment, we can think of peers and messages as subjects and objects in the
traditional security model. Messages can have types, such as advertisements, which can
then be subdivided into advertisements for peers or for content. Content can be code or
data; they are no different in JXTA and are all of the type “CODAT.” Messages can be
encrypted for secrecy and/or integrity. Typical authentication and authorization systems
can be used. Access control policies can be embedded or encoded into the messages.
Cryptographic techniques can be deployed to enforce access controls.

Although promising, JXTA is still very new. Its security design is not yet complete.
(Solving the cross-platform security problem is not what JXTA was started for.) It is too
early to predict if this approach works out at the end. Even if it worked, would it be non-

 75

threatening enough so that it can be adopted on all major platforms? Would commercial
competition stand in the way yet again?

References

1. Gong, L., Inside Java 2 Platform Security, Addison Wesley, Reading, Massa-
chusetts, June 1999.

2. Lauer, H.C., Needham, R.M., ‘On the Duality of Operating System Structures,’
Operating Systems Review vol. 13, no. 2, 1979, pp. 3-19.

3. S. Oaks, B. Traversat, and L. Gong, JXTA in a Nutshell, O’Reilly & Associates,
2002.

76

 77

Distributed Computing Economics

Jim Gray,
Microsoft Research, San Francisco, California, USA

Computing economics are changing. Today there is rough price parity between (1) one
database access, (2) ten bytes of network traffic, (3) 100,000 instructions, (4) 10 bytes of
disk storage, (5) a megabyte of disk bandwidth. This has implications for how one
structures Internet-scale distributed computing: one puts computing as close to the data as
possible in order to avoid expensive network traffic.

The cost of computing

Computing is free. The world’s most powerful computer is free (SETI@Home is a 54
teraflops machine).1 Google freely provides a trillion searches per year to the world’s
largest online database (2 petabytes). Hotmail freely carries a trillion email messages per
year. Amazon.com offers a free book search tool. Many sites offer free news and other
free content. Movies, sports events, concerts, and entertainment are freely available via
television.

Actually, it’s not free, but most computing is now so inexpensive that advertising can
pay for it. The content is not really free; it is paid for by advertising. Advertisers
routinely pay more than a dollar per thousand impressions (CPM). If Google or Hotmail
can collect a dollar per CPM, the resulting billion dollars per year will more than pay for
their development and operating expenses. They can deliver a search or a mail message
for a few micro-dollars, while the advertising pays them a few milli-dollars. So, these
services are not free – advertising pays for them.

Computing costs hundreds of billions of dollars per year. IBM, HP, Dell, Unisys, and
Sun each sell billions of dollars of computers each year. Software companies like
Microsoft, IBM, Oracle, and Computer Associates sell billions of dollars of software per
year. So, computing is obviously not free.

Total Cost of Ownership (TCO) is more than a trillion dollars per year–operations
costs far exceed capital costs. Hardware is now a minor part of the total cost of
ownership. Hardware comprises less than half the total cost; some claim less than 10% of
the cost of a computing service.

Megaservices like Yahoo!, Google, and Hotmail have relatively low operations staff
costs. These megaservices have discovered ways to deliver content for less that the milli-
dollar that advertising will fund. For example, Google has an operations staff of 25 who
manage its two petabyte (1015 bytes) database and 10,000 servers spread across several

1 This paper makes broad statements about the economics of computing. The numbers are fluid (costs change every
day). They are approximate to within factor of 3. For this specific fact: SETI@Home ran at 54 teraflops (floating
point operations per second) yesterday (1/26/2003) handily beating the sum of the combined peak performance of
the top four TOP500 supercomputers registered at http://www.top500.org/.

78

sites. Hotmail and Yahoo! cite similar numbers – small staffs manage ~300 TB of storage
and more than ten thousand servers.

Most applications do not benefit from megaservice economies of scale. Other
companies report that they need an administrator per terabyte, an administrator per 100
servers, and an administrator per gigabit of network bandwidth. That would imply an
operations staff of more than two thousand people to operate Google – nearly ten times
the actual size of the total company.

Outsourcing is seen as a way for smaller services to benefit from megaservice
economics. The outsourcing business evolved from service bureaux through timesharing
and is now having a renaissance. The premise is that an outsourcing megaservice can
offer routine services much more efficiently than an in-house service. Today, companies
routinely outsource applications like payroll, insurance, web presence, and eMail.

Outsourcing has often proved to be a shell game moving costs from one place to
another. Loudcloud and Exodus trumpeted the benefits of outsourcing. Now both are
bankrupt. Neither company had a significant competitive advantage over in-house
operations. It is a services business where computing is incidental to operating an
application and supporting the customer. It is difficult to achieve economies-of-scale.
Many service companies, notably IBM, Salesforce.com, Oracle.com and others are
touting outsourcing – rebranded as On Demand Computing – as an innovative way to
reduce costs. There are some successes, but many more failures. So far there are few
outsourced megaservices – payroll and eMail are the exception rather than the rule.

SETI@Home sidesteps operations costs and is not funded by advertising.
SETI@Home harvests some of the free (unused) computing available in the world.
SETI@Home “pays” for computing by providing a screen saver, by appealing to people’s
interest in finding extra-terrestrial intelligent life, and by creating competition among
teams that want to demonstrate the performance of their systems. This currency bought
1.3 million years of computing; it bought 1.3 thousand years on 3rd February 2003.
Indeed, some SETI@Home results have been auctioned at eBay.

Grid computing hopes to harvest and share Internet resources. Most computers are
idle most of the time, disks are ½ full on average, and most network links are under-
utilized. Grid computing seeks to harness and share these idle resources by providing an
infrastructure that allows idle resources to participate in Internet-scale computations.

Web services

Microsoft and IBM are touting web services as a new computing model – Internet-
scale distributed computing. They argue that the HTTP Internet is designed for people
interacting with computers. Traffic on the future Internet will be dominated by computer-
to-computer interactions. Building Internet-scale distributed computations requires many
things, but at its core it requires a common object model augmented with a naming and
security model. Other services can be layered atop these core services. Thus web
services are the natural evolution of the OLE, CORBA, COM, RMI, DSOM,… standards
promulgated in the 1990s.

 79

Neither grid computing nor web services have an outsourcing or advertising
business model. Both are plumbing that enable companies to build applications. Both
are designed for computer-to-computer interactions and so have no advertising model –
because there are no eyeballs involved in the interactions. It is up the companies to invent
business models that make this plumbing useful.

Web services reduce the costs of publishing and receiving information. Today, many
services offer information as HTML pages on the Internet. This is convenient for people,
but programs must resort to screen-scraping to extract the information from the display. If
an application wants to send information to another application, it is very convenient to
have an information structuring model – an object model, that allows the sender to point
to an object (an array, a structure, or a more complex class), and simply send it. The
object then “appears” in the address space of the destination application. All the gunk of
packaging (serializing) the object, transporting it, and then unpacking it is hidden from
sender and receiver. Web services provide this send-an-object–get-an-object model.
These tools dramatically reduce the programming and management costs of publishing
and receiving information.

So web service is an enabling technology to reduce data interchange costs. Electronic
Data Interchange services have been built from the very primitive base of ASN.1. With
XML and web services EDI message formats and protocols can be defined in much more
concise languages like C# or Java. Once defined, these interfaces are automatically
implemented on all platforms. This dramatically reduces transaction costs. Service
providers like Google, Inktomi, Yahoo!, and Hotmail can provide a web service interface
that others can integrate or aggregate into personalised digital dashboards and earn
revenue from this very convenient and inexpensive service. Many organizations want to
publish their information. The World Wide Telescope I have been working on is a small
example. It is repeated in biology, the social sciences, and the arts. Web services and
intelligent user tools are a big advance over publishing a file with no schema (e.g., using
FTP).

Application economics

Grid computing and computing-on-demand enable tasks that are mobile and can be
provisioned on demand. What tasks are mobile and can be pre-provisioned? Certainly,
any computation task is mobile. One can pack the computers up and move them – or one
can package all the bits and move them. So, the real question is:

What are the economic issues of moving a task from one computer to another or
from one place to another?

A task has four characteristic demands:

• Networking – delivering questions and answers,

• Computation – transforming information to produce new information,

• Database Access – access to reference information needed by the computation,

• Database Storage – long term storage of information (needed for later access).

80

The ratios among these quantities and their relative costs are pivotal. It is fine to send
a GB over the network if it saves years of computation – but it does not make sense to
send a kilobyte question if the answer can be computed locally in a few seconds.

To make the economics tangible, take the following baseline hardware parameters:
 2 GHz cpu with 2GB ram (cabinet and networking) $2,000
 200 GB disk with 100 accesses/ second and 50MB/s transfer $200
 1 Mbps WAN link $100/month
From this we conclude that one dollar equates as follows:
 = 1 $
 � 1 GB sent over the WAN
 � 10 Tops (tera-cpu operations)
 � 8 hours of cpu time
 � 1 GB disk space
 � 10 M database accesses
 � 10 TB of disk bandwidth

The ideal mobile task is stateless (no database or database access), has a tiny
network input and output, and has huge computational demand. For example, a
cryptographic search problem: given the encrypted text, the clear text, and a key search
range. This kind of problem has a few kilobytes input and output, is stateless, and can
compute for days. Monte Carlo simulations for portfolio risk analysis are another good
example. And of course SETI@Home is a good example: it computes for 12 hours on
half a megabyte of input.

Using parameters above, SETI@Home performed a multi-billion dollar computation
for a million dollars – a very good deal! SETI@Home harvested more than a million
cpu years with a billion dollars. It sent out a billion jobs of ½ MB each. This petabyte of
network bandwidth has a value of about a million dollars. Of course the users donated
these a billion dollars of “free” cpu time. The key property of SETI@Home is that the
ComputeCost-NetworkCost ratio is 10,000:1.

Most interactive web services do not qualify economically as mobile applications.
Most web and data processing apps are network or state intensive. An FTP server, an
HTML web server, a mail server, and Online Transaction Processing (OLTP) server
represent a spectrum of services with increasing database state and data access. A 100MB
FTP task costs 10 cents and is 99% network cost. An HTML web transaction costs 10
microdollars and is 88% network cost. A hotmail transaction costs 10 microdollars but is
more cpu intensive so that networking and cpu are approximately balanced. None of these
applications fits the cpu-intensive requirement.

Data loading and data scanning are cpu-intensive – but they are also data intensive –
and therefore not economically mobile. Some applications related to database systems
are quite cpu intensive: for example data loading takes about 1,000 instructions per byte.
The “vision” component of the Sloan Digital Sky Survey that detects stars and galaxies
and builds the astronomy catalogs from the pixels is about 10,000 instructions per byte.
So, they might be good candidates: 10,000 instructions per byte is the break-even point
according to the economic model above (10 Tops of computing and 1 GB of networking
both cost a dollar). But both of these operations either come from a database or go to a

 81

database, so there is no compelling argument to farm the computation out to other
resources.

The break-even point is 10,000 instructions per byte of network traffic. Few
computations exceed that threshold. Computational Fluid Dynamics (CFD) is very cpu
intensive, but again, CFD generates a continuous and voluminous output stream. I have
queried my graphics friends about rendering farms but have no conclusive evidence –
special purpose graphics co-processors from the likes of nVidia have driven down the cpu
load of rendering. If the rendering a frame takes more than 4 cpu minutes, then a Grid-
scale render farm begins to make sense. As I understand it, most render farms are
operating at more than one frame per cpu minute, and so would not be candidates for Grid
computing.

BLAST, FASTA, and Smith Waterson are an interesting case in point – they are
mobile in the rare case of a 40 cpu-day computation. These computations match a
DNA sequence against a database like GenBank or SwissProt. The databases are about
50GB today. The algorithms are quite cpu intensive, but they scan large parts of the
database. Servers typically store the database in RAM. BLAST is a heuristic that is ten
times faster than Smith-Waterson which gives exact results. Most BLAST computations
can run in a few minutes of cpu time, but there are computations that can take 720 cpu
hours on BLAST and 7200 hours on Smith Waterson2. So, it would be economical to
send SwisProt (40GB) to a server if it were to perform a 7720 hour computation for me
for free. Otherwise, it does not make sense to provision a SwissProt database on demand:
rather it makes sense to set up dedicated servers (much like Google) that use inexpensive
processors and memory to provide such searches. A 40GB SMP server would cost less
than $20,000 and could deliver a complex one cpu-hour search for less than a dollar – the
typical one minute search would be a few millidollars.

Conclusions

Put the computation near the data. The recurrent theme of this analysis is that “On
Demand” computing only works for very cpu-intensive (100,000 instructions per byte or a
cpu-day-per gigabyte of network traffic) applications.

How do you combine data from multiple sites? Many applications need to integrate
data from multiple sites into a combined answer. The arguments above suggest that one
should push as much of the processing to the data sources as possible in order to filter the
data early (database query optimizers call this “pushing predicates down the query tree”).
There are many techniques for doing this, but fundamentally it dovetails with the notion
that each data source is a web service with a high-level object-oriented interface.

Caveats

Beowulf clusters have completely different networking economics. Render farms and
CFD fit beautifully on Beowulf clusters because there the cost of networking is very
inexpensive: a GBps Ethernet fabric costs about 200$/port and delivers 50MBps, so

2 http://www.sun.com/products-n-solutions/edu/commofinterest/compbio/pdf/parcel_blast.pdf

82

Beowulf networking costs are comparable to disk bandwidth costs – 10,000 times less
than the price of Internet transports. That is why rendering farms and BLAST search
engines are routinely built using Beowulf clusters. But the discussion here is about Grid
computing and so Internet-scale economics apply.

If telecom prices drop faster than Moore’s law, the analysis fails. If telecom prices
drop slower than Moore’s law, the analysis becomes stronger. Most of the argument
in theis paper pivots on the relatively high price of telecommunications. Over the last 40
years telecom prices have fallen much more slowly than any other information
technology. If this situation changed, it could completely alter the arguments here. But
there is no obvious sign of that occurring.

 83

The Titan Influence

David Hartley
Cambridge, England

The Titan project was the major focus of research and development in the Cambridge
Mathematical Laboratory for most of the 1960s. The objective, as with the EDSAC 1 and
EDSAC 2 before, was to pioneer a computer system (hardware and software) exploiting
the latest technology to produce a next-generation system to meet and stimulate the
computational needs of the University of Cambridge.

To say that Titan was the last such major development in the Laboratory might appear to
deny many substantial and successful system development projects since then, but it
certainly was from my perspective as one who worked in the project and, in 1970, became
responsible for the computing service.

Tradition and objectives

Having built two pioneering systems by the end of the 1950s, the Laboratory could claim
to have established a tradition. If these first two systems were ground breaking and
pushed forward the state of the art, then any third system was bound to follow the same
ambitions. Further, they were in regular use by a growing community of scientists and
others breaking new ground in their research, and we had created a demand for more.

The main objectives were efficiency, utility and advancement. Efficiency to get as much
as possible out of very limited hardware; optimization was very much the name of the
game. Utility came in two senses: the system had to be simple to use for simple tasks, and
at the same time providing a comprehensive range of facilities. Advancement, because
there was clearly much scope for pushing forward the state of the art.

Not entirely home made

The basic central processor design of Titan was not something we developed ourselves.
Manchester University, in collaboration with Ferranti, were developing the Atlas, and on
the face of it the Laboratory might have settled for one of those. But, Atlas was far too
expensive, and it was decided Cambridge would develop with Ferranti a much-reduced
version. Indeed, Titan became the prototype of the Ferranti Atlas 2, although its
commercial success was no more than its big brother. Including the prototypes, only three
machines of each type were ever built.

Apart from the basic central processing unit, Titan was so different from Atlas that a new
operating system had to be developed. Atlas had a one level store with hardware paging
and a high-speed drum, while Titan originally had a simple relocation register, a limited
amount of main memory and a magnetic tape backing store. We did, however, adopt the
same design philosophy, and learnt much from studying the work of our Manchester
colleagues.

84

Operating systems for all seasons

Titan being the prototype Atlas 2, the operating system project from the outset was a
collaboration with Ferranti (later ICT and eventually ICL). We began with common
motives, namely to develop a multiprogramming system, optimising mainframe processor
use while enabling a mix of jobs of various sizes, shapes and varying priorities to make
their way smoothly through the system.

With a Cambridge team of about five and at least twice that number in Ferranti, we laid
the foundations for the operating system. A notable achievement was the design, mainly
by the leader of the Ferranti team, Chris Spooner, of a highly sophisticated input/output
buffering using a dynamically variable number of magnetic tape drives. Several of us
found it difficult to believe it would work but, eventually, work it did although not on
Titan itself.

Our aims and objectives began to diverge when Cambridge tradition and objectives began
to clash with the conservatism of marketing executives. Ferranti found difficulty selling
the concepts of multiprogramming to potential customers who could see little value in an
operating system unless it exhibited the features of the Fortran Monitor System, popular
in those days on IBM mainframes. When we set our sights on time-sharing, this was too
much for the collaboration to continue. So, before any version of the operating system had
been completed, Cambridge and Ferranti agreed to go their separate ways, each in the end
developing different, but very successful, systems built on the same hardware and
software technologies.

Maurice Wilkes discovered CTSS on a visit to MIT in about 1965, and returned to
Cambridge to convince the rest of us that time-sharing was the way forward. This didn’t
take much doing, although to add terminals and interactive working to a partly completed
job system was something of a challenge. It was essential to maintain our tradition and
policies of an efficient and useable system.

Inevitably we had a desire to do better, but more importantly there was a need to do
different. David Wheeler came to our help with the addition of a second memory
relocation register so we could, for example, place a program in one part of memory and
its working data in a different part. This rather rudimentary kind of segmentation enabled
us to create a workable system for on-line interactive working. The alternative of an
investment in high-speed secondary storage for memory swapping was quite out of the
question.

A generous gift from Ferranti did, however, produce a disc unit to hold a file store. The
filing system was designed chiefly by Sandy Fraser, and in due time developed by Mike
Guy into a highly practical system embodying sophisticated access controls, and
comprehensive back-up and archive facilities.

One innovation, which to us was an obvious requirement, was compatibility between off-
line jobs and terminal access. Whether you used Titan by submitting a background job or
running a program at a terminal, the commands to edit and manipulate files, to compile
programs and to handle input and output called the same system modules and were
therefore the same commands. This was in contrast with other developments of the time,
where system designers saw time-sharing as fundamentally different from previous ways

 85

of using computers. This approach was followed when the Computing Service later
developed Phoenix on IBM’s 370 mainframe operating system, with considerable
success.

Programming language excursions

One of the less well-known, and indeed less successful, elements of the Titan project was
CPL. The world discovered high-level programming languages with the advent of Algol
in the early 1960s, when computers had become sufficiently powerful for the languages
not to have to exhibit quirky features of the underlying hardware. In spite of this, it still
seemed natural to want a new language to go with our new computer. Collaborating with
University of London colleagues, we set out to develop a language that would be
complete and sufficient for all applications.

CPL made many strides forward in establishing new and regular language concepts. But
the objectives were too ambitious and the approach too theoretical, that we put aside the
pragmatic requirement of a complete and implementable system. A user circular rashly
produced in the early days, declared that CPL would be the language for all applications
on Titan, and no other language, not even assembly language, would either be needed or
available. This came home to roost a few years later, when a research student was hastily
commissioned to write a Fortran compiler.

In the context of Titan, CPL failed to follow the tradition of efficiency and utility. But it
did have its influences. Martin Richards developed a simpler version, known as BCPL,
designed for writing systems programs, which was implemented in a readily portable
manner and lived long beyond not only Titan but also Cambridge. BCPL was to influence
Bell Laboratories to develop their own language, first as B and later as C.

A quart from a pint pot

Providing facilities to satisfy the needs of upwards of 1,000 academic users was a
challenge that called for some ingenious techniques of resource allocation and control,
and also a little marketing. To provide a fully interactive system in which all users could
interact on-line with any and every program, be it a text editor, a compiler or their own
application was out of the question due to the lack of any kind of one-level store.

Instead, we found the following pragmatic and efficient solution. Certain tightly written
programs, such as the text editor, were permitted to operate interactively communicating
directly with the user’s terminal. All other programs, be they compilers or users’
applications, could be called at the terminal, but were permitted to communicate only with
the file store. Once such a program had completed execution, its output file would then be
automatically printed at the terminal.

The effect to the user was a form of command level interaction that largely satisfied their
needs. At the same time, by restricting interaction in this way, memory swapping to disc
was avoided, and Titan supported far more simultaneous users than otherwise.

Other techniques for sharing the severely limited resources of the system were developed.
File space was at a premium; the amount available for the average user was tiny when
compared with a modern PC. We had to find a way of ensuring that only the most

86

immediately required files were kept on disc, with the remainder archived on magnetic
tape.

It was wisely decided not to develop an intelligent system to purge files automatically to
tape, our pragmatic approach telling us that, given the right incentives, the human user
had the best intelligence to do this. Incentive came from an accounting system that not
only limited total disc use, but also controlled the average use over time, so that
minimising disc space accumulated credit to use more later. It worked a treat.

We had discovered the principle that a wasting asset is best regulated by controlling the
rate of its use, rather than just maximum use. It worked well and the technique was re-
used on the later Phoenix system, not just for file storage, but for controlling computer
time as well.

Avoiding new releases

Titan was, for most of its existence, a unique one-off system. Apart from the Atlas 2
installed at the CAD Centre, other Atlas computers had substantially different operating
systems. This virtual singularity provided the opportunity to solve one of the major
software engineering problems of large complex systems, namely the control of repairs
and enhancements.

We had discovered the problem associated with the management of new software
releases, where bug fixes, patches and new features are first introduced into a
development version and saved until sufficient to endure the trauma of inflicting a new
release on the users. It is well known that new software releases can introduce more
problems than they resolve. Barry Landy developed tools to install changes, whether
repairs or new features, on an incremental and almost daily basis. Changes could be made
almost on the fly and, just as importantly, removed if and when they caused problems; all
with minimal disruption to the operational service.

Of course the problem is more difficult when there are many instances of the system out
in the field, but the advent of the Internet has at last enabled some suppliers to provide
incremental upgrades and fewer major new releases.

A secure and trusted environment

Given incremental development, we adopted a policy that any bug, security exposure or
other loophole was fixed immediately it was discovered. In consequence, the Titan system
became highly secure, and was relatively impervious to user errors – whether accidental
or otherwise. Obviously there was no guarantee of complete security, but if systems today
were as secure as Titan, the hacking menace of the Internet would be vastly diminished.

Those who served

Almost everyone in the Laboratory in the 1960s, from Maurice Wilkes downwards, was
involved in the Titan project, and for some of us it consumed our formative years.

Bill Elliott joined the Laboratory to act as project leader and to bring the joint efforts of
the Ferranti and Cambridge teams to the stage of hardware being designed, delivered,

 87

installed and commissioned. David Wheeler commanded the logical design efforts, and
Roger Needham, having just completed his PhD, was engaged to do pioneering design
automation. Our trusty team of engineers and technicians put it all together, and kept
working what, by today’s standards, was a very unreliable piece of equipment.

On the software side, the operating system team was led by Roger Needham and included
David Barron, David Hartley, Barry Landy and Mike Guy, with Sandy Fraser coming
from Ferranti in the later stages. David Barron and David Hartley started the CPL project,
joined in due course by Christopher Strachey.

Contributions were made by other Laboratory staff and research students, as well as from
the wider user population. It is worth mentioning that Steve Bourn worked on text editors
as a research student, before taking his Titan experiences to Bell Laboratories to influence
the development of UNIX.

That Titan was highly successful there is no doubt. It broke new ground in the provision
of computing facilities to a large diverse user population, was well engineered and in the
end highly stable. Its legacy stretched into continuing computer science research activities
in Cambridge and the wider world, while it set standards for future service systems within
Cambridge. Indeed, the quality of today’s University Computing Service, although totally
transformed by advancing technology, can be traced back to those pioneering days of the
1960s.

Titan followed the tradition and policies of an efficient and useable system. We were
driven to make a real system that advanced the state of the art while providing a service
for very demanding university users. EDSAC 1 and EDSAC 2 had user populations of
around 50 and 200 respectively. Titan’s user population rose to nearly 1,000, and almost
all of them used time-sharing facilities. No mean feat on a machine with the power of
0.25 MIP, about 0.75 Mbytes of memory and 128 Mbytes of on-line file storage.

At the celebrations for the 50th anniversary of the EDSAC held in 1999 Roger Needham,
who certainly contributed more to the project than anyone else, gave a presentation on the
Titan. He summed up the achievements of Titan with the following:

If you are in our trade, nothing gives you more charge than having put
together a system which nobody else can match.

88

 89

Middleware? Muddleware!

Andrew Herbert
Microsoft Research Ltd, Cambridge, England

Introduction

From 1978 to 1985 I worked with Roger Needham and others in the Computer Laboratory
on the Cambridge Model Distributed System (CMDS) [1]. CMDS admirably
demonstrated the benefits of local area networks and distributed computing. My role was
to develop several of the management services and protocols that glued the CMDS
processor bank and associated servers together. The work caught the attention of industry
and I was invited to become Chief Architect of the Alvey Advanced Networked Systems
Architecture (ANSA) Project [2] — an industrial collaboration to research, develop and
standardize what came to be known as “middleware.”

Now I find myself back working with Roger once more, but no longer studying
middleware, since it is firmly out of the “doing research with a shovel” phase. In this
paper I explore how middleware evolved, what succeeded and what fell by the wayside.

Beginnings

Much of the CMDS environment was built using simple microprocessor based systems,
each dedicated to a single function and networked together to form an integrated system.
The foundation for this was a very simple packet level request-reply “single-shot”
protocol (SSP). A software library was provided to applications for assembling the
request packet following agreed layout and format conventions, transmitting it, waiting
for the reply and extracting the results. Developers were carefully told about the
possibility of packets being lost and the need to design idempotent operations. With these
uncomplicated facilities we created dynamic naming services, user authentication
services, distributed resource management services, boot servers, automatic wire-
wrapping machine controllers amongst others. The services were documented in one or
two sides of simple English text each.

Evolution: remote procedure call

Very quickly the systems community spotted the relationship between protocols like SSP
and procedure calls in programming languages and hence “remote procedure calls (RPC)”
[3] were invented. The driving force for RPC was “transparency”: that is, hiding the nitty
gritty of distributed computing behind familiar programmatic syntax.

Unfortunately transparency was found to be too demanding a mistress, in respect of the
difference in failure models, parameter-passing mechanisms and type systems between
the local and remote case.

Failure models
Procedure calls are atomic – in contrast a request-reply exchange across a network might
fail, leaving the caller unsure whether or not the operation had been executed at the

90

server. Many argued for “exactly-once” RPC execution since this matched local
procedure call. However this could leave orphan executions stranded on a server.
“Orphan extermination” techniques were investigated but were found to be a slippery
slope towards multi-phase commitment protocols, and clearly overkill. Idempotency (“at
least once” semantics) was held to be too limiting, so the consensus settled on “at most
once,” with sequence numbering of request and reply packets, and a simple state machine
to manage the retransmission of lost data.

Parameter passing
Parameters passed by reference present problems in the remote case, since client and
server are in separate address spaces. Some argued for a distributed shared memory to
underpin RPC, others for various forms of copying. This was a particularly serious issue
for languages like C where only a single result parameter is permitted. The normal
pattern of returning complex data structures by updating a variable through a reference
argument didn’t work.

Type system
Potentially client and server in an RPC system are written in different programming
languages with different type systems. Consequently a key component of early RPC
systems were Interface Definition Languages (IDLs) providing syntax for describing
request and reply interactions, characteristically in terms of “in” parameters (arguments)
and “out” parameters (results). Client and server “stub code” to marshal data in and out
of packets was generated automatically from IDL specifications, removing one source of
potential programming errors.

Programmers had to learn how IDL concepts mapped onto their programming language of
choice, and also obscure conventions for managing the heap memory used to marshal
arguments and results in and out of packets. Arguments reigned about IDL syntax: many
held it should be language neutral, both for clarity and to emphasize the potential for
inter-working between different languages. To reduce the burden on the user, others
wanted IDLs to be close to a specific language (or a subset of it, for example object type
specifications in languages like C++). Several systems, such as Sun RPC [4] managed
without an IDL, relying instead on a standard encoding and supporting libraries.

RPC performance
In the early days of RPC research groups competed to demonstrate how their
implementation was faster than anyone else’s – whatever it took, including burying the
protocol inside the operating system [5, 6]. This was driven not only by competition
between researchers, but in the belief that RPC was a tool for constructing specialized
application protocols, displacing “general” protocols such as TCP.

Evolution: network objects

The later stages of RPC development coincided with the emergence of object-oriented
programming into the mainstream, in the form of the C++ programming language. Many
groups including ANSA extended their RPC systems into “network object” systems [7].
The basic idea was that the client held a “network pointer” or “object reference” and an
operation was invoked using a network pointer to identify which object should respond.
Objects moved the computational model for distributed computing from remote

 91

“procedure call” to remote “method invocation” and introduced the concept of a
“service”: a set of methods (operations) over shared state. With RPC, the relationship
between procedures and state had been left implicit, dependent upon implementation
details and operating system structure. With an object model, a server could support
multiple services as independently named entities, including, for example, multiple
instances of the same service bound to different state variables. The paradigm example
was of a “bank server” which embodied individual bank accounts as separate objects.
Network pointers became capabilities, as envisioned in an early paper by Needham [8].

Network pointers resolved many of the problems with reference parameters that had
arisen with RPC systems, since objects provided a way to wrap up complex data
structures and network pointers provided a way to reference objects on one machine from
another. Nothing is for free, however, and now issues arose such as how long-lived
network pointers should be, how tightly bound they are to object instances and how a
server might garbage collect objects that are no longer referenced by its clients.

Object model variations
The network object model developed along two paths. Some systems emphasized
programming language independence and inter-working between operating systems and
runtime environments. Others looked for more complete integration with a single
language and operating system: the attraction of doing so being that little new syntax was
required.

Network objects and databases
In the academic research community the emphasis was on RPC as a system building tool
for general distributed computations. In contrast, in the rapidly growing market for PC
applications the focus was on interactive desktop client applications making use of
database servers through “database connectivity” protocols such as ODBC [9].

Network objects and a flurry of interest in object-orientated databases brought these
strands together. For example in the Guide system [10], the database server was treated
as a repository of “passive objects” to be “activated” when a database operation touched
them. Depending upon the particular system architecture the activation was either local to
the server or by copying the state to the client. The latter was attractive if database
objects were small, rarely shared and frequently accessed – they were effectively cached
at the client for the duration of a transaction. However if the object was heavily shared,
distributed locking and cache consistency had to be introduced. Some systems did this by
introducing transactional capabilities, others by using a distributed virtual memory. A
further challenge in these systems was the need to ensure clients had the correct “object
manager” code available – opening another can of worms to do with implementation
repositories, security and code versioning.

The final evolution of the network object model was its extension to include “mobile
objects” [11], often linked to notions of “(intelligent) agents” [12]. This permitted objects
to migrate from computer to computer automatically in response to operation invocation,
or explicitly in response to application instructions to the infrastructure that an object be
relocated or because the object itself decides to migrate to a different location.

92

Evolution: application servers

Around 1993, from a research perspective network objects were done – they were being
standardized by the Object Management Group though its portfolio of CORBA
specifications. At this time the World Wide Web1 exploded and e-Commerce was
invented. Very quickly people saw the attraction of offering web front-ends to CORBA
applications and network objects evolved into “web objects.” These were the first steps
towards the emergence of application servers supporting the now classic three tier model
of 1) web browser based “thin” client, 2) application objects executing on an application
server coordinating transactions and 3) dynamic state (typically electronic shopping
carts), querying and updating back-end databases all using RPC communications.

Evolution: reflective middleware

The CORBA specifications tried to span all the various flavours of network object
systems. This turned out to be a complex task and made implementations of CORBA
object request brokers cumbersome. People asked if it would be possible to build
customized brokers using re-usable middleware components and, if so, how much
common architecture there could be across them. This spawned research into “reflective
middleware” which continues to this day. Network objects have become introspective
(you can find out from an object what operations it supports and what infrastructure it
requires). Object request brokers have become reflective (you can intercept internal data
paths and dynamically add and replace components). Java, the dominant programming
language used in this research, fortunately has the necessary language facilities. The
result has been highly flexible systems such as the author’s “FlexiNet” system [13],
developed in 1996-8, which at last achieved the goal of “selective transparency” that had
been the ANSA project’s holy grail since the outset in 1984.

This strand of research was given a great deal of impetus by interest from the
telecommunications industry looking to apply the ideas of network objects to distributed
control of Asynchronous Transfer Mode (ATM) networks as part of their attempt to
deliver integrated data and real-time communication services and reclaim the Internet. It
led to extended interaction models to allow network objects to consume streamed traffic
and operate in the context of real-time control.

Evolution: web services

At the time of writing, we are in the fourth generation of middleware, called “web
services” [14]. Web services are promoted as the means to integrate applications across
the Internet and develop “virtual businesses.”

In web services, interfaces are defined using an XML based IDL called the “Web Services
Description Language” (WSDL) and requests are transported using the SOAP protocol
(“Simple Object Access Protocol”) RPC layered above HTTP.

1 Itself an RPC system but with none of the baggage of IDLs, fussy failure models or network objects.

 93

Curiously, in many respects web services have taken us back to a simpler model which is
perhaps closer to the SSP of the Cambridge Model Distributed System, than
contemporary reflective middleware:

• Distributed systems are composed of services: the unit of specification and binding
in web services is “the service,” a collection of inter-related operations
encapsulating data and applications. The service is not strongly tied to any
specific language or object request broker concept of “object.” In this respect it is
implementation neutral.

• Services are defined semantically: WSDL is based on XML which is a general
notation for describing data. It is not tied to programming language views on the
structure of concrete data types.

• Services are stateless: web services don’t have a notion of network pointer.
Because they are intended to be used over the global Internet, there is an
expectation that requests will fail and therefore using idempotent operations is a
good thing. State (e.g., an electronic shopping cart) is stored by the web service,
fetched by the client when needed and pushed when changed. If there is a conflict
the client is invited to retry. Thorny issues like garbage collection which are hard
to make work at Internet scale have been side-stepped.

Hindsight

Looking back over the evolution of middleware we can see there were many false paths
and perhaps lessons for the future:

• Moore’s Law solves performance problems: performance is not the first priority
in web services. A SOAP level request reply may itself be mapped onto lower
level reliable message passing. XML is not an efficient coding. It doesn’t matter,
we have CPU cycles and network bandwidth to burn. What does matter is that we
can’t assume the speed of light will double and so latency (round trip times) is an
issue, but with the standard distributed computing techniques of caching, parallel
and speculative execution we can often conceal this.

• RPC is not a tool for building optimized application protocols: TCP rules in this
respect. It has been honed to handle both interactive request-reply traffic and bulk
flows. The global Internet is optimized for TCP; TCP is optimized to use network
resources fairly and because of this TCP is often the only protocol that is widely
available and supported.

• Component-oriented middleware isn’t a user feature: while vendors may construct
their middleware using component-oriented software engineering, this isn’t
something they expose to users, except in very simple ways – for example
selecting between different profiles for local versus wide area networking.
Probably in part this is to protect the vendor’s ability to ship different product
variants and control evolution of their products, moreover conservative users
(which most are) generally stick to standard profiles recommended by the vendor.

94

• Distributed control of telecommunications networks missed the boat: a lot of the
reflective middleware research was driven by an interest in “telecomms object
request brokers” This didn’t happen: ATM disappeared into the backbone and the
telecommunications industry has spent all its money for the foreseeable future.

• Networked objects are too general: web services are not network objects.
Distributed object systems and mobile object systems are mostly relegated to
academic interest. This comes about because many of the programming language
concepts that crept into distributed computing, such as garbage collection, don’t
work at Internet scale. However, there are some applications of distributed object
platforms found in tightly coupled cluster-based computing, and database
connectivity protocols have continued to evolve and remain important. For
example, Microsoft .Net provides a facility called “Active Data Objects” – which
allows a federation of databases to stream query results to a client and take in
updates.

In summary, with hindsight Roger and his colleagues when designing the Cambridge
Model Distributed System and its single-shot protocol mostly got it right: services were
defined semantically, they were stateless, entanglement with programming language
concepts was avoided and no attempt was made to use SSP as a protocol building tool –
other system services, such as the file server, had their own custom protocols designed
from the ground up and optimized for the task in hand2.

References3

1. NEEDHAM, R.M. AND HERBERT, A.J., The Cambridge distributed computing
system, Addison-Wesley, Reading, Mass., 1982.

2. ANSA Project Archive, http://www.ansa.co.uk.

3. BIRRELL, A.D. AND NELSON, B.J., ‘Implementing remote procedure calls’, ACM
Trans. On Computer Systems, vol. 2, no. 1, February 1984, pp39-59.

4. Sun Microsystems Inc, ‘XDR: External Data Representation Standard,’ Internet RFC
1014, June 1987.

5. SCHROEDER. M.D. AND BURROWS, M., ‘Performance of Firefly RPC,’ ACM Trans. On
Computer Systems, vol. 8, no. 1, February 1990, pp1-17.

6. TANENBAUM, A.S., VAN RENESSE, R., VAN STAVEREN, H., SHARP, G.J.,
MULLENDER, S.J., JANSEN J. AND VAN ROSSUM, G., ‘Experiences with the Amoeba
operating systems,’ Comm. ACM, vol. 33, no. 12, December 1990, pp46-63.

7. BIRRELL, A., NELSON, G., OWICKI, S. AND WOBBER, E.,. ‘Network objects,’ Proc. 14th
Symposium on Operating Systems Principles, Asheville, NC (USA), December 1993,
pp 217-230.

2 There were conventions about the location of addressing information to help gateways and network
monitors, but fortunately since protocol layering hadn’t reached Cambridge in 1979 we refrained from
overdoing it.

3 Note these references are by no means a full bibliography for “middleware,” they are at best a
representative set to support points made in the paper.

 95

8. NEEDHAM, R.M., ‘Adding capability access to conventional file servers’, Operating
Systems Review, vol. 13 no. 1, 1979, pp3-4.

9. Microsoft Corporation, The ODBC Programmer's Reference, MSDN online library:
available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp.

10. BALTER, R. ET AL, ‘Architecture and implementation of Guide, an object-oriented
distributed system,’ Computing Systems, vol. 4, no. 1, April 1991, pp. 31-67.

11. CAUGHEY S. AND SHRIVASTAVA, S.K., ‘Architectural support for mobile objects in
large-scale distributed systems.’ In L.-F. Cabrera and M. Theimer, (eds.), Proc.
Fourth Int'l Workshop on Object Orientation in Operating Systems, Lund, Sweden,
Aug. 1995, pp. 38-47.

12. WOOLDRIDGE, M. AND JENNINGS, N., ‘Intelligent agents: theory and practice,’
Knowledge Engineering Reviews, vol. 10, no. 2, 1995, pp115-152.

13. HAYTON, R., HERBERT, A. AND DONALDSON, D., ‘FlexiNet: a flexible component-
oriented middleware system’, Proc. 8th ACM SIGOPS European Workshop on
Support for Composing Distributed Applications, Sintra, Sept. 1998.

14. WORLD WIDE WEB CONSORTIUM, Web services activity. See http://www.w3.org/2002/ws/

96

 97

Grand Challenges for Computing Research

Tony Hoare
Microsoft Research, Cambridge, England

The Microsoft Research Laboratory at Cambridge provides a wonderful environment for
pursuit of pure and applied research. It is the policy of the Company to promote research
according to the traditional pattern that has contributed so much to the progress of science
in the past. Researchers are free to pursue their interests in exciting directions, and there
is no prior target set for the first application of the results of research in industrial
products. Open publication is the norm, and contact and collaboration with researchers in
universities is encouraged.

Ironically, the policy that has directed much university research in recent years throughout
the world is in stark contrast with Microsoft’s research policy. The current administrative
procedures for funding bodies for academic research favour short-term industrial goals
that will lead to competitive advantage for the community that provides the funds. One
reason that I took up Roger’s offer of a job in Cambridge was because I strongly believed
in Microsoft research policy which he has so successfully implemented. More than that: I
wanted to encourage my former colleagues in universities to raise their eyes to longer
term goals and take control of the general scientific agenda. I also hoped to use my
influence (if any) to rectify the imbalance in current funding policies in UK.

When Roger promoted an initiative to set up a UK Computing Research Council
(UKCRC), I felt that my membership of this body would offer me a good opportunity.
And when the Council sponsored a Workshop entitled ‘Grand Challenges for Computing
Research,’ I volunteered to serve as co-organiser. In the call for proposals, I drafted a list
of criteria relevant for evaluation of a research proposal as a grand challenge. These
criteria emphasise the long-term contribution to science itself that can arise from pursuit
of an ambitious long-term challenge on an international scale; and this complements the
kind of research initiative that pursues shorter-term local goals. In order to test the
formalisation of the criteria, I applied them to my own favourite challenge, the old
challenge of constructing a verifying compiler.

The call for proposals attracted over a hundred excellent submissions. The Workshop took
place on 24-26th November 2002, in the highly suitable environment of the National e-
science Centre in Edinburgh. There were over fifty participants, including representatives
from abroad. The attending scientists were very enthusiastic at the prospect of
formulating and pursuing a grand challenge, generated by scientific curiosity or
engineering ambition. Many of the participants are still engaged in refinement and more
detailed planning of a small selection of proposals that inspire support among the
scientists best qualified to contribute to them. I have also been developing my own
challenge proposal for a verifying compiler, both because it is dear to my heart, and to
show an example that may be useful to others.

98

What follows is my latest draft of criteria for maturity of a grand challenge, followed by a
sample from a report on the Verifying Compiler. The original list of criteria was sent out
in the call for submissions for the Edinburgh Workshop; it was adopted by participants at
the Workshop as the basis for evaluation of proposals and it is now being applied in the
detailed proposals that are due to be submitted to the UKCRC in June.

Criteria for a “Grand Challenge”

The primary purpose of the formulation and promulgation of a grand challenge is to
contribute to the advancement of some branch of science or engineering. A grand
challenge represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by a team
effort within a predicted timescale. The challenge is formulated by the researchers
themselves as a focus for the research that they wish to pursue in any case, and which
they believe can be pursued more effectively by advance planning and co-ordination.
Unlike other common kinds of research initiative, a grand challenge should not be
triggered by hope of short-term economic, commercial, medical, military or social
benefits; and its initiation should not wait for political promotion or for prior allocation of
special funding. The goals of the challenge should be purely scientific goals of the
advancement of skill and of knowledge. It should appeal not only to the curiosity of
scientists and to the ambition of engineers; but also to the imagination of the general
public. It may thereby enlarge the general understanding and appreciation of science, and
attract new entrants to a rewarding career in scientific research.

An opportunity for a grand challenge arises only rarely in the history of any particular
branch of science. It occurs when that branch of study first reaches an adequate level of
maturity to predict the long-term direction of its future progress, and to plan a project to
pursue that direction on an international scale. Much of the work required to achieve the
challenge may be of a routine nature. Many scientists will prefer not to be involved in the
co-operation and co-ordination involved in a grand challenge. They realize that most
scientific advances, and nearly all break-throughs, are accomplished by individuals or
small teams, working competitively and in relative isolation. They value their privilege of
pursuing bright ideas in new directions at short notice. It is for these reasons that a grand
challenge should always be a minority interest among scientists; and the greater part of
the research effort in any branch of science should remain free of involvement in grand
challenges.

A grand challenge may involve as much as a thousand man-years of research effort,
drawn from many countries and spread over ten years or more. The research skill,
experience, motivation and originality that it will absorb are qualities even scarcer and
more valuable than the funds that may be allocated to it. For this reason, a proposed
grand challenge should be subjected to assessment by the most rigorous criteria before its
general promotion and wide-spread adoption. These criteria include all those proposed by
Jim Gray in his Turing address as desirable attributes of a long-range research goal. The
additional criteria that are proposed here relate to the maturity of the scientific discipline
and the feasibility of the project. In the following list, the earlier criteria emphasize the
significance of the goals, and the later criteria relate to the feasibility of the project, and
the maturity of the state of the art.

 99

• Fundamental. It arises from scientific curiosity about the foundation, the nature, and
the limits of an entire scientific discipline, or a significant branch of it.

• Astonishing. It gives scope for engineering ambition to build something useful that
was earlier thought impractical, thus turning science fiction to science fact.

• Testable. It has a clear measure of success or failure at the end of the project; ideally,
there should be criteria to assess progress at intermediate stages too.

• Inspiring. It has enthusiastic support from (almost) the entire research community,
even those who do not participate in it, and do not benefit from it.

• Understandable. It is generally comprehensible, and captures the imagination of the
general public, as well as the esteem of scientists in other disciplines.

• Useful. The understanding and knowledge gained in completion of the project bring
scientific or other benefits; some of these should be attainable, even if the project as a
whole fails in its primary goal.

• Historical. The prestigious challenges are those which were formulated long ago;
without concerted effort, they would be likely to stand for many years to come.

• International. It has international scope, exploiting the skills and experience of the
best research groups in the world. The cost and the prestige of the project is shared
among many nations, and the benefits are shared among all.

• Revolutionary. Success of the project will lead to radical paradigm shift in scientific
research or engineering practice. It offers a rare opportunity to break free from the
dead hand of legacy.

• Research-directed. The project can be forwarded by the reasonably well understood
methods of academic research. It tackles goals that will not be achieved solely by
commercially motivated evolution of existing products.

• Challenging. It goes beyond what is known initially to be possible, and requires
development of understanding, techniques and tools unknown at the start.

• Feasible. The reasons for previous failure meet the challenge are well understood and
there are good reasons to believe that they can now be overcome.

• Incremental. It decomposes into identified intermediate research goals, which can be
shared among many separate teams over a long time-scale.

• Co-operative. It calls for planned co-operation among identified research teams and
research communities with differing specialized skills.

• Competitive. It encourages and benefits from competition among individuals and
teams pursuing alternative lines of enquiry; there should be clear criteria announced in
advance to decide who is winning, or who has won.

• Effective. Its promulgation changes the attitudes and activities of research scientists
and engineers.

• Risk-managed. The risks of failure are identified, symptoms of failure will be
recognized early, and strategies for cancellation or recovery are in place.

The tradition of grand challenges is common in many branches of science. If you want to
know whether a challenge qualifies for the title ‘grand,’ compare it with
− Prove Fermat’s last theorem (accomplished)
− Put a man on the moon within ten years (accomplished)
− Cure cancer within ten years (failed in 1970s)
− Map the Human Genome (accomplished)
− Map the Human Proteome (too difficult for now)
− Find the Higgs Boson (under investigation)

100

− Find gravity waves (under investigation)
− Unify the four forces of physics (under investigation)
− Hilbert’s programme for mathematical foundations (abandoned in the1930s)

All of these challenges satisfy many of the criteria listed above in varying degrees, though
no individual challenge could be expected to satisfy all the criteria. The first in the list
was the oldest and in some ways the grandest challenge; but being a mathematical
challenge, my suggested criteria are considerably less relevant to it.

In computer science, the following examples may be familiar from the past. That is the
reason why they are listed here, not as recommendations, but just as examples:

− Prove that P is not equal to NP (open)
− The Turing test (outstanding)
− The verifying compiler (abandoned in the 1970s)
− A championship chess program (completed)
− A GO program at professional standard (too difficult)
− Literature translation from English to Russian (failed in the 1960s)

The first of these challenges is of the mathematical kind. It may seem to be quite easy to
extend this list with new challenges. The difficult part is to find a challenge that passes
the tests for maturity and feasibility. That was the task of the Workshop on Grand
Challenges for Computing Research, and the work still continues.

The Verifying Compiler: implementation and application

A verifying compiler uses automated mathematical and logical reasoning methods to
check the correctness of the programs that it compiles. The criterion of correctness is
specified by types, assertions, and other redundant annotations that are associated with the
code of the program, often inferred automatically, and increasingly often supplied by the
original programmer. The compiler will work in combination with other program
development and testing tools, to achieve any desired degree of confidence in the
structural soundness of the system and the total correctness of its more critical
components. The only limit to its use will be set by an evaluation of the cost and benefits
of accurate and complete formalization of the criterion of correctness for the software.

An important and integral part of the project proposal is to evaluate the capabilities and
performance of the verifying compiler by application to a representative selection of
legacy code, chiefly from open sources. This will give confidence that the engineering
compromises that are necessary in such an ambitious project have not damaged its ability
to deal with real programs written by real programmers. It is only after this
demonstration of capability that programmers working on new projects will gain the
confidence to exploit verification technology in new projects.

I found that the most difficult criteria to satisfy were those for testability, feasibility and
effectiveness. These are my latest thoughts on just these points.

Testable. If the project is successful, a verifying compiler will be available as a standard
tool in some widely used programming productivity toolset. It will have been tested in
verification of structural integrity and security and other desirable properties of millions

 101

of lines of open source software, and in more substantial verification of critical parts of it.
This will lead to removal of thousands of errors, risks, insecurities and anomalies in
widely used code. Proofs will be subjected to check by rival proof tools. The major
internal and external interfaces in the software will be documented by assertions, to make
existing components safer to use and easier to reuse. The benefits will extend also to the
evolution and enhancement of legacy code, as well as the design and development of new
code. Eventually programmers will prefer to confine their use of their programming
language to those features and structured design patterns which facilitate automatic
checks of correctness.

Feasible. Most of the factors which have inhibited progress on practical program
verification are no longer as severe as they were.

1. Experience has been gained in specification and verification of moderately scaled
systems, chiefly in the area of safety-critical and mission-critical software; but so far the
proofs have been mainly manual.

2. The corpus of Open Source Software is now universally available and used by millions,
so justifying almost any effort expended on improvement of its quality and robustness.
Although it is subject to continuous improvement, the pace of change is reasonably
predictable. It is an important part of this challenge to cater for software evolution.

3. Advances in unifying theories of programming suggest that many aspects of
correctness of concurrent and object-oriented programs can be expressed by assertions,
supplemented by automatic or machine-assisted insertion of instrumentation in the form
of ghost (model) variables and assignments to them.

4. Many of the global program analyses which are needed to underpin correctness proofs
for systems involving concurrency and pointer manipulation have now been developed for
use in optimizing compilers.

5. Theorem proving technology has made great strides in many directions. Model
checking is widely understood and used, particularly in hardware design. Decision
procedures are beginning to be applied to software. Proof search engines are now well
populated with libraries of application-dependent theorems and tactics. Finally, SAT
checking promises a step-function increase in the power of proof tools. A major
remaining challenge is to find effective ways of combining this wide range of component
technologies into a small number of tools, to meet the needs of program verification.

6. Program analysis tools are now available which use a variety of techniques to discover
relevant invariants and abstractions. It is hoped that that these will formalize at least the
program properties relevant to its structural integrity, with a minimum of human
intervention.

7. Theories relevant for the correctness of concurrency are well established, and theories
for object orientation and pointer manipulation are under development.

Effective. The promulgation of this challenge is intended to cause a shift in the
motivations and activities of scientists and engineers in all the relevant research
communities. They will be pioneers in the collaborative implementation and use of a
single large experimental device, following a tradition that is well established in
astronomy and physics but not yet in computer science.

102

1. Researchers in programming theory will accept the challenge of extending proof
technology for programs written in complex and uncongenial legacy languages. They
will need to design program analysis algorithms to test whether actual legacy programs
observe the constraints that make each theoretical proof technique valid.

2. Builders of programming tools will carry out experimental implementation of the
hypotheses originated by theorists; following practice in experimental branches of
science, their goal is to explore the range of application of the theory to real code.

3. Sympathetic software users will allow newly inserted assertions to be checked
dynamically in production runs, even before the tools are available to verify them.

4. Empirical computer scientists will apply tools developed by others to the analysis and
verification of representative large-scale examples of open code.

5. Compiler writers will support the proof goals by adapting and extending the program
analyses currently used for optimization of code; later they may even exploit, for purposes
of further optimization the additional redundant information provided with a verified
program.

6. Providers of proof tools will regard the project as a fruitful source of low-level
conjectures needing verification, and will evolve their algorithms and libraries of theories
to meet the needs of actual legacy software and its users.

7. Teachers and students of the foundations of software engineering will be enthused to
set student projects that annotate and verify a small part of a large code base, so
contributing to the success of a world-wide project.

 103

Sentient Computing1

Andy Hopper,
Cambridge University, England

Sentient computing is the proposition that applications can be made more responsive and
useful by observing and reacting to the physical world. It is particularly attractive in a
world of mobile users and computers.

Location sensing

Cheap sensors make it possible for computer systems to react to the physical
environment. Sensors giving location information are probably the easiest to construct
and deploy. Use of such location information makes it possible for user interfaces to be
based on space itself. Such context-aware, or sentient, interfaces and applications have
been constructed and used for a number of years.

Sensors tell us about the location or position of things. To reflect the requirements of
different applications, we take three different approaches to categorising the concept of
location. First, containment is where we say that an object is within this container, e.g. a
room. Second, proximity is where we register that we are close to something. Finally, co-
ordinate systems provide a point location in space, subject to some error value. These
categories are not hard and fast and can blend together. Small containers are very similar
to a co-ordinate system, and proximity has much in common with the concept of
containment.

1 This is an abridged and updated version of the Royal Society Clifford Paterson Lecture 1999. The original
paper was published in Phil. Trans. R. Soc. Lond., A, (2000), Volume 358, Pages 2349-2358, Royal
Society, August 2000.

Figure 1: Containment: Active Badge

Infra-Red Location
15 metre range

diffuse

room-scale accuracy
95% of time

containment location

104

Our first experience of developing a sensor specifically to provide spatial information
originated in the late 1980s in the form of the Active Badge (Figure. 1). Personnel and
equipment could be tagged using the Badge, which transmitted a unique infrared signal
every few seconds. The transmissions were diffuse and receivers in a room picked up the
signal, giving room-scale containment. It told us who and what was in which room. The
Active Badge was the inspiration that started us on this whole line of enquiry.

In the case of proximity, promising commercial systems are starting to appear. The radio-
based Bluetooth system gives accuracy of about 10 metres using the received signal
strength indication (RSSI). This will improve to about 50 centimetres in future
implementations by using specialised on-board ranging circuitry. Similarly RSSI
information from Wavelan (802.11) systems together with heuristics about movement of
people can be used to provide in-building location information.

Outside, the Global Positioning System (GPS) can be used which has given rise to a large
number of applications. GPS is accurate to around 30 metres most of the time, although
greater precision can be achieved, and is one example of a co-ordinate based system.

In order to test the impact of fine-grain location information we have developed a co-
ordinate system for indoors. This uses a tag, which incorporates ultrasonic transmitters
and an array of ceiling-mounted detectors. A detector on the far side of the room will
register a pulse later than a detector directly above an object. Using this differential timing
information, we can calculate the position of objects to within a few centimetres almost
all the time (Figure. 2). If two transmitters are attached to a rigid object it is possible to
compute its orientation. The Active Bat technology is likely to remain the basis of the
most precise indoor location systems for the foreseeable future. There will be many
applications that do not require this level of precision and refinement. However, as a
research tool, it is providing us with valuable information on what can be done with very
precise positional data.

Figure 2: Co-ordinate: Active Bat

Mobile
Transmitter

(Bat)

Fixed
Receivers

Ceiling

Ultrasonic Location
5 metre range

3cm accuracy 95% of time

3D co-ordinate location

 105

The Active Bat system requires a substantial amount of infrastructure, particularly in
ceilings. A new technology, which may provide similar location information, is
ultrawideband radio. By emitting very short pulses of several picoseconds duration we
can measure propagation delays accurately at the receiver from transmitters spaced up to
20 metres apart. A large spectrum is used, for example from 3 GHz to 10 GHz, but the
power levels are such that interference to other users is minimised. Ultrawideband
transmissions may be less susceptible to interference in particular parts of the band and
thus instrumenting buildings may prove much easier than with the Active Bat system.
However it is likely that the precision will be some 10 times worse than the ultrasonic
Active Bat with a location accuracy of about 30 centimetres most of the time. It also
remains to be seen what the local effect of monitors and other metallic objects is on
precision.

Spatial monitoring

Our sensors provide raw spatial facts about objects. They tell us where an object is, and
possibly the direction in which an object is pointing. Location-aware applications need
more than raw spatial data, they need to be notified of spatial relationships between
objects that are significant for the execution of the application. But how do we decide
whether a spatial relationship is significant? The approach we have adopted operates on
the basis of zones of containment surrounding objects. In Figure 3(a) X represents a
person and K a keyboard. Now suppose we have an application that needs to be notified
when person X is in a position to use keyboard K – when X is possibly “holding” K. If
the zone of confinement of K overlaps the zone of confinement of X, then the holding
condition is held to be true and the application receives the appropriate space location
event. The situation in Figure 3(b) indicates how this principle could be applied to support
a multi-camera video conferencing system, giving participants the freedom to look in
different directions while talking, or even walking around their offices.

Figure 3: Evaluating Spatial Facts.

Person X is “holding”
keyboard K.

X
K

Person X can be “seen” by
camera B but not by camera A.

X

B

A

106

The principle of turning raw spatial data into application-significant events through
geometric containment and overlapping is reasonably straightforward. Scalability can be
addressed by applications indicating the interest and precision required. The
computations are then only performed to the required level and the computational task
scales linearly with the number of overlapping spaces. This approach can be thought of as
the mouse/desktop metaphor mapped onto the physical world in real time.

The operational system that has been built uses a variety of sensors. It allows space
representations to change quickly, provides the means to express event driven control
logic, uses caches and proxies to handle large volumes of data quickly and executes in
real-time to satisfy a human in the loop.

Note that Figure 3 is a 2D representation of what in reality would be a 3D environment.
This simplification can be made because, in general, people and objects tend to remain
relatively fixed in the vertical plane. At the heart of such spatial monitoring systems we
need to define a world model, which is easily understood by the user yet computable by
the system. Is 3D important or is 2D satisfactory for most office and home applications?
What is the precision of location information required? How can the spatial metaphor be
made obvious to the user?

Data distribution

Publishing sensor data, which relates to the position of people and objects is one end-
application. Beyond this we consider the automatic control of the digital environment
with reactive and possibly predictive features. An attractive application for a user in a
networked environment is the ability for the personal desktop to follow the user to any
nearby device. In order to achieve this in addition to location information we need a
platform for connecting and displaying information on all these devices in a ubiquitous
way.

Figure 4: VNC - The Platform

Rectangle
descriptions

Keyboard / click
events

Server Viewer

 107

One way to do this is to tunnel connections to all devices using a simple device-
independent protocol. We have devised one such ubiquitous platform called the Virtual
Network Computer (VNC). In our approach the viewer, at the receiving end of the
connection, has no state, and simply displays information graphically. The connection
from viewer to server is also stateless, just keystrokes and pointer clicks. Our viewer is a
particularly simple version of the so-called thin client (Fig. 4), with all application state
and processing centralised on a server.

The absence of application state at the viewer eliminates any requirement for re-
synchronisation, and the appearance is of user-interface mobility. In order to achieve this
we have traded bandwidth, or more precisely we have relied on ubiquitous connectivity
and low latency end-to-end.

The low-level nature of the protocol is the key to device independence, providing a
platform that supports the connection of any device to anything. The connections can be
one-to-one (fixed or mobile), and the streams can be split giving one-to-many, many-to-
one, and many-to-many.

The performance of the VNC system has turned out much better than expected. By using
a variety of compression schemes and caching it has been possible to operate useably
across links with capacities of only 10’s of Kbps and latencies of up to 40 milliseconds.
Therefore incorporating the simplest devices with wireless connectivity within this
framework now appears plausible.

Applications

Location information appears to be a powerful tool in constructing new applications.
Opening and closing doors automatically is an obvious example. In our ten or more years
of being immersed in such systems some of the most enduring applications have been
those where raw location data is processed in a simple way and made available
ubiquitously. A textual indication of where someone is, how fast they are moving, how
long they have been there, has proved the most popular. Showing the local context,
including who and what else is nearby, is also attractive. Publishing such information to
the local (trusted) peer group saves time; if someone is not observed by the location
system they are not available, whatever the reason. Graphical representations and in
particular maps appear attractive but can become cumbersome in what is a familiar
physical environment. So simple sensing and simple logic appear to work and
applications presenting these stand the test of time. The containment location information
provided by the Active Badge is quite sufficient for this purpose.

Personalisation by teleporting VNC desktops has also proved popular. The teleport can
be triggered without using location data, but having a personal tag with a button, which
acts as a personal ubiquitous controller, is neat. More precise coordinate location
information as provided by the Active Bat becomes important for its ability to select the
correct workstation or other device. Another use that takes advantage of the more precise
location information associates a control function with any 3 centimetres cube of space.
Typically this is done on the surface of a wall or other planar object and is normally a
control trigger of some type. This use appears to have some merit and the walls of our
laboratory are sprouting a number of such “active posters”. For this specific application a
local proximity RFID tag can provide the same location information in a simpler way.

108

Specialist applications, for example surveillance where the selection of a particular
camera is based on spatial data, can provide opportunities. However there is always scope
for such bespoke solutions.

Observations

So what are the results of over a decade of research and what is the prognosis for the
future? The research area is now very popular and is variously labelled ubiquitous,
pervasive, ambient, calm, as well as sentient. In this paper we have permitted ourselves
to give users attributes such as “holding”, “seen”, and even suggested the notion of
prediction. Is this realistic?

We have learnt many aspects of how to construct such systems. Sensor information can
be generated on a reasonable scale and presented to users in various ways. It seems the
more direct the presentation the more attractive (or perhaps less irritating) the
application. Some simple logic to interpret the data can be useful. Occasionally a
domain-specific agent operates as envisaged.

Our attempts at automatic control without user intervention have not proved enduring.
For example automatically teleporting to the nearest screen throughout the laboratory
did not stand the test of time. Similarly automatic routing of phone calls had sufficiently
serious flaws that the human operator remained as the interpreter of location data. User
service profiles were attempted but quickly become confusing themselves. Applications
where predictions of user preference or intent are required have not so far been
successful at all.

So anything beyond promulgation and simple interpretation seems problematic. Once
more than a simple inference is attempted we seem to hit a brick wall. We realised this
with the Badge system a decade ago. Interpreting the sighting of three or more Badges in
a single space was presented as a “meeting”. However even in an office environment
there are many reasons for three or more sightings at one place (meeting, tea time,
passing in corridor). And that is before we extend to home or other environments.

One potential research direction is to provide much more feedback to the user. When we
move a cursor on a screen it is clear where it is and what is likely to happen when we
click. When walking through space it is much less obvious what the options are and how
to control them. So visual and aural feedback with perhaps every nearby wall being used
as a display may be one approach. The user might then be able to keep up as the context
keeps changing. If proxy decisions are being made the reasoning can now be presented
more easily. The user can interact in a much more informed way and help guide any
decision-making process.

Perhaps a way to make progress beyond the engineering level is to imagine a “perfect”
sensing system with full coverage of the environment. How would we define the context
(world knowledge), semantics of queries, and user intent? How would the user interact to
resolve ambiguities? Are statistical techniques likely to make useful predictions or are
there too many plausible choices at each point? Could a series of functional tests be
devised which would give us the foundations to build on? It seems we are a long way
from finding answers and only by moving away from unrealistic ambitions will we
prevent the research area being discredited in due course.

 109

Cyber Security in Open Systems

Anita Jones
University of Virginia,

Charlottesville, Virginia, USA

In the early days of computer systems, the 60s through the 80s, software systems were
closed, that is, a single operating system owned and doled out the computation and
storage resources. Each computer system stood alone, and operated solo. Security
properties, if any, were integral to and enforced by the operating system architecture.
Today, multitudes of computers are interconnected, communicating via messages.
Operating systems still manage the same resources for one or a few computers and their
attachments, as of old. But, typically only software with limited function has cognizance
of the overall interconnected software and hardware. The interconnected parts can be
called an open system. It is open just as human society is open; individuals each operate
with some degree of autonomy. Cyber security has been a casualty of the transition from
closed to open systems.

In closed systems sufficient protection of one user from another could be assured by
designing a single, preferably elegant(!), mechanism that was integral to the operating
system. Roger Needham and his colleagues, and my colleagues and I, helped advance a
protection mechanism called capabilities. Access control mechanisms likewise served
well. Both continue to be useful in limited contexts. Both of these protection
mechanisms incorporate an assumption that the single mechanism is sufficient for its
correct functioning, and that no software can get around the mechanism and obviate the
protection that it provides. That assumption is unfounded in open systems, and
sometimes in closed systems.

As the transition from closed to open occurred, the security research community adopted
a paradigm of perimeter defense. The notion was to continue to trust the protection
mechanisms within the closed system, and to check all information flowing across the
perimeter into the closed system to ensure that it was “acceptable.” Firewalls are one
example of perimeter guards. The perimeter defense paradigm permitted the preservation
of the “one-mechanism” closed system approach to security.

But the perimeter defense paradigm is fatally flawed. First, it assumes that the “thing”
that we need to protect is “inside” the system and that we need to keep “outside” attackers
from penetrating our defenses and gaining access to the inside. The perimeter defense
paradigm is like the French Maginot Line. It is fragile. In WWII, France fell in 35 days
because of its reliance on this model. No matter how formidable the defenses, an attacker
can make an end run, and once inside, can compromise the entire system. Second, the
paradigm fails to account for the reality that many security flaws are “designed in.”
Security may be compromised while the system is performing exactly as specified. In
1993, the Naval Research Laboratory performed an analysis of some 50 security flaws
and found that nearly half of them (22) were designed into the requirements or the
specifications for correct system behavior! Third, perimeter defenses face outward, and
are typically useless against an inside attack. Lastly, there exist attacks, such as

110

distributed denial of service attacks, that do not rely on penetration. They create a flood
of false requests for service. The closed system cannot discern the difference between
legitimate and false requests and squanders resources servicing false requests. The
perimeter defense paradigm cannot work for sound theoretical reasons. Other approaches
are needed.

Open systems are distinguished by the fact that they have heterogeneous components,
some of which may come and go without warning. There is no single architecture, no
single set of behavioral attributes except at the most primitive of levels. There is no
single mechanism, unlike in a closed system, through which all access flows. Many open
systems of interest are integral to human processes and procedures, e.g. information
systems involved in health care administration or (just in time) inventory delivery to a
chain of supermarkets.

We need a new model of cyber security to accommodate open systems. Indeed, the
fundamental security properties of privacy, integrity of information, and denial of service
that are implemented in part today are insufficient. We need a model that permits
tailoring of security properties to what is important for the real world situation in which
an information system is embedded. Factors such as the timing or the temporal order of
actions need to considered. Likewise correlation of operations on related entities are
essential for real-world security. The new model of cyber security should be appropriate
to the context of the user’s application. This is far distant from the notion of perimeter
defense.

This new model of security may require software that, in effect, detects and reacts to the
emergent – the “overall” – behavior of the open system. Today, system administrators
“stick their fingers in the dike” to stem “leaks” of many kinds as they attempt to
configure and upgrade software to assure security. In a recent attack, called “slammer,”
the company whose software had holes that made the attack possible had announced those
holes and some associated fixes. However, even that company had not protected all of
their own systems. That illustrates how difficult it is for system administrators to keep up
with the myriad patches, fixes, and reconfiguration changes they must apply to close
security holes, not to mention dealing with a spate of false alarms. Their systems have
little self-awareness, little ability to self-configure or self-sustain.

In the absence of open systems being able to “police” themselves, and in the absence of
the research community finding a new approach to security, it is not surprising that
increasingly society is beginning to rely on traditional societal mechanisms to assure well-
behavedness – courts, government regulation, and law enforcement action.

Most societal approaches to assuring socially acceptable behavior involve “after the fact”
enforcement involving a detective force, arrest, trial and incarceration.

Unless an alternative model for securing cyberspace is found, society will use its physical
world approaches – whether they fit well with cyberspace or not. We see this playing out
in the music industry in the United States today. Application of these traditional
(re)actions may trample and destroy some of the attributes that open information systems
deliver, such as a release from associating all actions and all actors to a geographical
“place.”

 111

Conclusion

Cyber security concerns and the inadequacy of current systems stem from the transition
from closed to open systems and to the integration of those systems into the very
processes of society. Improving security of today’s systems is greatly impeded by our
current inability to design, develop, and maintain large and complex software systems.
The inability of a system to recognize its own emergent behavior as it unfolds and for
systems to self-adapt in the face of that observed behavior makes progress toward more
secure and more reliable systems more difficult.

We need entirely new models of information security that go beyond notions of privacy,
integrity, and assurance of service quality. Security of an information system that is
integral to a physical, human, activity needs to reflect the specific, possibly unique, needs
of that activity. Today’s models and mechanisms are not up to the task. As a result,
society is moving along the path toward using traditional approaches to assuring well-
behavedness. The window in which it might be possible to formulate new notions of
security and well-behavedness that do not reflect today’s “place-based” laws and
jurisdictions is closing rapidly.

112

 113

Software Components: Only The Giants Survive1

Butler W. Lampson
Microsoft Research, Redmond, Washington, USA

Abstract

For many years programmers have dreamed of building systems from a library of reusable
software components together with a little new code. The closest we’ve come is Unix
commands connected by pipes. This paper discusses the fundamental reasons why
software components of this kind haven’t worked in the past and are unlikely to work in
the future. Then it explains how the dream has come true in spite of this failure, and why
most people haven’t noticed.

Introduction

People have been complaining about the “software crisis” at least since the early 1960s.
The famous NATO software engineering conference in 1968 brought the issue into focus,
and introduced the term “software engineering.” Many people predicted that software
development would grind to a halt because of our inability to handle the increasing
complexity; needless to say, this has not happened.

What is often overlooked is that the software crisis will always be with us (so it shouldn’t
be called a “crisis”). There are three reasons for this:

• As computing hardware quickly becomes more powerful (in line with of Moore’s
law), new applications quickly become feasible, and they require new software. In
other branches of engineering the pace of change is much slower.

• Although it’s difficult to handle complexity in software, it’s much easier to handle it
there than elsewhere in a system. It’s therefore good engineering to move as much
complexity as possible into software.

• External forces such as physical laws impose few limits on the application of
computers. Usually the only limit is our inability to write the programs. Without a
theory of software complexity, the only way to find this limit is trial and error, so we
are bound to over-reach fairly often. “A man’s reach should exceed his grasp, or
what’s a heaven for.”—Browning.

At the 1968 NATO conference, Doug McIlroy proposed that a library of software
components would make programming much easier [7]. Since then, many people have
advocated and worked on this idea; often it’s called “reusable software,” though this term
has other meanings as well. Most recently, the PITAC report [9] proposed a major
research initiative in software components. This paper explains why these ideas won’t
work.

1 This paper is based on a keynote address given at the 21st International Conference on Software
Engineering, 1999.

114

How much progress has there been in software in the last 40 years? Either a little or a lot:
the answer depends on what kind of software you mean.

A little, if you are writing a self-contained program from scratch, or modifying an existing
self-contained program. The things that help the most are type-safe languages such as
Pascal and Java, and modules with clean interfaces [8]; both have been around for 30
years. Program analysis tools help with modifications, and they have been improving
rapidly [3].

A lot, if you are doing a typical business computing application. You build your
application on top of a few very large components: an operating system (Linux or
Windows), a browser (Netscape or Internet Explorer), a relational database and
transaction processor (DB2, Oracle, or SQL Server), and a rapid application development
system (Visual Basic or Java); see figure 1. You use only a small fraction of the features
of each component, and your program consumes 10 or 100 times the hardware resources
of a fully custom program, but you write 10% or 1% of the code you would have written
30 years ago. Certain kinds of domain-specific programs are also dramatically easier. If a
spreadsheet, SQL, Matlab, Mathematica, or HTML is a good match for your problem,
again you can write your program 10 or 100 times more easily.

The component library: dream and reality

McIlroy’s idea was a large library of tested, documented components. To build your
system, you take down a couple of dozen components from the shelves and glue them
together with a modest amount of your own code.

The outstanding success of this model is the Unix commands designed to be connected by
pipes: cat, sort, sed, and their friends [6]. There are quite a few of these commands, and
you can do a lot by putting them together with a small amount of glue, usually written in
the shell language. McIlroy [1] gives a striking example. It works because the components
have a very simple interface (a character stream, perhaps parsed into lines or words) and
because most of them were written by a single tightly-knit group. Not many components
have been added by others.

Another apparent success is the PC hardware industry. PCs are built from (hardware)
components: processor and chipset, DRAM SIMM, hard disk, monitor, graphics card and
driver, etc. Manufacturers really do slap these components together to make systems.

User
Interface

Business
logic Database

Netscape Visual Basic Oracle

Figure 1. A typical business application

 115

Reality is uglier than appearance though. Only a few components really work well, the
ones that can be tested adequately by running Windows on them for a few days. Others
cause lots of problems, as anyone knows who has tried to build a PC. And Microsoft is
responsible for the integrity of the PCI ecosystem.

For the most part, component libraries have been a failure, in spite of much talk and a
number of attempts. There are three major reasons for this:

• There’s no business model.

• It costs a client too much to understand and use a component.

• Components have conflicting world views.

No business model
Design is expensive, and reusable designs are very
expensive. It costs between ½ and 2 times as much
to build a module with a clean interface that is
well-designed for your system as to just write
some code, depending on how lucky you are. But a
reusable component costs 3 to 5 times as much as
a good module. The extra money pays for:

• Generality: A reusable module must meet the needs of a fairly wide range of ‘foreign’
clients, not just of people working on the same project. Figuring out what those needs
are is hard, and designing an implementation that can meet them efficiently enough is
often hard as well.

• Simplicity: Foreign clients must be able to understand the interface to a module fairly
easily, or it’s no use to them. If it only needs to work in a single system, a complicated
interface is all right because the client has much more context.

• Customization: To make the module general enough, it probably must be
customizable, either with some well-chosen parameters or with some kind of
programmability, which often takes the form of a special-purpose programming
language.

• Testing: Foreign clients have higher expectations for the quality of a module, and they
use it in more different ways. The generality and customization must be tested as well.

• Documentation: Foreign clients need more documentation, since they can’t come over
to your office.

• Stability: Foreign clients are not tied to the release cycle of a system. For them, a
module’s behaviour must remain unchanged (or upward compatible) for years,
probably for the lifetime of their system.

Regardless of whether a reusable component is a good investment, it’s nearly impossible
to fund this kind of development. It’s not necessary for building today’s system, and
there’s no assurance that it will pay off.

It’s also very difficult to market such components:

• There are many of them, so each one gets lost in the crowd.

Reusable component

½ – 2 x

3 – 5 x
Good module for your system

Just code it

116

• Each client needs a number of them, so that they can’t be very expensive.

• Each one is rather specialized, so it’s hard to find potential customers.

Cost to understand
To use a component, the client must understand its behaviour. This is not just the
functional specification, but also the resource consumption, the exceptions it raises, its
customization facilities, its bugs, and what workarounds to use when it doesn’t behave as
expected or desired. One measure of this cost is the ratio of the size of a complete
specification (which of course seldom exists) to the size of the code. For a modest-sized
component, this ratio is usually surprisingly large.

Furthermore, because the written spec is almost always quite inadequate, there is
uncertainty about the cost to discover the things that aren’t in the spec, and about the cost
to deal with the surprises that turn up. If the module has been around for a while and has
many satisfied users, these risks are of course smaller, but it’s difficult to reach this happy
state.

The client’s alternative is to recode the module. Usually this is more predictable, and
problems that turn up can often be handled by changing the module rather than by
working around them. This is probably feasible if the module is built as part of the same
project, but impossible if it’s a reusable component.

Conflicting world views
The interface to a component embodies a view of the world: data types, resource
consumption, memory allocation, exception handling, etc. If you take 10 components off
the shelf, you are putting 10 world views together, and the result will be a mess. No one is
responsible for design integrity, and only the poor client is responsible for the whole thing
working together. There can easily be n2 interactions among n components.

Good things that aren’t reusable components

People often ask “What about Corba and COM; aren’t they successful?” Perhaps they are,
but they are ways to run components, not components themselves. They play the role of a
linker and a calling convention for distributed computing.

The “components” that you can get for Visual Basic, Java, Microsoft Office, and
browsers are not reusable components either. You can use a couple of them in your
system, but if you use 10 of them things will fall apart, because they are not sufficiently
robust or well-isolated. If you don’t believe this, try it for yourself.

Nor is a module with a clean interface a reusable component, for all the reasons discussed
above. A clean interface is a very good thing, and it’s certainly necessary for a reusable
component, but it’s not sufficient.

Platforms

The last section shows why a public library of software components is not possible. Some
less ambitious things have worked, however. Most of them are variations on the idea of a
platform, which is a collection of components on top of which many people can build

 117

programs, usually application programs. Windows, Linux, Java, DB2, Microsoft Office,
OpenGL, the IMSL numerical library, and PC hardware are examples of platforms. So, on
a smaller scale, is the Unix shell and text processing commands discussed in the
introduction.

The essential property of a platform is that someone takes responsibility for its coherence
and stability. Often this is a vendor, motivated by the fact that having lots of application
expands the market for the platform. It can also be a community, as in the case of Linux
or OpenGL, in which component builders are motivated by status in the community or by
the fact that they are also clients. It needs a shared context that everyone understands, and
a common world view that everyone accepts; this means that it must include both the
component builders and many of the clients. A shared context is much easier when the
domain is narrow and there’s a clean mathematical model, as with graphics or numerical
libraries.

Sometimes people try to build lots of components on a common and hospitable platform,
such as Visual Basic or Java. This can work if the components come from (or pass
through) a single source that takes responsibility for their coherence. Otherwise the
problems of too little generality, cost to understand, and conflicting world views make it
impossible to use more than two or three of them in a system.

Big components

As we saw in the introduction, big components like browsers and database systems do
work, even though a library cannot. They are five million lines of code and up, so huge
that you only use three or four of them: Linux or Windows, Netscape or Internet Explorer,
Oracle or DB2, Visual Basic or Java. How do they overcome the problems with
component libraries?

Business model: There’s a market for such big things. Lots of people need each one, there
are only a few of them, and the client only has to buy a couple of them, so marketing is
feasible. Building your own on the other hand is not feasible, even if you only use 1% of
the features: 1% of 20 million lines is still 200,000 lines of code to write.

Cost to understand: The specification may be large and complicated, but it is much
smaller than the code. As the market is large, vendors can afford to invest in
documentation; in fact, every such component has a mini-industry of books about it. They
can also afford to invest in customization: operating systems have applications and
scripting languages, browsers have scripts, Java, plug-ins, and dynamic HTML, and
database systems have SQL.

Conflicting world views: If you use three of them, there are only three pairwise
interactions, and only two if they are layered. The vendor provides design integrity inside
each big component.

In fact, big components, along with transaction processing, spreadsheets, SQL, and
HTML, are one of the great successes of software in the last 20 years.

People often complain about big components because they are wasteful. A business
application built on a browser and a database system can easily consume 100 times the

118

resources of one that is carefully tailored to the job at hand. This is not waste however,
but good engineering. There are plenty of hardware resources; what’s in short supply are
programmers and time to market, and customers care much more about flexibility and
total cost of ownership than about raw hardware costs.

Another way to look at this is that today’s PC is about 10,000 times bigger and faster than
the Xerox Alto [10], which it otherwise closely resembles. It certainly doesn’t do 10,000
times as much, or do it 10,000 times faster. Where did the cycles go? Most of them went
into delivering lots of features quickly, which means that you can’t have first-class design
everywhere. Software developers trade hardware resources for time to market. A lot of
them also went into integration (for example, universal character sets and typography,
drag and drop, embedding spreadsheets in text documents) and into compatibility with
lots of hardware and with lots of old systems. And a factor of 10 did go into faster
responses to the user’s actions.

What else could work?

If components can’t help us much to build software, what can? Two approaches are
promising: declarative programming, and specifications with teeth.

Declarative programming
“Declarative program” is not a precise concept, but the idea is that the program is close to
the specification, perhaps even the same. For example, in a simple spreadsheet the
program is just the formulae; if there is no higher structure, the formulae express the
user’s intent as simply as possible. Of course, if the user’s intent was “a capital gains
worksheet with data from my brokerage account,” the raw spreadsheet has a lot of extra
detail. On the other hand, when equipped with suitable templates Excel can come fairly
close to that intent.

Other examples of declarative programming are the query language of SQL, a parser
generator like YACC, a system for symbolic mathematics like Mathematica, and a stub
generator for remote procedure call. What they have in common is that what you have to
tell the system is closer to your intent than an ordinary program. This makes programming
faster and more reliable. It also opens up opportunities for analysis and optimization;
parallel implementations of SQL are a good example of this.

Specifications with teeth
Specifications are useful as documentation, but they have the same problem as all
documentation: they are often wrong. A spec is more valuable if it has teeth, that is, if you
can count on its description of the program’s behaviour. Such specs are much more likely
to pass Parnas’ coffee-stain test: the value of a spec is proportional to the number of
coffee-stains on the implementers’ copies. A type declaration is an example of a spec with
teeth.

Teeth mean tools: the computer must check that the spec is satisfied. There are two kinds
of teeth: statically checked, and dynamically enforced by encapsulation. A type-safe
language, for example, usually is mostly statically checked but has dynamic checking of
some casts. Static checks are better if you can get them, since they guarantee that the

 119

program won’t crash in Peoria. We are slowly learning how to check more things
statically.

Encapsulation takes many forms. The simplest and most familiar is the sandboxing
provided by operating system processes or Java security permissions. Much more
powerful is the automatic concurrency, crash recovery, and load balancing that a
transaction monitor provides for simple sequential application programs [5]. Another
example is the automatic Byzantine fault-tolerance that a replicated state machine can
provide for any deterministic program [4].

Conclusion

A general library of software components has been a long-standing dream, but it’s
unlikely to work, because there’s no business model for it, it costs the client too much to
understand a component, and components have conflicting world views. In spite of this
discouraging conclusion, very large components do work very well, because they have
lots of clients and you use only three of them.

Two other approaches can make software easier to write: declarative programming, and
specifications with teeth. The latter guarantee something about the behaviour of a module.
The enforcement can be done statically, as with a type checker, or dynamically, as with
transaction processing.

References

1. BENTLEY, J., KNUTH, D., AND MCILROY, M.D., ‘A literate program,’ Comm. ACM,
vol. 29, no. 6,June 1986, pp. 471-483.

2. BROOKS, F., ‘No silver bullet,’ IEEE Computer vol. 20, no. 4, April 1987, pp. 10-19.
Reprinted in Brooks, The Mythical Man-Month, 2nd ed., Addison-Wesley, 1995.

3. BUSH, W., PINCUS, J., AND SIELAFF, D., ‘A static analyzer for finding dynamic
programming errors,’ Software—Practice and Experience, vol. 30, no. 7, June 2000
pp. 775-802.

4. CASTRO, M. AND LISKOV, B., ‘Practical Byzantine fault tolerance and proactive
recovery,’ ACM Trans. Computer Systems vol. 20, no. 4, Oct 2002, pp. 398-461.

5. GRAY, J. AND REUTER, A., Transaction Processing, Morgan Kaufman, 1993.

6. KERNIGHAN, B. AND PIKE, R., The Unix Programming Environment, Prentice-Hall,
1984.

7. MCILROY, M.D., ‘Mass produced software components,’ In P. Naur and B. Randell,
ed., Software Engineering, Report on a conference sponsored by the NATO Science
Committee, Garmisch, Germany, October 1968, Scientific Affairs Division, NATO,
Brussels, 1969, pp. 138-155. http://www.cs.dartmouth.edu/~doug/components.txt.

8. PARNAS, D., ‘On the criteria to be used in decomposing systems into modules,’
Comm. ACM vol. 15, no. 12, Dec. 1971, pp. 1053-1058.

9. President’s Information Technology Advisory Committee, Information Technology
Research: Investing in Our Future. http://www.ccic.gov/ac/report/.

120

10. THACKER, C., ‘Personal distributed computing; The Alto and Ethernet hardware,’ In A
History of Personal Workstations, A. Goldberg, ed., Addison-Wesley, 1988,
pp. 267-290.

 121

Security Protocols – Who Knows What Exactly?

Peter Landrock
Mathematics Institute, Århus University

& Cryptomathic

Introduction

All security protocols have a number of players, typically each with distinct information
available. Security protocols are very difficult to design and it is an art rather than just
good craftsmanship to develop a secure yet useful and practical protocol. The potential
pitfalls are plentiful but, thanks to work by Roger Needham and many others who have
worked with him (see e.g., [3, 4]), we have a pretty good understanding today – or at least
of how not to do it!

Common to most such protocols are the following ingredients:

1. a neat mathematical trick which forms the basis of the protocol,
2. the use of various keys given to various players (which in the following we will

call “classified information”) and finally
3. the most treacherous part: to fit the protocol into a scenario, or a real application

where it does not fall apart because of the fact that e.g. one of several principles
described so well in [3, 4] were not taken into account.

In this note we would like to focus on the following pieces of advice taken from these
references:

Principle 4 [4]: Account for all the bits: how many provide equivocation, redundancy,
computational complexity, and so on. Make sure that the redundancy you need is based
on mechanisms which are robust in the application context, and that any extra bits cannot
be used against you in some way.

Principle 11 [3]: The protocol designer should know which trust relations his protocol
depends on, and why the dependency is necessary. The reasons for particular trust
relations being acceptable should be explicit even though they will be founded on
judgment and policy rather than logic.

“Classified information”

We are interested in protocols using public key techniques. Given a public key pair (P, S),
P is the public information, S the private. Here we are of course already making
substantial assumptions which ultimately are only based on trust: we assume that even
though we publish P, we can keep S secret. However, it is generally agreed that this is a
reasonable assumption, and in any event this is not an issue we want to pursue further in
this discussion here. We will just assume that we have some means at hand of well
defined magnitude, such as computational power, time, etc. We will also assume similarly
that it is not possible to calculate S from P.

122

The first issue we would like to address is the following: does there exist some “degree”
of classified information between the class of S and the class of P (i.e., all information
that may be derived from P using S with the means we have at our disposal)?

Ultimately as already pointed out — this is a question of trust, and we have to keep
Principle 11 above very much in mind. For instance, do we believe there exists a “semi-
private” key M, such that

a) M cannot be calculated from P
b) M can be calculated from S, but S cannot be calculated from M
c) no digital signature can be calculated from P and M
d) it is possible in an interactive protocol to prove possession of M to any verifier

who knows P?

Note that c) implies that M cannot merely be a signature.

Surprisingly perhaps the answer appears to be affirmative, sometimes, even though it
would be difficult, if not impossible, to support this with an extension of the complexity
usually employed to justify the concept of public keys (e.g., if P = NP, the public key
concept as such does not have any theoretical foundation.)

Note that “Secret sharing” schemes would not satisfy our assumptions. This concept was
first introduced by A. Shamir: a polynomial of degree k – 1 with a secret number (such as
a private RSA key), a as the constant term is constructed. Choose n “shares” as n random
points on the defined curve. Then any of these determines the curve and hence a may be
derived from these shares.

But the individual share is useless as such, and the owner will not be able to determine if
he has a genuine share, i.e., d) above does not apply. But more to the point, unless the
polynomial was to be introduced as a function of the secret key, b) above is not satisfied
either.

Others have introduced solutions where the user may verify that indeed he does have a
share. But the user is unable to prove to a third party that he has a share (see [1]).

Quite some time ago, a new concept in identification protocols was introduced, namely
that of zero-knowledge identification, or proof, schemes. Out of this grew a number of
interesting practical protocols, such as the Fiat-Shamir scheme. This is based on one
particular family of digital signature schemes, namely Rabin/RSA, but produces
signatures of its own, which are weaker in a sense than signatures produced by the
underlying Rabin/RSA pair. The underlying zero-knowledge scheme proves possession of
the digital signatures on, say k publicly known messages.

However, as we have carefully added condition c) above, these schemes would not fit
either.

An example

In the following, “a � b” mod k means: a and b have the same residue modulo k. In [5] we
introduced the concept of “computational delegation,” which is an example of what we
are after.

 123

P. Fermat observed that if p is a prime, then

 (1) p � 1 mod 4 iff there exist a, b with p = a2+b2

i.e. p factors to (a+ib)(a–ib) in the Gaussian ring Z[i] (which a unique factorization
domain). This beautiful result is mentioned in T.H. Hardy’s “A Mathematician’s
Apology” as an example of an outstanding mathematical result.

An equivalent statement is that

(2) p � 1 mod 4 iff –1 is a square root modulo p

Now, let n = pq be an RSA modulus, where p and q are primes which are both 1 mod 4.

Let p = a2+b2 and q = c2+d2.

Then (also known by Fermat)

(3) n = (a2+b2)(c2+d2) = (ac+bd)2+(ad–bc)2 = (ac–bd)2+(ad+bc)2

Thus n can be written as a sum of 2 squares in (exactly) 2 different ways.

Let

(4) � = (ac+bd)(ad–bc)-1 mod n

(5) � = (a –bd)(ad+bc)-1 mod n

Then obviously �2 � �2 � –1 mod n.

As may be seen from our discussion in [5], � and � both satisfy a), b), c) and d) above,
unless someone is able to solve the problem of Fermat primes:

Conjecture: Let s be a power 2n of 2. Then a number of the form 2s + 1 is a prime iff and
n � 4.

That a), b) and c) above are satisfied is clear. For completeness, we prove that d) is
satisfied as well:

Assumptions:

Prover knows a square root � of –1 mod n

Verifier knows Prover’s public key

Protocol (cut and choose):

Prover chooses r at random and sends r2 mod n to Verifier

Verifier may choose to receive either r or �r mod n

Verifier receives x and verifies that either x2 = r2 mod n or x2 = –r2 mod n

If successful, this is repeated k times for a suitable security parameter k.

Having accomplished this, I thought of the following as one of the best ideas I’ve had so
far in my career – for a while (and for exploitation)!

124

Theorem:

Same notation as above, i.e. �2 = –1 mod n, where n is the product of 2 primes each equal
to 1 mod 4.

Let m be a random number.

Then there exist r,s with m = r2+s2 mod n.

Proof:

Choose a random and calculate b to satisfy �ab = m mod n.

Set r := (a+�b)/2, s := (�a+b)/2

Then r2+s2 = (a2–b2+2�ab-a2+b2+2�ab)/4 = �ab mod n

So why does this look as a good idea? Because it suggests a new digital signature:

For m a message, let the pair (r,s) be the digital signature. All that is required to calculate
it is about 2 modular exponentiations, and verification is equally easy.

This of course would be nothing short of a sensation – so how does one break it?

Find a number x such that y = x2m mod n is a prime which is 1 mod 4. This is relatively
easy using say the Rabin primality test.

Use Cornacchia’s algorithm to find a, b with y = a2+b2

Then m = (x-1a)2+(x-1b)2 mod n, and we have broken the scheme. In fact in doing so, we
generalised our theorem. You do not even need the assumption that n be the product of
two primes equivalent to 1 mod 4 to write m as a sum of two squares modulo n!

So we did not manage to introduce a new signature scheme, but we believe we managed
to introduce a security protocol which satisfies all principles of [4] as well as [3] including
Principle 11 of [3], which was our focus.

How to blackmail a certificate authority

We end our discussion with a protocol which does not really fit into any traditional
scheme. Indeed this is a protocol where the verifier pretends to know more than he really
does! How can he pull this off? It is all explained in Principle 4 of [4].

Here is the scenario:

� A well-known certificate authority CA announces a nation-wide public key
infrastructure scheme based on RSA, 1024 bits, public exponent 3.

� Message received week 1 at CA from unknown source:
� I know your private key! I am going to publish the 1st upper byte of your

secret exponent, unless you send me 2 	!
� CA ignores
� Message received week 2 by CA:

� Here is the 1st byte: 11011010. I am going to publish the 2nd upper byte of
your private key, unless you send me 4 	!

 125

� CA is puzzled. The blackmailer is right about the first byte! Could he be guessing,
or maybe the first byte is not so difficult?

� Message received week 3 by CA:
� Here is the 2nd byte: 00011001. I am going to publish the 3rd upper byte

of your secret key, unless you send me 8 	!
� The CA hires a security specialist. The problem is that it will cost 100.000 	 to

switch to a different key pair!
� This goes on …..
� Message received week 52 by CA:

� Here is the 51st byte: 01111101
� I am going to publish the 52nd upper byte of your secret key, unless you

send me 252 	!
� Conclusion of the specialist: offer him 25.000 	 now!

Did the “unknown source” break RSA?

Well, 1024 bits is 128 bytes. He can only do what he does up to the first 64 bytes. Here is
how he does it:

1. Subtract 1 from the modulus n
2. Divide by 3 and multiply by 2
3. The upper half of this number is the upper half of your private exponent.

CA: What about the lower half? Only the CA knows! The system is secure. It is all
mathematics.

The point is that the secret exponent d is calculated to satisfy

 3d–x(p–1)(q–1) = 1

for x a natural number. But as d < n, this implies that x � 2! And in fact, as the public
exponent is 3, p-1 and q-1 are prime to 3, i.e. p and q cannot be 1 mod 3. Hence they must
be 2 modulo 3, and reading (6) modulo 3 it follows that x is congruent to 2. Hence

 d = (1+2(p –1)(q –1))/3

Now, even though we do not know (p–1)(q–1) = pq–p–q–1, we know the upper half
basically, as p and q are always chosen to be of about the same size. Indeed this is just the
upper half of pq, the public key! Obviously the CA should have thought of Principle 4 of
[4]!

This has been observed independently by Mike Wiener [6].

References

1. Bellare, M. and Goldwasser, S., ‘Verifiable partial key escrow,’ Proc. 4th ACM Conf.
On Computer & Communications Security, 1997.

2. Burrows, M., Abadi, M., Needham, R.M., ‘A logic of authentication,’ in Proceedings
of the Royal Society of London A vol 426, 1989, pp. 233-271; earlier version published
as DEC SRC Research Report 39.

3. Abadi, M. and Needham, R.M., ‘Prudent engineering practice for cryptographic
protocols,’ DEC SRC Research Report 125, June 1994.

126

4. Anderson, R. and Needham, R.M., ‘Robustness principles for public key protocols,’
Proc. Crypto 95, Springer Lecture Notes in Computer Science vol. 963, 1995,
pp. 236-247.

5. Landrock, P., ‘A new concept in protocols: verifiable computational delegation. 6th
International Workshop on Security Protocols,’ Cambridge, Springer LNSC vol. 1550,
1998.

6. M Wiener, private communication.

 127

Volume Rendering by Ray-Casting in Shear-Image Order

Hugh C. Lauer1, Yin Wu1, Vishal Bhatia1, Larry Seiler2
1TeraRecon, Inc., Concord, Massachusetts, USA

2Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA

Figure 1: Shear-Image Gallery: Various volumes with lighting effects or embedded geometry

For Roger Needham

Roger and I arrived at Xerox Palo Alto Research Center on the same day in May 1977 and
immediately jumped into issues of operating system design for desktop computers. A
debate was raging in the field at that time over whether it was better to design an
operating system around a small, relatively static set of heavyweight processes with
explicit message passing or a large number of rapidly changing, lightweight processes
(nowadays called threads) and a synchronization mechanism based on shared data. We
quickly realized that the two approaches are duals of each other in design and
performance and that the choice depends mostly upon the underlying mechanisms
available for the implementation. We published this “duality hypothesis” in [1], which
eventually settled the issue.

For the past seven years or so, I have been involved in real-time volume imaging, a field
that combines the challenges of system design, high performance semiconductor design,
and computer graphics. Roger, I hope you enjoy this.

Introduction

Real-time volume rendering is a technique for creating interactive images of objects and
phenomena represented as sampled data in three or more dimensions. It is becoming
increasingly important in medical imaging, oil and gas exploration, and scientific
visualization, and it has potential applications in industrial inspection, non-destructive
testing, airline security, and any area where it is important to see the internal or hidden
structures of the objects under study. While volume rendering algorithms have been
known for years, there are three principal challenges to achieving useful, interactive
visualization: amassing enough computational power to render images at multiple frames
per second; moving huge amounts of data from memory to the processing power; and
providing high quality, visually meaningful images.

128

This paper describes shear-image order, a method of ray casting that preserves the data
handling efficiency of shear-warp, the fastest known volume rendering algorithm, but that
eliminates its intermediate image and final warp step. Shear-image order produces high
quality images by casting rays through the centers of pixels of the image plane. It is
computationally efficient, requiring four interpolations per sample vs. seven interpolations
per sample for full image order. Shear-image order supports the accurate embedding of
polygon and other objects, and it enables direct rendering of anisotropic and sheared data
sets without the need for resampling. The shear-image order method is implemented in
VolumePro™ 1000, a second-generation real-time volume rendering engine developed by
the author and colleagues at Mitsubishi Electric Research Laboratories in Cambridge,
Massachusetts. This paper is an abbreviated version of [4], which describes shear-image
order in more detail.

Background

Shear-warp order
One of the fastest classic algorithms for volume rendering is shear-warp [2]. In shear-
warp, the 3D viewing matrix is factored into “a 3D shear parallel to slices of the volume
data, a projection to form a distorted intermediate image, and a 2D warp to produce the
final image”. Shear-warp has the advantage of retrieving volume data from memory in a
coherent manner, thereby maximizing the utilization of memory bandwidth. It has the
disadvantages of requiring a 2D warp step and has an additional difficulty of accurately
embedding polygons and images of other objects.

Figure 2 illustrates the shear-warp
factorization. Voxel positions are
shown as blue dots at the
intersections of the grid. In shear-
warp, the volume data is resampled
into slices parallel to one of the faces
of the volume. Within each slice, the
sample points are arranged in a
rectangular grid with axes parallel to
the axes of the volume. Each sample
point denotes where a ray intersects
its slice.

This is equivalent to shearing the stack of slices with respect to each other, as shown in
the right side of Figure 2. The red × characters denote both sample points on each of the
slices and also the pixels on a base plane, i.e., an intermediate image plane that is co-
planar with a face of the volume. The value of each pixel is formed from the projection of
the corresponding sample points of all slices.

The resulting image on the base plane is distorted and must be resampled in two
dimensions to produce the final image of the volume. This resampling is called the warp
step. It is possible to achieve high image quality using shear-warp. However, doing so
requires over-sampling the volume data set and high precision calculation to reduce error
propagation. These requirements impact performance.

xv

yv zv

Figure 2: Volume data set (left) and shear-warp slices

 129

Because of the alignment of the grid of sample points with the grid of voxels, linear
interpolation operations can be shared between adjacent points in each dimension. Tri-
linear interpolation therefore requires only three multiplication operations rather than the
usual seven. However, the alignment of rays with pixels on the base plane rather than the
image plane makes it impractical to embed objects generated with traditional polygon
graphics.

Full Image order
Another class of ray-casting
methods is called full image
order. In full image order, rays
are cast directly through the
centers of pixels of the image
plane and thus are not necessarily
aligned with the grid of voxels in
any dimension (left side of
Figure 3). In addition, samples
are organized into slices parallel to the image plane (Figure 3 right side). These methods
eliminate the need for the warp step of shear-warp, and they can produce high quality
images without over-sampling the volume. However, the cost is increased complexity in
data handling and buffering and the loss of coherent memory access.

Interpolations in full image order cannot, in general, be shared between adjacent samples,
so seven multiplication operations are needed for tri-linear interpolation – four in the 1st
interpolation dimension, two in the 2nd dimension and one in the 3rd dimension. As a
result, full image order methods are not yet competitive in performance with shear-warp
methods. The shear-image method will have the same screen view as full image order to
achieve high image quality efficiently.

Image quality
In volume rendering, images of interior structures are generated by assigning different
opacities to different types of tissue or materials. The interfaces between different opacity
levels create the appearance of surfaces and 3D shapes. In our experience, the two most
important factors in achieving high quality, visually meaningful images are the ability to
cast rays through the centers of the pixels of the image plane and a good illumination
function. Ray-per-pixel rendering avoids the artifacts and degradation that result from
repeated resampling. Illumination appeals to the fundamental capability of the human eye
to recognize three-dimensional shapes from the way their surfaces are lighted. Figure 4 on
the next page is a dramatic illustration of this. The illumination of the blood vessels of the
brain highlights their positions and relationships in a way that no flat or unilluminated
image can.

Traditional Phong illumination requires a surface normal at each sample point. In volume
rendering, these surface normals are estimated from the gradients derived from voxel
data. In shear-warp, gradients are easy to calculate on the fly because the volume data is
read and buffered in a coherent way [3]. A convolution kernel can be applied to adjacent
slices to derive the rates of change of voxel values in each of the three dimensions. These
rates of change then form gradients that can be interpolated to estimate the surface normal

Interpolations
not shared with

neighbors

Sample slices parallel
to image plane

Rays

Image plane

 yi xi

Figure 3: Full Image Order

130

vectors at sample points. VolumePro uses central differences, the simplest of gradient
estimation convolution kernels.

Shear-image order
Shear-image order preserves the
shear-warp organization of sample
points in slices parallel to the slices of
the volume but casts rays directly
through the centers of pixels of the
image plane, as in full image order. It
thereby eliminates the intermediate
image and 2D warp step of shear-
warp. It is similar to 2D texture
methods but substantially more
efficient. Shear-image order
decomposes the 3D viewing
transformation into two parts: a

transformation from voxel space to an intermediate sample space that defines the
positions of each sample point, and a depth warp to characterize the distance from each
sample point to the image plane. This decomposition has four beneficial features: (1)
sample space is spatially coherent with the image plane and with slices of the original
volume; (2) each sample of sample space is projected directly onto a pixel of the image
plane, requiring no additional resampling; (3) the depth warp enables the embedding of
polygons; and (4) flexible control is retained over super-sampling factors, allowing equal
sample spacing in three dimensions for any view angle.

This is illustrated in Figure 5, which depicts a cross section of a volume and an image
plane – for example, a vertical slice perpendicular to the page through the left figure of
Figure 3. The voxels are arranged in a rectilinear array and represented by blue dots;
voxel spacing is exaggerated for clarity. At the left of Figure 5 is an edge view of the
image plane, with the pixels represented as red squares. Parallel rays are cast through the
centers of the pixels toward the volume, as indicated by the arrows. Sample points are
represented by red ×××× characters. It can be seen that the sample points are organized into
slices parallel to slices of the volume itself. Each
pixel is the composition of the sample points
defined by where its ray intersects each slice. As
in Figure 3, the projection of the grid of voxels
bears no relationship to the grid of pixels on the
image plane.

Shear-image order has the same memory
coherence as shear-warp. That is, voxels can be
read from memory in an order related to their
storage. This makes it possible to exploit the
burst mode capabilities of modern synchronous
dynamic random access memory. The
fundamental difference between shear-warp and
shear-image order is that shear-image order
rendering allows rotation and shear of the sampling plane onto which rays are projected.

Figure 4: Image of a cerebral aneurysm

 Image plane

yi zs

Figure 5: Side view of shear-image order
ray casting

 131

The shear-image algorithm operates in two parts. The first part steps through volume
memory one slice of voxels at a time, like shear-warp. Gradients are estimated at each
voxel point by determining the spatial rate of change of the voxel values. Then, the voxel
values and their associated gradients from two adjacent slices are interpolated to derive a
“virtual” slice of what we call z-interpolated samples. This virtual slice, a sampled
representation of a cross section of the volume, is parallel to slices of voxels but not
necessarily aligned with any particular voxel slice, and it includes a gradient at each point.
The sample points within these z-interpolated slices are organized in grids parallel to the
x- and y-dimensions of the volume, as in shear-warp.

The second part of the algorithm steps through each slice of z-interpolated samples in the
x- and y-dimensions of the image plane. Sample points are located at the intersections of
rays with the virtual slice. Color and opacity values are assigned to the sample points and
accumulated along their respective rays, thereby producing an image of the volume
directly on the image plane. In addition, a depth value is associated with each sample
point to measure the distance from to the eye, image plane, or some other reference.
These depth values correspond to the z-values of traditional polygon graphics and make it
possible to embed polygons in the rendered image.

Figure 6 shows a comparison of shear-warp and shear-image order. Both images were
rendered from the same data set and view, at the same scale, and with the same lighting,
transfer function, and other parameters. It can be seen that shear-image order produces a
higher resolution image.

Anisotropic data sets – in which voxels are spaced differently in each dimension – are the
rule rather than the exception in medical and geophysical imaging. In computed
tomography (CT scans), for example, the spacing of slices in the longitudinal axis of the
patient is determined by the speed of the table, whereas the spacing within a slice is
determined by the geometry of the scanner. Also common are sheared data sets, in which
the axes are not at right angles to each other. For example, the gantry of a CT scanner
may be tilted with respect to the axis of the patient. Most of the images in this paper are
rendered from anisotropic data.

Figure 6: Comparison of shear-warp (left, rendered by VolumePro 500) and
shear-image order (right, rendered by VolumePro 1000)

132

The mathematics of shear-image order automatically compensates for anisotropy and
shear. In these cases, the shear image algorithm steps by different increments in each of
the three dimensions. The net effect is to keep the ray spacing and sample spacing
constant with respect to the image plane, regardless of the view direction and the spacing
of voxels in that direction.

Embedding polygons

Volume visualization applications often need to render volume and polygon data together.
For example, a surgical planning
application might create a model of
prosthesis in a CAD environment,
render it using conventional polygon
graphics, and then embed that device
into a volume rendered image of the
patient’s body. Figure 7 illustrates an
example of a simple polygon object
passing through the cranial cavity of a
human head as rendered from a CT
scan of a living person. It can be seen
that the object lies in front of some
parts of the volume (e.g., blood vessels
and bone) and behind other parts.

Various techniques have been used in
the past to combine volume and
polygon data into the same image. In
methods where volumes are converted
to polygons, it is a simple matter to sort
all of the polygons and render them using a conventional 3D graphics engine. Another
technique is to voxelize the polygon objects, that is, to convert them to voxels, then write
them into the volume data set.

Shear-image order makes it easy to use fast commodity graphics engines to render
polygons and embed them into volumes. The polygons are rendered in the graphics
environment using the same Model, View, Projection, and Viewport transformations as
the volume itself. When all of the polygons have been rendered, the depth and color
buffers are captured and are used in the following process:

• In the first pass, rays are initialized to the foreground color and then are cast
through the volume starting at the foreground and ending at the captured depth
buffer. This renders the portion of the volume in front of the polygons.

• The previously captured color buffer is then blended behind the image plane
resulting from the first pass, placing the image of the polygons in the volume.

• In the second pass, rays are initialized with the result of the blend operation and
then cast from the captured depth buffer to the background. This creates the image
of the part of the volume behind the polygons.

Figure 7: A polygon object embedded in a
volume

 133

• The result is a correctly located image of the polygonal objects embedded within
the volume. If the polygons are opaque, only the first render is necessary.

Using two depth buffers, the process can be generalized to arbitrary translucent geometry
and images of other objects, if they can be expressed as an ordered sequence of layers. By
carefully managing the depth and color buffers, each polygon object can be inserted pixel-
by-pixel between the samples along the rays. Obviously, the process must be repeated for
each change in view direction, model transformation, and other parameter. The method
can also be extended to embed images of non-polygon objects. More details are explained
in 4.

Implementation
VolumePro™ 1000 implements the
shear-image order method and is a
second-generation volume rendering
system developed as a successor to the
VolumePro™ 500. It comprises an
ASIC (Application-Specific Integrated
Circuit) and up to 2 gigabytes of high
performance memory on a board to be
plugged into the PCI bus of a personal
computer, and a library of supporting
software.

A simplified block diagram of the VolumePro 1000 ASIC is shown in Figure 8. It
includes a sequencer, four processing pipelines, a memory controller, a PCI bus interface,
and on-chip buffers for voxels and z-interpolated samples. The Sequencer and processing
pipelines operate at 250 MHz, so the ASIC can render 109 samples per second. Memory is
organized so that 3D objects are stored as mini-blocks of 2×2×2 voxel values, and 2D
objects are stored as 2×2 stamps of pixel values. This allows sequences of related data
values to be read or written in burst mode. The memory subsystem itself comprises eight
channels of 16-bit Double Data Rate SDRAM operating at a data transfer rate of 266-333
MHz. Eight 16-bit voxels or four 32-bit pixels can be fetched or written per memory
cycle.

Each pipeline is partitioned into two parts, decoupled by a set of buffers. Voxels are read
two slices at a time into the voxel buffers at the top of the figure. The voxel processing
part estimates gradient from the data in the buffers and, optionally, maps voxel values to
color and opacity (RGB
) values. Then adjacent slices of voxels and gradients are
interpolated in the dimension most nearly parallel to the rays and are stored in the z-
interpolated slice buffers between the two pipeline parts. The sample processing part of
each pipeline reads from the z-interpolated slice buffer in an order unrelated to voxel
order, interpolates in the remaining two dimensions to obtain sample values and gradients,
maps the resulting values to RGB
 (if this was not already done by the voxel processing
part), then does illumination and filtering before compositing the samples into a frame
buffer to form the final image.

Voxels may have up to four fields, programmable by the application as to size, position,
and format. Each field is associated with its own lookup table for mapping field values to

z-interpolated Slice buffers
Sa

m
pl

e
pr

oc
es

si
ng

Sa
m

pl
e

pr
oc

es
si

ng

Sa
m

pl
e

pr
oc

es
si

ng

Sa
m

pl
e

pr
oc

es
si

ng
V

ox
el

pr
oc

es
si

ng

V
ox

el
pr

oc
es

si
ng

V
ox

el
pr

oc
es

si
ng

V
ox

el
pr

oc
es

si
ng

Se
qu

en
ce

r
16

-n
od

e
SI

M
D

 p
ro

ce
ss

or

Voxels (organized as mini-blocks)

Pixels (organized as stamps)

control

control

Memory Interface
eight channels

16-bit DDR SDRAM

(266-333 MHz)

PCI bus Interface
33-66 MHz

Pipelines
250 MHz

voxel buffers (for gradient estimation)

Figure 8: Block diagram of VolumePro 1000

134

color and opacity values. These can be combined by a hierarchy of arithmetic-logic units
as described in [3]. The interpolator is linear in the z-dimension and bi-linear in the x- and
y-dimensions, thereby requiring four multiplications per sample. There are seven
interpolation channels, one for each voxel field or color-opacity component plus one for
each gradient component.

Illumination is done in the sample processing part
of each pipeline and is a reflectance map
implementation of the Phong lighting model. This
provides emissive, diffuse, and specular lighting
from an arbitrary number of light sources. It also
provides a modulation function based on the
magnitude of the gradient. This makes it possible
to highlight surfaces in a translucent manner so
that both the surface and the interior structure of
the object can be seen. An example is shown in
Figure 9.

VolumePro 1000 tries very hard to skip over
invisible samples. The Sequencer keeps track of
samples that are cut, cropped, clipped, or that fail
depth tests, and it jumps over them when it is
useful to do so. This kind of space leaping is
called geometry-based space leaping because it
depends only upon the position of a sample, not its value. A second kind of space leaping
– content-based space leaping that jumps over samples that are invisible by virtue of
opacity assignment or filtering – is not provided in VolumePro 1000

One of the most important factors in the design of
the ASIC was the amount of buffer memory needed
on the chip. The shear-warp algorithm and shear-
image order both require one or more full slices of
voxel values to be buffered in on-chip memory. This
is far more than could be accommodate by modern
semiconductor processes. The VolumePro addresses
this issue by partitioning volume to be rendered into
sections and rendering one section at a time. The
amount of on-chip memory is thus limited to that
needed for the number of voxels and/or samples per
section, but at the cost of re-reading voxels near the
boundaries of sections more than once.

The final example image, Figure 10, shows a
zoomed view of the CT scan of the human head from the left of Figure 1. The arrow,
superimposed on the figure by the author, clearly shows a blockage of the left medial
carotid artery.

Figure 9: A CT Scan of a foot, with
bone surfaces highlighted by gradient
magnitude modulation

Figure 10: CT Scan showing bones
and blood vessels of the head

 135

Acknowledgements
This work began at Mitsubishi Electric Research Laboratories (MERL) of Cambridge and
Concord, Massachusetts. The author collaborated with Yin Wu, Vishal Bhatia, and Larry
Seiler in the development of the algorithm and the VolumePro 1000 architecture. The
ASIC implementation was done by Andy Adams, Bill Booth, Steve Burgess, Kenneth
Correll, James Knittel, Jeff Lussier, Bill Peet, and Jay Wilkinson. Thanks are also due to
Jan “Yon” Hardenbergh, Lisa S. Avila, James Foley, Sarah Frisken (Gibson), Hanspeter
Pfister, Vikram Simha, Andy Vesper, and T. C. Zhao for their insight into the issues of
real-time volume rendering.

References

1. LAUER, H.C. AND NEEDHAM, R.M., ‘On the duality of operating system structures,’ in
Proceedings of Second International Symposium on Operating Systems, IRIA, France,
October 1978, reprinted in Operating Systems Review, vol. 13, #2, April 1979, pp. 3-
19.

2. LACROUTE, P., AND LEVOY, M., ‘Fast volume rendering using a shear-warp
factorization of the viewing transformation,’ Proceedings of SIGGRAPH 94 (Orlando,
Florida,, Computer Graphics Proceedin, Annual Conference Series, pp. 409–412.
ACM SIGGRAPH, ACM Press, July 1994.

3. PFISTER, H., HARDENBERGH, J., KNITTEL, J., LAUER, H.C. AND SEILER, L., ‘The
VolumePro real-time ray-casting system.’ Proceedings of SIGGRAPH 99 (Los
Angeles, California), pages 251-260, August 1999.

4. WU, Y.,.BHATIA, V., LAUER, H., SEILER, L., ‘Shear-image ray casting volume
rendering,’ to appear in Proc. ACM SIGGraph 2003 Symposium on Interactive 3D
Graphics, Monterey, California, April 2003.

136

 137

A Conceptual Authorization Model for Web Services

Paul J. Leach, Chris Kaler, Blair Dillaway, Praerit Garg, Brian LaMacchia, Butler
Lampson, John Manferdelli, Rick Rashid, John Shewchuk, Dan Simon, Richard Ward

Microsoft Corporation, Redmond, Washington, USA

This paper describes a conceptual authorization model for Web Services. It is an
adaptation of those of Taos [Lamp92] and SDSI [Lamp96] with terms changed to
correspond more closely to those introduced with the WS-Security model [WS02]. In
contrast to the more formal and mathematical presentation used for Taos and SDSI, this
presentation is conceptual and informal, which hopefully may provide more intuition for
some readers; it also might provide an outline for the class hierarchy of an object-oriented
implementation.

In addition, this model abstracts away from issues of distribution and network security
such as authentication [Need78] and encryption (for example, by assuming that messages
include the unforgeable identity of the sender and are private and tamperproof) so as to
focus on authorization, but it does deal with the extensibility and composability of
security services, and partial trust. It also abstracts away from issues of syntax and
encoding (for example, ASN.1, proprietary binary formats, and XML) and focuses on
semantics.

The following figure illustrates many of the elements of this model that will be described
in this paper:

Authorization

Service

Security
Context

Signed Request

w/Security Token

Signed Request

Client

Figure 1.

Security Token

Service

Signed Response w/Security Token

Reference Monitor

Trust

138

Basic computational model

Computations are done by running programs in processes which contain one or more
parallel threads of execution. Processes have separate address spaces and are isolated
from unwanted interactions with other processes. A program may use an inter-process
communication facility to send requests to other programs; or to receive requests from
other programs, process them, and return results in a response. A program sending
requests is called a client; one receiving them is called a service; a program may be both a
client and a service.

There are many providers of services, not just the system. In particular, many security
services are provided by non-system entities, and they may not be fully trusted.

We use an object oriented model: clients use requests to ask services to perform some
operation on an object1 that the service implements. Services in turn invoke other services
to perform the requested operation. Ultimately, they invoke drivers to write pixels to the
screen, bits to the disks, packets to the network, etc.

Basic security model

Computations run on behalf of principals; principals may be users or services (and other
kinds, to be defined below, but these are the basic ones). A system service exists that can
start an initial process and program on behalf of a user after verifying the user’s identity
and their permission to use the system.

Requests can be in many forms; typical examples are messages sent over a network or
inter-process communication mechanism, or APIs that call into the operating system2.

Services are responsible for securing themselves; i.e., making sure that only authorized
principals will have their requests executed. When a service receives a request, it forms
the security context for that request, uses its trust policy to validate all the information in
the security context, and then uses it to evaluate its authorization policy3 to decide if the
request should be honored. The next few sections expand on this process.

Model components

A statement is a collection of data created by a principal; statements can contain other
statements. A claim is a statement consisting of security relevant information about a
principal; a security token is statement containing one or more claims. An important type
of claim is the attribute-value (AV) claim, stating that a principal has certain attributes;
such a claim might be that a user has a certain identity, is a member of a specific group, or

1 Another frequently used term for object is resource. In this context, they mean the same thing. A
service may implement only a single object, or it may implement many. If many, they may all be of the
same kind, or they may be of different kinds.

2 The request identifies the operation and the object on which it is to be performed (if it's not implicit)
and contains any other data needed to perform the operation.

3 The analogy is to the standard model of interpretation: the policy contains free variables that a bound
with reference to the context.

 139

has a certain credit limit. A security token might be a list of group memberships for a
user.

A signed statement is a statement for which an AV claim attesting to the identity of the
principal making the statement can be requested from the system; they are particularly
interesting when the statement is a security token. The system guarantees that signed
statements are tamperproof and the principal’s identity is unforgeable4.

Requests and responses are statements, and they too may be signed5. Whenever necessary,
the system can guarantee that signed requests and responses are private; i.e., the contents
are not accessible to any process except the intended recipient.

A security context is a collection of claims related to a particular request. It can be
initialized with the AV claim identifying the sender of a signed request, or by a security
token. Security tokens may be received in requests, or returned in responses to requests
made to other services; a service whose primary purpose is to do the latter is called a
security token service (STS). Multiple security contexts may be merged to form a new
security context just by taking the union of all their claims.

Trust model

The claims in the security context are validated against the service’s trust policy. The trust
policy for a service defines which of a security token service’s claims will be used when
evaluating its authorization policy; the service will trust a claim if it deems the service
(often an STS) that made the claim authoritative for that claim. Any given STS may (and
usually will) be considered by any given service to be authoritative for only a subset of all
principals, and, for any principal, only a subset of the possible kinds of AV claims that
can apply to that principal; we call this its authorization scope with respect to that service.
For example, the human resources service for a division of a corporation may be
authoritative for AV claims about salaries of division employees, while the division IT
department’s group membership service is authoritative for AV claims about their group
memberships.

There is a kind of claim, which we call a trust claim, which defines an authorization scope
for a particular STS. The trust policy for a service is a collection of such claims. In
addition, authorization scope claims can be in the security context and will be trusted if
they were made by an STS that is trusted (i.e., authoritative for them). Note that trust
claims are themselves a kind of AV claim: they specify a set of claims for which a
service is authoritative and is therefore trusted to make.

Trust policy, in the form of a security token containing trust claims, can be an argument to
a request, and also are validated against the service’s trust policy. Trust claims that pass
validation may be added to the service’s trust policy. Trust policies can be combined to
create a new trust policy just by taking the union of all their claims.

4 To simplify exposition, we have simply posited that the system can do this, but it should be noted that
in Taos both identity and authorization are verified in a uniform way using (its analog to) claims and
the trust validation we outline in this paper. I.e., user identity is just an AV claim.

5 We allow unsigned requests for cases where anonymity is allowed or desired.

140

More complex principals

Principals can be organized into groups: a group is a set of users or groups. A group is a
kind of principal: a group member is authorized to do anything that the group is
authorized to do.

Principals can also be organized into roles. A role is a kind of principal: a role member is
authorized to anything the role is authorized to do. A role differs from a group in that its
membership is tied to an object type and a scope – see the next section.

A principal may be formed from a set of other principals, making an access token6: a
token is authorized to do anything that any principal in the token is authorized to do.
Tokens can also be restricted by specifying a second set of principals; a restricted token is
authorized to do anything that both sets of principals are allowed to do. These constructs
allow taking the “or” and “and” of principals (respectively).

Authorization policy

A service may associate with each operation of the service a permission that authorizes
the operation7; the operation is said to require the permission.8 Associated with each
object in a service is its authorization policy.9 An authorization claim for an object
specifies a set of principals, and the permission(s) granted to that set10. The set of
principals can be specified by a Boolean expression which evaluates to true for all
members of the set, where the free variables in the expression are bound to the values of
attributes in AV claims in the security context. The authorization policy for an object is a
set of such claims.

Objects in a service can be organized into scopes: all objects of the same type11 in the
same scope have the same assignment of principals to roles. Assigning scopes simplifies
authorization management by removing the need to manage authorization policy for each
object individually.

One kind of authorization policy is role based: all objects in the service of the same type
have the same authorization policy, and the only principals in the authorization policy are
roles. With role based authorization, the authorization policy is fixed by the
implementation of the service, which “hard codes” the assignment of permissions to roles;
authorization is managed by changing the assignment of principals to roles and objects to
scopes.

Authorization policy, in the form of a security token containing authorization claims, can
be an argument to a request, and also is validated against the service’s trust policy.
Authorization claims that pass validation are added to the service’s authorization policy.

6 Often referred to simply as a "token" when the context is clear.
7 More than one operation may be associated with a given permission.
8 It is possible, but not encouraged, for an operation to require more than one permission.
9 More than one object may be associated with a given authorization policy.
10 Note that the set of principals with a given permission essentially defines a group.
11 For purposes of this paper, it suffices to define that objects have the same type when they implement

the same operations.

 141

Authorization policies can be combined to create a new authorization policy just by taking
the union of all their claims.

Authorization verification

To secure itself, a service utilizes a reference monitor: for each request, it asks the
reference monitor to decide whether it should grant the request. The reference monitor
bases its decision on the security context for the request, the operation requested, the
service’s trust policy, and the service’s authorization policy. (For example, a basic kind of
authorization policy could simply specify which principals can perform what operations
on its objects; one way to express this is with access control lists on the objects.)
Essentially, the trust policy is used to create a trusted security context that only has trusted
claims, then the authorization policy is treated like a program to be executed, with the free
variables in it assigned values from the trusted security context. If the reference monitor
OKs the request, then the service executes the operation, using its own identity to make
the requests on any other services or drivers needed to do so.

The model above leads to the following flow for verifying that the authorization policy is
satisfied when a service processes a request:

Get the operation specified in the request
Combine all the security tokens to create the security context
Create the trusted security context by using the trust policy to

remove untrusted claims
Get authorization policy:

If only one policy for the service, just return it; else:
Determine the object being referenced by the request
Determine the object's scope
Determine the object's type
Get authorization policy for that type in that scope

Determine if the requesting principal is given the required
permissions by the authorization policy:

If the principal is an access token, take the union of the
permissions associated with each principal in the access
token

If the principal is a restricted token, take the intersection
of the permissions associated with each principal in the
restricted token

If the permissions do not include the one required for the requested
operation return an access denied error, else return OK

Note that if a service does not have need for flexible configuration of authorization policy
and wants the ultimate in efficiency, then it can associate a role with each operation, and
have the implementation of each operation simply check whether the requesting principal
is that role (or an access token that contains that role).

Conclusions

We have briefly described a conceptual model for authorization for web services. If one
contrasts it with “more traditional” models, the more interesting differences include:

• authorization based not just on user identity and group memberships but on
attributes of users

142

• support for partial trust on attributes as well as user identity and group
memberships

• trust and authorization policy can be arguments to requests from untrusted clients,
as long as they originate with parties trusted to set such policy

Finally, this model isn’t really tied to web services – it could be used in other distributed
systems contexts where the features that differentiate it from the more traditional model
are needed, just as web services need them.

Acknowledgements

We would like to acknowledge the support given to the work that led to this paper by
Dave Aucsmith, Doug Bayer, Peter Biddle, Blair Dillaway, Mike Nash, David Treadwell,
and Robert Wahbe.

References

[LAMP92]
LAMPSON, B., ABADI, M., BURROWS, M. AND WOBBER E., ‘Authentication in
distributed systems: Theory and practice,’ ACM Trans. Computer Systems vol. 10, no.
4, Nov. 1992, pp. 265-310. A preliminary version is in the Proc. 13th ACM Symposium
on Operating Systems Principles.

[LAMP74]
LAMPSON, B., ‘Protection,’ Proc. 5th Princeton Conf. on Information Sciences and
Systems, Princeton, 1971. Reprinted in ACM Operating Systems Review, vol. 8, no. 1,
Jan. 1974, pp. 18-24.

[NEED78]
NEEDHAM R.M. AND SCHROEDER, M.D., ‘Using encryption for authentication in large
networks of computers,’ Comm. ACM, vol. 21, no. 12, Dec. 1978.

[SDSI]
LAMPSON, B. AND RIVEST, R., SDSI – A Simple Distributed Security Infrastructure,
http://theory.lcs.mit.edu/~cis/sdsi.html, 1996.

[WS02]
IBM, MICROSOFT. Security in a Web Services World: A Proposed Architecture and
Roadmap, 2002.
http://msdn.microsoft.com/library/en-us/dnwssecur/html/securitywhitepaper.asp

 143

The Trouble with Standards

E Stewart Lee
Orillia, Ontario, Canada

Standards, as they used to be used, are great. Railways usually run on tracks of the same
gauge. Railway cars can easily hitch together regardless of which company owns the car.
One can tell the value and tolerance of a resistor independently of who manufactures it.
The colour coding that contains this information is universally used and became a
standard. Electrical apparatus can be plugged into a socket with little worry about the
voltage or the frequency of the supply, at least within a single country. All these
examples and many more allow the products of different manufacturers to interoperate
with the consumer having little to worry about.

This is because these standards evolved over many years and represent a useful
compromise between effectiveness, usefulness and economy. Some manufacturers took a
bath, but the consumer barely noticed.

An interesting example of great expense being incurred by a manufacturer concerns the
frequency of electrical power generation. The original1 AC power generated at Niagara
Falls was at 25 hertz; in the late 1950s Ontario Hydro had to spend some $2 billion (circa
1958 currency) to convert the power to 60 hertz, including the replacement of all
household devices that were frequency sensitive. This benefited the consumer and
ultimately the power generator.

However, the information technology industry has gone a different route. In IT, what
happens all too often is that a consortium of manufacturers agrees to prescribe a so-called
standard before anybody has built any component. It has been stated that this is being
done to allow interoperability. A cynic, however, can often support the thesis that such
consortia are a plan to dominate a given market before a product is offered for sale and
often before it is even conceived as a design. Manufacturers want to build to a standard in
order to protect their investment. Rarely does a manufacturer produce something that he
considers a cutting edge product without joining a consortium to spread the risk.

Fortunately for the consumer, market forces often intervene. Thus, the consortium that
specified Bluetooth delayed in finalizing their standard and several competing systems
came to exist; some of them are in many respects as effective as Bluetooth. Various
efforts to protect the intellectual property of recorded or broadcast information have been
proposed, but as far as I know either they are not very effective or they require the
consumer to invest in expensive equipment that has only one purpose, the protection of
the intellectual property of the owner of the information that the consumer wishes to
access. Surely, the IP owner should pay for his own IP protection.

1 DC had been generated for some years before the switch to AC, which was done to facilitate power
transmission.

144

These consortia often resemble a cartel2 in that they restrict the use of their standard to
those organisations that contributed to it. Newcomers are often expected to pay a
substantial usage fee. For this to work, the standard must be certified and protected by an
influential body that is prepared to fight against its adoption by organisations that did not
contribute to it. Regrettably, some standards bodies cooperate with such consortia.

Some, however, deal primarily with national standards organisations. The International
Organization for Standardization3 is such a body. It has no fewer than 225 Technical
Committees that deal with areas as diverse as Information Technology; Tyres, Rims and
Valves; Gas Cylinders; and Nuclear Energy. The IT Technical Committee covers 1696
standards directly related to IT, of which 565 are under the direct responsibility of the
ISO. There are 18 subcommittees covering the field.

The ISO defines standards as:

���������	
���
���������
���������	
���������
�������
	����������	

��
 �����
 ����	�
 �������
 ��
 ��
 �	��
 ��	�	������
 �	
 ����	�
 ���������	�
 ��

����������	
��
��������	��	�
��
��	���
����
��������	�
������	�
����		�	

���
	�����	
���
���
���
�����
�����	��

���
��������
���
������
��
���
�����
���	�
�����
���	�
���
�	�����
���	

����
 ����
 �����
 ���������
 �	
 �������
 ����
 ��
 ��
 �������������

���������
 !�������
 ��
 ���
 	��������
 "���
 ������	
 	��
 �������	
 �	
 ��

�������
���#��		
$%�&'
��(�
����	
����
���
���	
��
��
�	��
"����"����

�������������
 ��������	
 ���	
 ���������
 ��
 ��#���
 ����
 	�������
 ���
 ��

�����	���
���
�����������
���
����������		
��
���
����	
���
	�����	
"�
�	��)

This quote is not consistent with many of the so-called industry standards that are
continually being conceived. Industry standards often exist for more commercial reasons.
It would be pleasant to believe that some mechanism could be invented that would allow
the desirable features of international standards to apply to industry standards. I believe it
to be unlikely that such a mechanism will be forthcoming in the near future. It seems to
me to be evident that the consortium-of-manufacturers based approach is going to
continue, with all its downsides. Presumably, therefore, we just have to hope that with a
worldwide and continually growing industry, we will be able to rely enough on market
forces of one sort or another (where perhaps one such force is the kind of anti-market
market force that open source represents) to provide some countervailing pressures.

2 American Heritage Dictionary, 4th ed., 2000: “A combination of independent business
organizations formed to regulate production, pricing, and marketing of goods by the members.”

3 http://www.iso.org/

 145

Novelty in the Nemesis Operating System

Ian Leslie
 University of Cambridge, England

Background

The opportunity to develop an operating system from scratch, even in a research
environment, does not arise very often. One needs the inclination, a motivating
proposition and the resources to carry the development through. However, the results can
be very rewarding; starting with a blank sheet of paper encourages novelty and allows
conventional wisdom to be challenged.

In the early 1990’s the Systems Research Group at the Cambridge Computer Laboratory
began a project to develop an operating system to support the processing of continuous
media. The team wanted to investigate the provision of guarantees of predictable
performance to a dynamic mix of applications generating, playing and/or processing
audio and video information. The work was carried out within two serial EU funded
projects1.

Providing predictable performance to applications entails providing them with the
resources they need at the time they need them. If one concentrates simply on the
processor(s) as a resource then it is tempting to think of this problem simply as a
scheduling problem. While scheduling is key, it is not the only issue. It was recognised
that uncontrolled resource interference between applications — denoted as resource
crosstalk2 — could arise as a result of the structure of the operating system over which
the applications ran.

An operating system, computer scientists are told from a very early point in their
immersion in the subject, is a program (or set of programs) that controls the resources of a
computer system, protects users from one another and provides services above the mere
hardware of the system. They are also told about hardware support for protection, and are
shown how this can be used, amongst other things, to prevent the operating system from
being circumvented by users. Just how much of the operating system belongs inside
special protection domains, or indeed how many different types of protection domain
there should be, has been a topic for discussion and reinvention as long as there have been
operating systems.

The goals of Nemesis gave its designers the academic luxury of exploring this issue at an
extreme end of the spectrum. If, as Roger Needham has often suggested, systems

1 The other partners were the University of Twente, Glasgow University, the Swedish Institute of
Computer Science and APM (later Citrix). Their main involvement was in the production of
components such as tools to support development, or applications which used the operating system,
rather than operating system itself.

2 To be completely accurate, this was called QoS (quality of service) crosstalk.

146

research is about sticking a pin in at an interesting point in a design space and then
thoroughly examining the implications through implementation, then this was systems
research.

Rather than a complete description of Nemesis, we describe below a number of
interesting developments made within Nemesis as a result of exploring this extreme point
on the spectrum. Some of these can be seen as logical implications of initial choices,
while others arose simply because of the clean sheet of paper.

Vertical structure and the separation of control and data paths

A significant amount of application processing is usually performed directly by the
processes and threads created specifically for the application. In this case, resource
contention amongst application processes is controlled by the system scheduler
implementing a resource allocation policy. However, applications invariably make use of
operating system services, either within the kernel or an operating system process (server)
used by other applications. Obvious examples of such services are network protocol
processing, filing systems, memory management and window systems. Within any
component performing a task for multiple client applications, there is the potential for
performance interference between applications. Given the design goal of controlling
such interference, two obvious approaches present themselves:

• Control the interference amongst applications within shared operating system
servers and kernel. (Be careful when you’re there.)

• Minimise processing performed by a kernel or shared operating system processes
on behalf of applications. (Don’t go there.)

The designers of Scout, at the University of Arizona and later Princeton, opted for the first
of these approaches. The Nemesis designers opted for the second. This decision was
embraced wholeheartedly: the question arose as to what the minimum functionality was
that had to be provided within a kernel or shared server.

The answer was to some extent influenced by the context in which Nemesis was
developed. The playing, processing and generation of continuous media were seen as key
drivers. Traditional applications — that is, everything else — had tolerated application
crosstalk. Continuous media applications can be partitioned into control path execution
and data path execution, with data path execution expected to take the vast bulk of
processing time. The initial solution, then, mandated that data path execution take place
inside application domains while (infrequent) control path execution would, where
necessary, take place in shared servers. As an added bonus, this division corresponded
well with the thinking about network control within the research group.

To use an alternate but compatible formulation: applications should be isolated from each
other’s behaviour, should be exposed directly to the capabilities of the underlying
hardware, and should be responsible (in an accounting sense) for the actions performed on
their behalf.

The organisation of the operating system which emerged was termed vertically
structured; each application executed the bulk of what would traditionally be operating
system code within its own process, called a domain. In fact it was still operating system

 147

code, but provided through shared libraries rather than shared servers. Much the same
organisation was arrived at in the Exokernel system developed at MIT during the same
period, but in that case the motivation was simply to allow applications to provide their
own abstractions where those provided by the operating system were inappropriate.

Nemesis supervisor

The Nemesis “kernel” became simply a scheduler and a small set of simple trap handlers
and device stubs. The word “kernel” was deprecated within Nemesis and the temptation
to talk in terms of “nano” or “pico” kernels was avoided3. There were no threads in the
supervisor; rather application threads could invoke a trap which would either execute a
handful of instructions and return, or would deschedule the domain and enter the
scheduler.

The most commonly used scheduler provided a domain with a guaranteed slice, s, of
processor time within a specified period p. This gave each domain a notional share of the
processor (viz. s/p), but also specified the granularity of time over which that share should
be delivered. Domains could also indicate that they wished to use any available slack
time, over and above their guarantee. To support multiplexing within domains, each was
expected to have its own user-level thread scheduler. Special support for these schedulers
was provided; for example a domain could dynamically choose between being
transparently resumed from where it was last descheduled, or alternatively having its
scheduler entry point invoked.

Trap handlers were primarily concerned with descheduling of an application and the
implementation of an event delivery mechanism over which an event count and sequencer
package used for interdomain communication was implemented. While the delivery
mechanism was within the privileged code, the event count and sequencing system was
implemented in shared library code executing within each domain.

Device organisation: control and data paths

The handling of devices was a particularly interesting aspect of Nemesis. Again the
desire was for application domains to perform as much of the application’s device
processing as possible. The separation into control and data paths became more
formalised, with each device having two recognisable interfaces. The control interface
was necessarily implemented by a shared server. Ideally the control interface simply
provided a means by which a client could configure their access to the device. The device
itself, possibly aided by the memory protection system, simply needed to police correct
access to devices. The notion of a model device was developed, although it was
recognised that few hardware devices adhered to this model. The graphics frame buffer
was a good example of nonadherence.

Conventionally, window systems are implemented by a shared server which “owns” the
graphics frame buffer. In Nemesis this was undesirable; an application can cause some
window systems to engage in vast amounts of processing. If the window system is
running within each application domain, as would be the Nemesis ideal, excessive

3 Although the temptation to call the supervisor the Nemesis Trusted Supervisor Code (NTSC) was not.

148

processing on behalf on one domain does not create a problem since that domain will be
accounted for the processing performed. However, the window system does eventually
have to write pixels into a frame buffer, and one can hardly classify this as a control
function. A Nemesis ideal frame buffer would be, say, configured such that various
address space portions could be allocated to different application domains, and then only
allow pixels allocated to a domain to be written to by that domain. The pragmatic
implementation was to have a device stub within privileged code that provided precisely
that functionality, that is, checking that domains were attempting to write only the pixels
they “owned” and then writing them. There was no loss of accounting accuracy since the
client domain was not descheduled when executing the privileged code.

Similar considerations with other devices led to follow on work in placing “Nemesis
ideal” functionality into the device in a way that can be exploited by traditional operating
systems.

Memory management: self paging

The implementation of the memory management system in Nemesis was interesting
because it was somewhat post hoc. Much of the structure and design philosophy had been
determined, and handling memory access exceptions had been seen as a control problem,
not a data path execution problem, and therefore destined for a shared server. However,
the issue of how much could be done by applications for themselves was revisited. It was
clear that novel memory management techniques had a role to play in processing
continuous media, but why should one application suffer for the novel memory
management used by another? The system developed, self paging4, made domains
responsible for their own memory fault handling. Although a domain might make use of
a standard library paging algorithm, this executed as part of the domain. A shared system
domain was required to configure the memory resources of domains, but this was the only
“control path” operation.

Binding and bulk I/O

Other novel features were prompted by the flexibility of the memory system and the
structure which supported application domains, but perhaps most significantly simply the
opportunity to “do it from scratch.” Particularly noteworthy were the binding model used
for inter-domain communication, sometimes described as “a full distributed system in a
box5” and the bulk I/O channel organisation which met the requirements for both
traditional data and continuous media communication6. Full details can be found in the
references in the bibliography.

4 Self paging is distinct from external paging; external paging is paging within a shared server outside of
a kernel, and suffers the same drawbacks as any shared server.

5 The influence of the ANSA distributed computing architecture on the research team was very
pronounced.

6 Arguably, it met the requirements of each better than existing schemes designed specifically for either.

 149

Implementation and performance

The initial implementations of Nemesis were on the DEC Alpha AXP, MIPS and ARM
architectures. The Alpha AXP was the preferred architecture which, combined with the
requirement to share large amounts of code amongst different domains, led, not
unreasonably, to a single address space system. (Although sharing a single address space,
domains of course had different protection views of the address space.) The Alpha
architecture had a provision for the direct manipulation of native hardware resources
known as PALcode. Much of the supervisor code on the Alpha was implemented as
PALcode and its performance was outstanding.

Later, an implementation of Nemesis on Intel Pentium platforms was developed.
Although the primary goal of Nemesis was realised, that is, providing control of
interference between applications, the amount of state, in particular protection state,
which had to be changed on a context change was significantly higher7. One of the
research team remarked that “modern processors are a bit like American cars: very fast in
a straight line but not very good at turning corners.”

Resource (re-)assignment tools

While the bulk of the effort on Nemesis was about providing mechanism to enforce
allocation policy, some work was done on allowing users to define policy. The most
primitive, although the most widely used, tool was a simple interface which allowed the
user to move resources, notably those defined by the scheduling parameters, amongst
application domains. Another tool allowed applications to be monitored to determine the
appropriate resource allocation for a desired performance, while yet another allowed a
user preference profile to be specified and acted on that profile to move resources around
dynamically. These made for fun demos, not a usual output of operating systems
research!

A few of the novel features that came out of the Nemesis development have been touched
upon. It is difficult to see how many of them would have arisen in an incremental
development of an existing system. The clean sheet was of enormous value, enabling the
quite remarkable team of research students and research assistants who developed
Nemesis to make interesting contributions to the subject. It was of course far from the
first time this happened in Cambridge, and has not been the last.

Acknowledgements

I would like to acknowledge those involved in the development of Nemesis: Ian Pratt,
Paul Barham, Timothy Roscoe, Richard Black, Derek McAuley, Eoin Hyden, Robin
Fairbairns, Dave Evers, Steven Hand, Austin Donnelly, Dickon Reed, Stephen Early, Neil
Stratford and Paul Menage. I am grateful to Steven Hand for comments on this note.

7 However, it was not as high as on conventional operating systems running on the same hardware.

150

Bibliography

1. Leslie, I., McAuley, D., Black, R., Roscoe, T., Barham, P., Evers, D., Fairbairns, R.
and Hyden, E., ‘The Design and Implementation of an Operating System to Support
Distributed Multimedia Applications,’ IEEE Journal on Selected Areas in
Communications, vol. 14, no. 7, September 1996.

2. Black, R., Barham, P., Donnelly, A. and Stratford, N., ‘Protocol implementation in a
vertically structured operating system,’ Proc. IEEE Conference on Computer
Networks, November 1997.

3. Hand, S., ‘Self-paging in the Nemesis operating system,’ Proc. Usenix Third
Symposium on Operating Systems Design and Implementation, February 1999.

 151

A Technology Transfer Retrospective
Roy Levin

Microsoft Research, Silicon Valley
California, USA

Many have written about the challenges that industrial research organizations face in
trying to transfer the technology they create to other organizations. Research pursues a
long and winding road from the proof of concept of a technology in the lab to the
adoption of that technology by others and its use for corporate benefit. To follow the road
to its end requires persistence, determination, flexibility, and (when, as is often the case,
the road ends short of the destination) good humor. In this short paper, I offer a personal
recollection of a part of one such journey — one in which the destination reached wasn’t
the one originally sought.

The road

My story tells of the Vesta system, the eventual result of an extraordinarily long research
activity that spanned more than twenty years and three companies. The focus of this
research was software configuration management, especially the problem of building
large-scale software systems incrementally and reproducibly. (An incremental build is
one in which the minimum amount of compiling and linking occurs, exploiting as much
as possible the results of previous compile/link steps.) Butler Lampson sparked my initial
interest in this topic in the early 1980’s at Xerox PARC. At that time, the software
environment in which we were working differed significantly from those in general use
elsewhere, since it had been constructed around a custom programming language and
operating system (both called Cedar). Nevertheless, the overall problems of system-
building were largely the same as one would have encountered under Unix or any other
programming environment at the time.

Many researchers had investigated tools to build software incrementally, and some
commercial systems of the time included them. Perhaps the best known was make [1], a
simple tool originally built for Unix but subsequently adapted in many other
environments. Make provided facilities for two essential aspects of system-building: (1)
a concise way to express dependencies between components of a software system, and (2)
a script of rebuilding actions for each component, to be executed when a predecessor in
the dependency relation was updated. Make was designed and worked well for systems
of a few tens of thousands of source code lines, but its limited notion of dependency did
not extend well beyond that. Systems at the next order of magnitude or larger typically
required build tools that supported branched development and/or multiple target platforms
and/or a geographically dispersed organization. Developers of such systems still wanted
to build incrementally — the value of doing so was even greater with large systems — but
make could not do so reliably. As a result, developers of larger systems had to abandon
incremental building and, while they might still use make as the mechanism for scripting
the build actions, they reverted to “scratch” building which, for large systems, was an
overnight activity conducted by a “release management” organization. As Lampson

152

observed, this was effectively a return to the 1960’s, when large software systems were
built overnight by submitting large card decks as a batch process1.

This unsatisfactory state of affairs had not gone unnoticed in the research community, and
many variants of make were developed that sought to address the problem. Mindful of
Roger Needham’s maxim to do research “with a shovel rather than with tweezers,” and
unburdened at PARC by existing build processes based on make, we embarked on a line
of research to rethink software system building from first principles. An early result of
this result was the Cedar System Modeler [2], built by Ed Satterthwaite. However, this
tool focused less on the problems of scale and incremental construction than on the use of
a strong type system to minimize errors in building.

Before the Cedar System Modeler could see any significant use, Lampson and others
(including me) left Xerox to found the DEC Systems Research Center. This group
immediately set about creating a programming environment incorporating some of the
features to which we had grown accustomed in Cedar. However, while this environment
had a custom operating system (Taos [3]) and programming language (Modula-2+ [4]),
the software development tools came from Unix and make was the system builder. We
thus became acquainted first-hand with make’s characteristics, and I soon initiated a new
project to attack “the system building problem” afresh. The project was named Vesta2.

The Vesta research project produced a practical system that was deployed at SRC around
1989. It used a modular, functional programming language to express the build “script”
and was able to build all of Taos, Modula-2+, and hundreds of libraries and applications
built on them, all incrementally and reproducibly [5]. This body of code comprised
nearly 1.5 million source lines, well beyond what make could reliably build
incrementally. It was language-independent — that is, programs written in languages
other than Modula-2+ could be built by Vesta — and supported both branched and cross-
platform development.

The Vesta developers were excited by this successful demonstration of the feasibility of
large-scale, incremental, reliable software system building. As a result, we embarked on a
series of visits to DEC product organizations that we hoped would embrace the
technology. DEC had two substantial programming environment product suites, one
based on VMS, one on Unix. Both used make or its relatives as their build engine, and
we believed the demonstrable superiority of the Vesta approach would be appealing. The
tools purveyed by these groups were DEC products and were also used internally by the
VMS and Unix operating system and layered product development groups for their very
large code bases.

We returned from these trips sadder but wiser. While these groups found Vesta
technology attractive, they could not adopt it. There were several show-stoppers. For
expediency, we had implemented Vesta by exploiting features of the Taos operating

1 Those too young to have experienced system construction in the days of batch processing can glean a
sense of it, and much more besides, from [6].

2 According to Bulfinch, “Vesta (the Hestia of the Greeks) was a deity presiding over the public and
private hearth.” That duty struck me as an apt characterization of the role of a configuration
management tool.

 153

system that made it impractical to port Vesta to other platforms. We believed this could
be fixed3, but it nevertheless put off the potential recipients. Furthermore, the whole
Vesta system was implemented in Modula-2+, a language unsupported by DEC and
unknown to most of its developers. More seriously, Vesta’s idiosyncratic build-scripting
language, uncertain scalability beyond systems of a few million lines, and inability to
support geographically dispersed development made it an inadequate replacement for the
make-based build systems that the product development organizations had cobbled
together. We were disappointed, but went back to the drawing board, and began a new
project to address these shortcomings.

The result, several years later, was Vesta 2. While continuing the original research goal,
Vesta 2 had different technical objectives and substantially new personnel. Goaded by
Bill McKeeman, we recast the syntax of the build-scripting language to resemble C, while
retaining the underlying functional semantics that were essential for Vesta’s incremental
building machinery4. We implemented the system in C++ on top of DEC’s Tru64 (Unix)
operating system. We emphasized scalability to 10 million (or more) source lines,
geographic distribution, and more Unix-like management tools. The resulting system is
described in detail in [6].

By the time that Vesta 2 was completed, DEC had largely ceased to invest in software
development tools as part of its product portfolio. Some of the organizations we had
previously visited no longer existed, but the operating system groups did, and the Unix
organization expressed some interest in Vesta 2. Ultimately, however, they decided not to
use Vesta for a combination of reasons, most of which are familiar to researchers who
have followed the technology transfer road. Two in particular deserve note:

• Vesta 2, while technologically superior to existing build tools, represented too
radical a departure from make. To adopt Vesta would require rethinking the
entire building methodology of the Unix organization, not to mention the
structure and function of its release management group. Despite Vesta 2’s
evident benefits, the conversion effort and retraining necessary to adopt it were
simply too much to consider.

• Vesta 2 came from a research group, not another product group or external
vendor. The Unix organization would need long-term assurances of support
before adopting the system, and (justifiably) didn’t believe that the research
organization could provide that assurance.

3 Indeed, by that time, SRC had shifted from Taos to Unix as its research platform and some of our
colleagues were encouraging us to reimplement the Taos-dependent parts of Vesta so that they could
continue to use it on Unix.

4 An explanation of the language semantics would go far beyond the scope of this paper. The key idea,
however, is that the function calls of interest in a Vesta build script are invocations of tools (e.g.,
compiler, linker). The arguments to these function calls are all the dependencies (e.g., included files);
there are no global variables and, because of the functional language, no side-effects. Consequently,
the function calls can be cached, and a cache hit indicates that a tool invocation can be bypassed and
the cached result (e.g., compiler or linker output) can be used instead. This is the semantic basis of
incremental building in Vesta. For an in-depth discussion, see [6].

154

We could not make headway against these objections. To us it seemed ironic that the
operating system organizations periodically revamped their build processes, occasionally
even building specialized tools to enable them to continue to build their systems from
scratch overnight or over a weekend, but they would not consider a systematic rework
that could have a major impact on their productivity5. We were about to give up on
Vesta 2 when we encountered an unexpected bend in the technology transfer road.

An unexpected destination

I was sitting in Chuck Thacker’s office sometime in 1996 complaining about our inability
to find an outlet for the Vesta 2 technology. Chuck reminded me that modern hardware
development had become software-intensive and that DEC of course was fundamentally a
hardware company. The company was sharply reducing its formerly broad investments in
software to focus on its core line of Alpha-based computers. The software involved in
development of an Alpha chip was not quite on the scale of an operating system, but it
was well beyond what make could comfortably handle. Chuck thought Vesta 2 might
help.

I realized that I had been wearing blinders. As the Vesta group had considered
applications of Vesta and potential organizations for technology transfer, I had always
focused on enhancing a conventional C or C++ programming environment. The Vesta
group, being software developers ourselves, had never really considered the applicability
of our system to hardware development. Moreover, we had generally focused on
transferring Vesta technology to a group that already produced software development
tools, since we knew that the support of Vesta would have to be assumed by the receiving
organization. We didn’t expect that a receiving organization would be willing to incur the
support cost (or acquire the expertise) for the Vesta system simply in order to use it — our
experience with the operating systems groups had taught us that. But we had nothing to
lose by trying, so we contacted the Alpha development organization.

As it happened, we did so at a fortuitous moment. The Alpha division had two teams,
each developing a new version of the Alpha processor chip. One of these teams was
finishing up its current chip and beginning to prepare for the next one, code-named Araña.
Matt Reilly, who had responsibility for the development tools that the chip designers
would use, was considering how to improve on the tool suite they had been using, which,
we learned, had some significant shortcomings for the task ahead. He expressed
considerable interest in Vesta and a series of exploratory meetings ensued. In the course
of these discussions, we revisited all the issues that had prevented the transfer of Vesta 2
to other DEC organizations. Many were significant, but none proved to be show-
stoppers. What was different this time?

• Because the Alpha designers were beginning a new chip, they had the
opportunity to take a fresh look at their development environment and revise or
revamp it. Development of a modern CPU chip is a multi-year task involving
hundreds of people, so an investment in new tools that will improve the process

5 This syndrome was familiar to some of us from our time at Xerox, where analogous events spawned the
lament: “There’s never time to do it right, but there’s always time to do it over.”

 155

and resulting product merits serious consideration. Thus, Vesta 2 arrived on the
scene at a propitious moment.

• While some of the basic development tools carry over from one generation of
chip design to the next, many need to change to reflect advances in the
underlying process technology. Moreover, little of the previous design
(expressed as software) carries over; there is, in effect, a new “code base” with
no legacy code. This stands in sharp contrast to the situation in the operating
system groups, which have an ever-growing legacy code base.

• Despite their interest in Vesta, the Alpha design group could not risk wholesale
introduction of a new system, with the attendant training and inevitable adoption
problems involved. But, in part because they were getting a fresh start, they
could structure their development to introduce Vesta in a small subgroup (about
20 engineers) first, fitting the outputs of that group into those of the rest of the
organization, which continued to use older build processes. Over time, as they
developed confidence in Vesta 2, they could scale up its use by introducing it to
additional subgroups.

• Matt Reilly found Vesta 2’s functionality (incremental build, scalability,
reproducibility, parallel builds, branched development) sufficiently compelling
that he was prepared to commit one of his engineers, Ken Schalk, to become the
local Vesta expert. Ken understood the needs of the Alpha developers far better
than we did, and could both convey problems back to us and help the Alpha
developers to use their new system building tool to maximum effect6.

The transfer of Vesta 2 technology thus began and, although we provided active support
at the outset7, within a year the Araña team was essentially self-sufficient. The user base
grew from an initial cadre of about 20 to over 200, and a large fraction of the Araña tools
and code came under Vesta 2’s management. By the time that the Alpha business was
sold by Compaq (which acquired DEC in 1998) to Intel, the Araña team had come to
depend on Vesta 2, and the system went to Intel with them. We had reached the end of
our technology-transfer road, though the destination turned out to be an unexpected one.

Lessons

Our repeated attempts to transfer Vesta technology, and our eventual success, lead me to
draw the following lessons.

• Successful technology transfer depends on finding a window of opportunity.
Candidate recipient organizations have development cycles and, during most of a
cycle, they cannot absorb new technology. In our case, the window was the

6 Ken became intimately familiar with the Vesta 2 implementation and eventually became the primary
support engineer for the system on-site. In fact, he ultimately took overall responsibility for porting
Vesta 2 to Linux and making an open-source version available. See www.vestasys.org.

7 Although the Araña team did not need the Vesta facilities that supported geographically dispersed
organizations, we used them effectively to exchange updates to the Vesta system itself between New
Hampshire (Araña group) and California (Vesta developers). Seeing this sophisticated feature work
smoothly increased the confidence of the Araña group in the tool upon which they were becoming
increasingly dependent.

156

“clean point” between Alpha chip generations, across which little code and few
tools are carried forward. Only when the window is open is the development
organization receptive; when the window is closed, they can’t hear the
researchers, no matter how loudly they shout. We found the window open
largely by accident. If I had it to do over again, I certainly would seek to
understand the development organization’s schedule well enough to respond
if/when the window opens.

• Appearances matter. Researchers often look for intellectual or aesthetic purity
and ignore ugly details that are conceptually straightforward to clean up8. By
contrast, development groups want things that work, and therefore they care
about the details. Those details tell them how carefully the researchers have
thought about their needs, which amounts to a litmus test of the practicality of the
system under consideration. So, the lesson for researchers seeking to transfer a
software system is: remove the twigs over which the developers will otherwise
trip. In Vesta 1, the language syntax repeatedly tripped up potential adopters.
We resisted, essentially on aesthetic grounds, marrying C syntax with functional
language semantics. When we finally did so, we removed a place to stumble9.

• Having a champion within the candidate receiving organization is essential. Matt
Reilly and Ken Schalk were our champions. The old adage that “you can’t push
on a rope” applies; without pull from the technology recipients, the transfer will
fail. Some believe that successful technology transfer requires people transfer. I
don’t subscribe to this view — Vesta 2 is a counter-example — but I do believe
that technology transfer requires a champion, who pulls on the rope. An
influential champion is especially important when a methodological change is
involved, as with Vesta, because that change must be embraced and promulgated
by management.

• When the technology transfer requires a substantial change in thinking or
operation, success depends on finding a small, somewhat separable group as the
point of introduction. Even the forward-thinking Araña group couldn’t swallow
Vesta 2 all at once; they had to adopt it incrementally. Success is contagious,
and once the initial group has had a successful adoption experience, they then
become champions for the new technology with the rest of their organization.

• Technology transfer must take bounded time; there must be a plan for making the
recipient organization self-sufficient. This generally means that either the
receiving organization or some other non-research organization commits to
ongoing support of the technology. In our case, it was the former, in the person
of Ken Schalk.

8 This is not a character flaw. Rather, it is an often necessary aspect of getting research done with a
small team – non-essential corners should and must be cut. Nevertheless, what gets the research done
faster can be an impediment to subsequent technology transfer, and researchers need to recognize the
trade-off.

9 Matt Reilly confirmed that the old Vesta language syntax would have been a significant impediment,
giving the Araña developers one more new thing to learn. By hiding the functional semantics under C
syntax, we removed that impediment and enabled many developers to read and understand the standard
build scripts without being immediately aware of the non-C semantics!

 157

None of these lessons is particularly earth-shaking. Some have been noted by others, and
no doubt other travelers on the technology-transfer road have encountered them along the
way. However, if in recording the Vesta 2 experience I have helped to straighten the road
for some future researcher, I will be well satisfied.

References

1. FELDMAN, S.I., ‘Make — A program for maintaining computer programs,’ Software
Practice and Experience, vol. 9, no. 4, 1979, pp. 255–265.

2. LAMPSON, B.W. AND SCHMIDT, E.E. ‘Practical use of a polymorphic applicative
language,’ Proceedings of the Tenth Annual ACM Symposium on Principles of
Programming Languages (POPL), 1983, pp. 237–255.

3. MCJONES P. AND SWART, G.F., Evolving the UNIX system interface to support
multithreaded programs, Research Report 21, Systems Research Center, Digital
Equipment Corporation, September, 1987. Available as
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-21.html

4. ROVER, P., LEVIN, R. AND WICK, J., On extending Modula-2 for building large,
integrated systems, Research Report 3, Systems Research Center, Digital Equipment
Corporation, January, 1985. Available as
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-3.html

5. LEVIN R. AND MCJONES, P.R., The Vesta approach to precise configuration of large
software systems, Research Report 105, Systems Research Center, Digital Equipment
Corporation, June, 1993. Available as
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-105.html

6. Heydon, A., Levin, R., Mann, T. and Yu, Y., The Vesta software configuration
management system. Research Report 177, Systems Research Center, Compaq
Computer Corporation, January, 2002. Available as
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-177.html

158

 159

An Optical LAN

Derek McAuley
Intel Research, Cambridge, England

Abstract

There are significant outstanding technological challenges in providing optical switching
on timescales short enough to provide statistical multiplexing at a comparable granularity
to that of packets; buffering, synchronization and regeneration within the optical domain
all present problems. This paper discusses some of these issues and presents an
architecture for a sub-network technology that uses optical switching but avoids these
issues by limiting the scalability of the system through concentrating on local, system,
storage and desk area networks.

Introduction

There is no doubt that optical networks using Wavelength Division Multiplexing (WDM)
are at the core of today’s communications networks. They have massive capacity –
leading commercially available equipment can multiplex 160 wavelengths at 10Gb/s per
channel over 5000km without regeneration 1. However, deployed networks are currently
controlled by network management systems operating on long timescales. The arrival of
Generalized Multi-Protocol Label Switching (GMPLS) 2 for the control of optical and
Synchronous Digital Hierarchy (SDH) path configurations has enabled more rapid
provisioning, but the timescales are still significant and statistical multiplexing gains are
at best coarse grained.

To try and achieve finer grained gains in statistical multiplexing, researchers have
investigated techniques such as Optical Burst Switching (OBS) 3 and Optical Packet
Switching (OPS) 4. Simulations and component demonstrators have been built, but major
hurdles remain in the realization of a complete system; we consider buffering and
synchronization in the paper.

Furthermore, even allowing for great leaps forward in optical technology, our view is that
the realization of an end-to-end all optical network for data communications will
experience the same issues in deployment as earlier proposals for end-to-end ATM. At
network boundaries, issues concerning security, trust, classification, QoS, etc will require
significant computing power to conduct deep inspection of packets; and, for the
foreseeable future, this computation will necessarily be electronic.

However, recently there have been dramatic improvements in the capabilities, cost and
availability of certain photonic components and transmission systems. This trend is set to
continue with key developments in short haul WDM, amplifiers and switches delivering
low cost components that are well matched to local data-communications applications.

Together these developments lead naturally to the consideration of optical data-paths for a
local area sub-network technology for System / Storage Area and Local Area networks.

160

There was frantic activity in the 1970s building LANs. Valuable lessons are to be learned
from their design; most importantly for the new optical era, they were designed to avoid
network buffering. Drawing on this experience we present a design for an optically
switched local network. Taking a local area network focus:

• allows acceptably high utilization in the optical data-path without the need for
optical buffering,

• limits problems due to non-linearities (e.g. dispersion, etc),

• changes the optical power and transmission requirements,

• obviates the need for inband processing of data within the network.

The paper highlights the optical issues in transmission, buffering and synchronization,
before presenting an architecture that can live with the limitations of optical components
becoming available in the near term.

Optical issues

Dispersion
A simple ray trace model using an ideal single wavelength is often used to illustrate the
difference between single-mode and multi-mode fibre. In multi-mode fibre, the core of
the fibre is much larger than the wavelength of light and a ray can take multiple paths
(modes) of differing lengths down the fibre, effectively spreading an optical pulse in time,
whereas in single-mode fibre only a single path is allowed. This simplistic geometric
argument suggests that single-mode fibre can support much higher bit rates because the
photonic pulses maintain their shape as they propagate.

A more thorough analysis involves Maxwell’s equations. The classic treatment of “single-
mode” propagation makes a number of simplifying assumptions which need to be
reviewed as we consider higher speeds and hence shorter timescales; in particular:

• The propagation is assumed independent of wavelength. However, in fact the
properties of the material (silica) and the manner in which the electromagnetic wave
propagates through it (the proportion in the cladding versus the core) are both
dependent on wavelength. The effects of this are commonly thought of on two
different scales: material dispersion – the different wavelengths of a WDM channel
propagate at different speeds; and chromatic dispersion – even within a single
channel, the finite frequency range of a single bit pulse spreads out in time.

• The fibre is assumed isotropic, but manufacturing produces fibres that are not
perfectly circular. Even moving to an elliptical model for the fibre results in the
generation of polarization mode dispersion – the effective refractive index of the
material varies depending on the polarization of the wave. Worse still, the polarization
modes intermix as they propagate, again leading to a general spread of the pulse.

With the main use of optical transmissions for wide area connectivity, these effects are
significant at speeds 10Gbps and above; however, they become important even in shorter
links as we drive the transmission rate higher.

 161

Temperature
Changes in operating temperature have subtle effects on optical propagation. The macro
scale effects include changes in effective refractive index within the fibre itself, at splices
between fibres and through connectors. Measurements show diurnal cycles in the “length”
of the fibre [6]. However, the same experiments show a massive variation in the
dispersion properties on much shorter timescales.

Optical power
A final effect worth noting is the dependence of the effective refractive index on the
optical power density; that is the propagation of the photons is affected by the density of
photons – this is referred to as non-linearity. At high power levels, typical of long haul
optical transmission, such effects must be taken into account. Importantly high optical
power in one wavelength will modify the propagation of photons in another – thus WDM
is not truly an orthogonal multiplexing scheme, although it approximates one at low
power.

Optical multi-wavelength coding issues

In standard WDM format an information channel over one link is entirely coded onto one
wavelength. Several of these channels on different wavelengths are then launched into a
fibre. This format has considerably increased the capacity of fibre optic transmission
systems, but each of the channels is considered independent.

In contrast to standard WDM, “optical bus” [7] and bit parallel WDM [8] coding have
been proposed. In this format the bits forming a word are formed into pulses launched
simultaneously on different wavelengths. To avoid confusion we call this wavelength
striping. Within the optical domain considerable effort has gone into ensuring the time
alignment of pulses for a given word is maintained, which makes for simple electronics;
on the other hand, compensation in the electronics is straightforward and a very small
addition to the total number of gates involved in a network interface card.

Moreover, recent work has demonstrated multi-wavelength soliton like behaviour, which
is in fact reliant on the non-linearity described above. Taken together, solitons and
electronic compensation, offer the opportunity to consider new multi-wavelength or
wideband coding techniques.

Optical switches

Switching on packet timescales, and with data-rates of interest at 1Gb/s and above,
dictates the use of devices based on electro-optical effects rather than mechanical (e.g.
MEMS), thermal or acoustic devices. Electro-optical devices are capable of switching in
several nanoseconds [9], which, although quite fast, is of the order of some number of bit
times at significant data rates. We must ensure that, while the switch is in transition, no
packet data is lost; we either introduce gaps between packets or require sacrificial packet
preambles.

162

Buffering

At present there are no practical optical RAM elements available from which to build
even small memories; photonic crystals offer some possibilities, but currently remain in
the photonic laboratories.

Fibre used as a delay line (FDL) offers one means of buffering. Combined with the use of
multiple wavelengths, such a delay line permits multiple packets to be simultaneously
buffered in the same fibre. FDL components have been demonstrated in laboratories. One
matter of concern is that during the recirculation losses accumulate, especially in the
delay line tap for insertion and removal of packets.

Using delay lines as a buffer
naturally leads to the
consideration of “slotted”
systems: either ATM style
packets with labels, or
synchronous TDM. In the
general case we need to deal
with the variability in the slot
arrival time compared to the slot switching time. Using a slot synchronizer we can insert
a variable delay of up to one slot time in increments of some quantum of time based on
the degree of bit level synchronization required. For example, for a 1024 bit slot with a
requirement for phase match of �/8, a phase synchronizer composed of a chain of FDLs,
each a factor of 2 longer that the previous, requires 14 stages. This is unsatisfactory: 14
stages of loss and noise are injected even before the packet reaches the main FDL buffer.

Wavelength conversion has often been proposed as an alternative to optical buffers: at the
point of contention where two packets wish to travel on the same output link at the same
time, simply ensure they are on different wavelengths. The classic Optical Burst paper by
Turner [3] shows specifically the trade off between more wavelengths and burst buffers.
On the other hand, a single FDL can also hold multiple packets if they are on different
wavelengths, while requiring that the tap on the FDL we able to add and remove specific
wavelengths [5].

At the core of the buffering and synchronization problem is the problem that full “3R1”
optical regeneration, which involves reshaping and retiming pulses, as well as
amplification, is not yet practical. Even just with amplification alone to deal with the
losses in the switch and fibre elements making up the synchronizer and buffer, noise
accumulates rapidly to an unacceptable level.

Lessons from history

LANs
The original LAN technologies—Ethernet, Hubnet, Token Ring, Slotted Ring, Dual Bus,
Folded bus, FDDI etc— all held packets in end-systems until transmission was (believed)

1 3R – re-amplify, re-shape, re-time.

20 21 2n 2n

Figure 2: Chain of 2x2 elements and FDLs
 used as synchronizer

 163

to have been successful. There was no buffering in the network. It is easy with today’s
full-switched multi-rate LANs to forget that at one point the concept of a LAN bridge,
which would buffer and forward packets, was seen as a new and challenging research
topic [10].

The original LANs could be categorized as either synchronous or asynchronous. In the
synchronous ones, nodes in the network received a continuous signal from the
communications media to which they synchronized their transmissions at the bit level,
and in which was encoded the information needed to implement Media Access Control
(MAC) based on contention avoidance. The rings and unidirectional or daisy-chained
busses are examples. In the asynchronous ones, exemplified by systems such as Ethernet
and Hubnet, a receiver would re-synchronize to the bit clock on a per packet basis and the
MAC would implement contention resolution.

Wireless
Wireless networks by their very nature are “un-buffered,” and there is considerable
experience from wide area (ALOHA and satellite), metropolitan (mobile telephony) and
local (802.11) networks to draw on. While local wireless networks often use similar
asynchronous access techniques to local wired networks, experience in the wide area led
to what can be categorized as semi-synchronous networks – that is synchronized at a time
slot level, but asynchronous at the bit level. In these networks, even when fed from a
single base-station master clock, the variability in delay (jitter) introduced in radio
propagation and/or mobility mean that is simply not possible to ensure that two packets
from different sources arrive at the base-station (or satellite) with the required sub-bit
timing accuracy to run synchronously.

However, designing with realistic quantitative evaluations of these effects allows the
imposition of a slot structure into which packets can be inserted by transmitters and be
received within the defined time slot by the base-station. For example a normal GSM
“packet” is 144 bits within a time slot of 152.25 bits, allowing 8.25 bits of slack. To deal
with longer term drift as conditions change (e.g., as a cell-phone moves) the packet launch
timing (skew) must be constantly re-evaluated; for the GSM example, a handset can be up
to 35Km from a base-station giving a maximum skew of approximately half a packet.

The media access issue is orthogonal to clock synchronization and for these semi-
synchronous systems has been implemented using both contention resolution and
avoidance, with both fixed (TDM) and variable (demand driven reservations) access for
nodes.

Architecture

With the limitations of optical devices available in the short term laid out, and lessons
from LAN and Wireless experience highlighted, the rabbit is in the hat.

Slot format
We consider a semi-synchronous optical network composed of point-to-point links and a
central switch, which itself might be composed of several switching stages. Quantitative
estimations for all of the effects of dispersion, temperature variation, and switch
behaviour, indicate that a semi-synchronous optical network can be constructed in the

164

 �c

 �1..n

Timing
reference

Optical
switch

Figure 3: Timing reference supplied from switch on �c

 Effect Description
30ps/km/C Temperature dependant

change
80ps Transmitter jitter

to

<< ts Switch jitter

Jitter

tj to * 2 Slot phase lock accuracy

ts 5ns Guard time for optical switch

t� 1ns/km/50nm Chromatic dispersion at
1550nm

Skew

tc 80ps + few
bits

Clock recovery

Figure 4: Timings for transmitted
and received packets

tp

tg

 ts tj t� tc

local area, and achieve good utilization. Work continues on detailed analysis of exact
materials and wavelengths and we use illustrative numbers in the following discussion.

The switch communicates slot
timing and phase information to
each of the network nodes so that
the transmitters can lock onto the
switch slot structure. This bi-
directional control channel is also
used as the request / grant channel
to implement the Media Access
Control (Figure 3). As with
wireless communications we can consider MAC layers implementing reservation and
contention mechanisms. When granted access to a time slot a node can transmit using
wavelength striping on the data channels, �1..n, which are routed through the optical switch
to the designated destination.

Figure 4 illustrates typical
values of the various timing
parameters that have an impact
on the design. Importantly in
the small scale network under
consideration, polarization and
chromatic dispersion can be
neglected, while material
dispersion and temperature
effects are pronounced.

Assuming a commercial grade
network (rather than military
grade) we might expect
temperature changes of 50oC;
constraining ourselves to a
network of 1km radius, we see
that the most significant jitter
effect is the temperature
dependant element; allowing
for this jitter in both directions,
we obtain a value for tj of 6ns.
Operating within a 50nm band
around 1550, this results in a
“gap” time (tg) of 12ns.
Operating at a nominal
100Gb/s, and presuming a slot
sized to take a standard
Ethernet frame (12000 bits =
120ns), the slot time, tp, is
132ns – 90% utilization is
achieved.

�

t

 165

Media Access
The network size envisaged leads to a 5000ns node to switch transit time, or up to about
40 slots in flight. With a pure demand driven reservation system this would result in 10s
access latency. However, two further points are worth considering: some links will be
significantly shorter than the full 1km, and we envisage the number of nodes would be
smaller than 64, perhaps as small as 4. Taken together these indicate that in order to
minimize latency, there will be times when it will be advantageous to implement a
predictive reservation system; future work is to study the behaviour of such an adaptive
scheme.

Summary

Optical switches capable of switching on the timescales of packets exist, and together
with low-cost short-haul WDM components enable the design of local area optical packet
oriented networks. There are no practical solutions to the problems of optical buffering
and the related problem of synchronization. Learning from previous LANs and wireless
networks, we present a network design, and through an illustrative example, show that an
acceptable utilization will be possible.

Acknowledgments

Many thanks to Madeleine Glick for her patience in explaining the gory details of various
photonics issues to me.

References

1. ‘Solitons go the distance in ultralong-haul DWDM,’ Fibre Systems Europe, Jan.
2003.

2. ‘Generalized MPLS - Signaling functional description,’ RFC in draft.

3. TURNER, J.S., ‘Terabit Burst Switching,’ Journal of High Speed Networks, 1999.

4. GAMBINI, P., ET AL, ‘Transparent Optical Packet Switching: Network Architecture
and Demonstrators in the KEOPS Project,’ IEEE Jounal Selected Areas in
Communications, vol. 16, 1998 p.1245 et seq.

5. GUILLEMOT C., ET AL, ‘Transparent optical packet switching: the European ACTS
KEOPS project approach,’ IEEE J. Lightwave Technology, vol.16, 1998, pp.2117.

6. POOLE, C.D., TKACH, T.W., CHRAPLYVY A.R. AND FISHMAN, D.A., ‘PMD Fading in
lightwave systems due to polarization mode dispersion,’ IEEE Photonics
Technology Letters, vol. 3, 1991, p. 68 et seq.

7. LOEB M.R. AND STILWELL, G.R., ‘High speed data transmission on an optical fiber
using a byte wide WDM system,’ IEEE Journal Lightwave Technology, vol. 6,
1988, p. 1306 et seq.

8. BERGMAN, L., YEH, C. AND MOROOKIAN,J., ‘Advances in Multichannel
MultiGbytes/s Bit-Parallel WDM Single Fiber Link,’ IEEE Transactions on
Advanced Packaging, vol. 24, 2001, p. 456 et seq.

166

9. YU, S., OWEN, M., VARAZZA, R., PENTY R.V. AND WHILE, I.H., ‘High speed optical
packet routing demonstration of a vertical coupler crosspoint space switch array,’
Proceedings of the Conference on Lasers and Electro-optics, CLEO 2000, p. 257.

10. LESLIE, I.M., Extending the local area network, University of Cambridge Computer
Laboratory Technical Report TR 43, 1983.

 167

What’s in a Name?

Robin Milner
University of Cambridge, England

In the late eighties Roger Needham wrote a paper called ‘Naming,’ which is now a
chapter in a leading text on distributed systems [1]. The paper highlights some subtleties
of naming, and points out how these can either illuminate or confuse system design.
Around the same time colleagues and I worked out the π-calculus [2], a calculus for
mobile systems intended for modelling and analysis. Names are the most prominent
feature in the π-calculus, and in this essay I explain in simple terms how it deploys them.

Some things about names are so buried in our linguistic habits that we hardly ever talk
about them. Roger talked about one of them: the difference between pure and impure
names. To paraphrase him, a pure name is nothing but an identifier or pointer; you can
follow the pointer, but otherwise you can only test it for equality with another one. A
name is impure to the extent that you can do other things with it. You can resolve it into
parts, or you can take advantage of your knowledge about the thing that it designates; an
email address like Robin.Milner@cl.cam.ac.uk illustrates both of these.

We also habitually assume that a name designates something with persistent identity.
This assumption works well for us in sequential programming: a pointer designates a
storage cell, and a procedure identifier designates a piece of code. It doesn’t work
reliably in distributed systems. Consider a call-centre; on each call you get someone
different. Consider an e-mail message to Robin.Milner@cl.cam.ac.uk; it may go
to me, or to an agent to which I (on holiday) have delegated the power to respond.

The π-calculus is built upon the idea that the respondent to (or referent of) a name exists
no more persistently than a caller of the name. In other words, the notions of calling and
responding are more basic than the notions of caller and respondent; every activity
contains calls and responses, but to have a persistent respondent to x – one that responds
similarly to every call on x – is a design choice that may be sensible but is not forced.

What follows is a taxonomy of the small range of things you can do with names in the π-
calculus. At the end I speculate on whether these are enough.

Using and mentioning names

The logician W.V. Quine discussed the distinction between the use and mention of names.
In natural language, a name is used when something is intended of the referent,
mentioned when intended of the name itself; further, a use can be imperative (an
invocation), or indicative (an assertion). In the π-calculus we only have imperative use,
and what it intends is an act. But we distinguish between a call act and a response act,
even though one cannot occur without the other. The reason to distinguish them is that, in
describing any agent, we define its potential behaviour: what calls/responses it can make,
provided that its environment makes homonymous responses/calls. Here is a call on x,
mentioning y:

168

Pyx .��

which could be pronounced ‘x, here is y; now I’ll do P’. Superficially it is like ‘John, here
is Stephen;’ actually, it corresponds to ‘John, here is (the name) “Stephen.”’ It is just a
message with address x and content y; we can call this quoting y.

Here is a response on x, mentioning z:

Qzx .)(

which could be pronounced ‘x, thanks for z; now I’ll do Q with it.’ We can see how calls
and responses are dual. Following the mathematical convention of ‘co-’ for a dual, we can
say that the response is co-quoting z, because z acts as a place-holder in Q for a name
quoted by a call.

In fact the only rule of action in the π-calculus is that, when a call may concur with a
homonymous response, as in

,.)(|. QzxPyx ��

then they are fused together; thereafter P and Q happen concurrently, with y occupying
the place in Q held by z.

It is better to think of ‘response on x’ rather than ‘respondent designated by x,’ because
there need be no agent identifiable as respondent. The power to respond on a name can
be delegated or duplicated (consider the call-centre), just as the power to call on a name
can be so. For example, in the above rule of action, if Q happens to contain a response on
the place-holder z, then the call that quoted y has delegated to Q the power to respond on
y.

Creating names

So far we have only talked about use and mention. But where do all the names come
from? How can we represent the very specific mechanisms (e.g. time-stamps) that allow
a system to create names which it can safely assume to differ from all other names?

The π-calculus does this by fiat. It has a name-creator new that is assumed to create a
globally distinct name. In some eyes this is cheating; in other eyes it isolates the
implementer’s problem of creating new names in practice from the analyst’s task of
explaining how a system works assuming generated names are unique. Here is an
example of unique name creation:

;|)(QPznew

it creates z local to P. Whatever P does, this name remains different from any name
occurring in Q – or in the wider environment – even if such a name is textually identical
with z, and even if P mentions its new z to Q.

 169

We can illustrate new with a simple example: simulating a function call. The π-calculus
has no built in notion of call-and-return, but if a process calls on x quoting y, then it can
simultaneously create a private channel res and pack it up with y in the call; thereafter it
can respond on res to receive the result that comes back. This call-and-return action is
defined by:

).)(|,(Qzresresyxres ��new

 (A multiple quotation, such as �� resy, , can easily be coded in the π-calculus.) The
creation of res ensures its distinction from every other return-address. This little sequence
is very commonly used, so we shall abbreviate it to:

Qzyx .)(���

Matching names

So far we have seen only one way to mention a name: quoting it in a call (or co-quoting in
a response). Surprisingly, with a few control mechanisms this is enough to model all
computation! Nonetheless, it does not give the direct facility to ‘test a name for equality
with another name’. So there is a second way to mention names: matching. With (only)
these two kinds of mention, the π-calculus can much more directly model the handling of
names in real systems.1

Matching in the π-calculus can done by the construction

QPyx /][=

meaning ‘if x and y are the same name then do P, else do Q.’ (It matches names, not their
referents, because referents need not exist.)

In the context of π-calculus we can illustrate how directory lookup can be handled,
following closely how Roger Needham illustrates it. A hierarchical directory – say the
one containing the graduate students at Wolfson College, Cambridge – typically has a
composite name like Wolfson/Grads. It is not a unique designator; there will be a
directory with this name at Oxford too, because both Oxford and Cambridge have a
Wolfson College. However, usable systems will ensure that each directory and
subdirectory will also have a unique directory identifier (DI) which is a pure name.

If I know the DI of Cambridge University, I can access the University’s main directory
and then use a composite name like Wolfson/Grads --or extensions of it – to get to all
its subdirectories, even if I don’t have their DIs. For example, suppose I want to get hold
of (the DI of) Smith-J at Wolfson College Cambridge. If the DI of the Cambridge

1 In applied languages built upon the π-calculus, there can of course be impure names like 23 which
designate known entities, operations on them like + and ×, and variables or place-holders a,b,c... for them.
With appropriate type discipline, this doesn't impair the rigorous handling of pure names.

170

University directory is #312, then I can get to where I want (without knowing any other
DIs) by a composite call as follows:

Qdi .),312# (J-Smith ,UndergradsWolfson ���

This call-and-return will cause the required DI to occupy the place held in Q by di. To
make this happen, the directory itself can be defined with matching like this:

�� //
,203#][/

,427#][

).,,(312#

��=

��=

persongroupcollege

persongroupcollege

persongroupcollege

Wolfson

Trinity

!

where #427 and #203 are the DIs of Trinity and Wolfson. Thus a matching occurs
at each level. Notice that there is only one kind of pure name. We chose to write
college, Trinity and #427 differently because we treat them differently; for example,
we never use the first two, but only mention them.

Finally, you may have noticed the new operator ‘!’ in the above code for a directory. It is
a replicator; it gives persistent identity to the respondent that it qualifies, making it a re-
usable resource. So in this case the pure name #312 does designate a persistent agent: the
Cambridge University Directory.

What else is in a name?

We have illustrated use (call, response), mention (quote, co-quote, match) and creation of
names. That is all the π-calculus can do with them. Are there other things it might do?

I have not said anything so far about computer security, which has in fact been a main
application of process calculi that use names. Another influential paper by Roger
Needham and his co-authors [3] has inspired much of the recent logical work on security,
authentication and associated topics, and under this heading come many approaches using
process calculi that use names whose scope may be controlled (for example by new in the
π-calculus). A leading example is the spi calculus of Abadi and Gordon [4] which is
largely based upon the π-calculus, but uses extra features for encryption and decryption.

These extra features allow the spi calculus to represent security protocols very directly,
and have led to powerful analytical studies. But there is a theoretical question that hasn’t
been fully answered as far as I know: in what rigorous sense do they extend the
expressive power of the π-calculus? It would be illuminating to prove that the extra
features can, or that they cannot, be mimicked in the π-calculus in some exact sense.

More generally, if we suspect that the π-calculus can’t do something that can be done
with pure names, then where could we look for the weakness? A more powerful form of
use of names might have something to do with synchronisation. The π-calculus only ever
synchronises a pair of actions, one call and one response. What about synchronising two
(or more) calls with a single response? The calls could be on two distinct names x1 and

 171

x2, and the response on both of these names simultaneously. So our rule of action would
be strengthened to synchronise these three actions:

QzzxxPyxPyx .)(|.|. 2121222111 ����

 – causing y1 and y2 simultaneously to occupy the places held in Q by z1 and z2, and then
P1, P2 and Q to proceed concurrently. Can this be mimicked in the π-calculus? What
exact meaning would ‘mimicked’ have here?

Such theoretical questions may seem arcane. They certainly should not distract us from
applying process calculi to security (or to anything else). But they have their own charm,
and the better we can answer them, the more confident we can be of finding good
primitives for expressing and analysing mobile communication.

References

1. MULLENDER, S.J., ED., Distributed Systems (second edition), Addison-Wesley, 1993.

2. MILNER, R., PARROW, J. AND WALKER, D., ‘A calculus of mobile processes,’
Information and Computation vol. 100, no. 1, 1992, pp. 1–77.

3. BURROWS, M., ABADI, M. AND NEEDHAM, R.M., ‘A logic of authentication,’ Proc.
Royal Society of London, series A, vol. 426, 1989, pp. 233–271.

4. ABADI, M. AND GORDON, A.G., ‘A calculus for cryptographic protocols: The spi
calculus,’ Information and Computation vol. 148, no. 1999, pp. 1–70.

172

 173

The Cryptographic Role of the Cleaning Lady

Bob Morris
Dartmouth College, Hanover, New Hampshire, USA

By the cleaning lady, I mean some person or entity that you believe could not possibly be
part of your security or cryptographic system. I leave it to the reader to identify his or her
own cleaning ladies in the remainder of this note and in real life.

Once there was an occasion when some bad guys, a man and a woman, wanted some key
material (code books) from a foreign embassy. They waited until the end of the working
day and managed to persuade a guard to let them into the building.

They knew that there was a guard who would show up at unpredictable times during the
night and would naturally wonder what the two were doing in the building. While they
were getting at the code books, they heard him coming in the front door and they had only
a very short time to solve their problem. The woman rapidly took off all of her clothes
and when the guard arrived in the room he seemed to understand exactly what they were
planning to do – he apologized and left the room. The two intruders obtained the code
books and left with them. This is a true story, but what else they did that night is not part
of this story.

It is my understanding that all major countries employ cleaning ladies in this capacity.

Another sort of cleaning lady is arranged as follows.

In the part of Moscow that houses foreign embassies there are two quite different fire
stations. One of the fire stations responds to fires in foreign embassies and the second
responds to fires in ordinary buildings.

Would the reader please think hard about ‘trusted third parties’ and woman-in-the-middle
attacks.

174

 175

Real Time in a Real Operating System

Sape J. Mullender and Pierre G. Jansen
Lucent Technologies and University of Twente

Introduction

The quality of an operating system is more a subject of religious debate than of technical
merit. The Windows community is like the Catholic Church; it has the largest following,
and its members are mostly laymen who do not participate much in religious debates. The
community is organized on strong hierarchical lines.

The Unix community is like the mainstream Protestant Church; it has not as large a
following as the Windows community, and its members define the system and run the
community. Like the Protestant Church, there are many flavors of observance: Linux,
FreeBSD, NetBSD, Mach, the list is as long as the list of protestant variants. Most are
highly evangelical – a good protestant trait – with Linux perhaps being the most fanatical.

The Macintosh community hangs somewhere in the lurch between Windows and Unix,
the Catholics and the Protestants, a bit like the Anglican Church; they’re Protestants
acting like Catholics.

Plan 9 from Bell Labs is like the Quakers: distinguished by its stress on the ‘Inner Light,’
noted for simplicity of life, in particular for plainness of speech. Like the Quakers, Plan 9
does not proselytize.

Plan 9 is relatively little known and has but a small user community (a few thousand
installations). Nevertheless, it is a complete operating system and it is the only operating
system booted by many of its users. Plan 9 is also used in several embedded
environments. For instance, it is the system inside the Viaduct, a computer system the size
of a packet of cigarettes that provides an encrypted bridge between Lucent employees’
home computer and the corporate intranet. It is also beginning to find use in experimental
wireless base stations.

New technologies (the printing press, organ transplants, birth control) and changing world
views (the solar system, evolution) have always been upsetting to churches, causing
violent debates and schisms. This is just as true in the operating system community where
new things like object-oriented programming, copyleft licensing, Ethernet vs token ring
and real-time support can cause similar violent debates and schisms.

It is the doctrine of real-time support in a general purpose operating system that will, in
this paper, be stamped with ecclesiastical authority.

We have integrated a real-time CPU scheduler in our operating system Plan 9 [Pike et al,
1995]. Although our scheduler is a new scheduler in terms of sharing the operating system
resources, it has its fundaments in the EDF scheduler as first introduced by Liu and
Layland [1973]. Instead of only considering the CPU resource, our scheduler also
considers other shared OS resources: applications indicate which resources they require

176

(including processor use) and our scheduler determines if the set of applications can run
concurrently and remain schedulable.

Although other operating systems may also have real-time support, we believe there are
only few general purpose operating systems with a comparable native support for real-
time applications.

In many embedded systems, some applications have stringent real-time requirements
while others can be best effort. Traditionally, general-purpose operating systems have
never been good at guaranteeing deadlines. Various attempts have been made to introduce
real-time schedulers to general-purpose operating systems. A few systems deal with real-
time applications by shutting out other applications (the general modus operandi for the
Windows family of operating systems).

In the subsequent sections, we shall describe our system and the theory behind it,
omitting, for lack of space, most proofs and a discussion of related work. As such, this
paper has the status of extended abstract more than full-fledged paper. For a more formal
introduction, see Jansen & Laan [1999], and Jansen’s forthcoming thesis.

Practicalities

Adding real-time functionality to Plan 9 as a layer below regular user programs was
deemed to be undesirable. At best it would make the API for writing real-time
applications a subset of the standard API; at worst, it would be completely different. We
wanted to give real-time applications access to all operating system services and access to
an interface to control an application’s real-time behavior as well. The price one has to
pay in this approach is that real-time applications may risk missing their deadline by using
non-real-time services.

Although we consider this to be clumsy programming, we have no desire to forbid it. We
envision that, with time, real-time versions of various operating system services will
become available, e.g., a real-time file server along the lines of Nemesis’ Clockwise
mixed-media server [Bosch et al. 1999]. Plan 9 makes extensive use of file servers which,
through their name space mounted in a per-process mount table, provides access to much
more than secondary storage. The window system’s interface is a file system; a play list
file system may be associated with an audio device; mail messages present themselves as
subdirectories in a mail file system, and so on. Talking to file systems is important to
most applications, so it cannot be forbidden. In fact, our real-time scheduler presents itself
as a file system too.

Another issue was how to deal with processes whose deadlines depend on one another.
The most common example of this is a set of processes in a pipeline, for instance, a
process decrypting a video stream feeding another that renders it. Scheduling theory has
problems with such dependencies. We chose to allow several processes to share a single
allocation of resources: one period, one deadline and one slice of the CPU equal to the
sum of the run times required by each of the member processes.

Resources are identified to the scheduler by name. A resource is shared when tasks share
the name of the resource. When a resource is acquired or released, tasks inform the
scheduler. This is the only involvement the scheduler has with shared resources.

 177

Resources can, therefore, be anything. One important assumption is that tasks give up any
resources they hold when they give up the processor. Tasks can cause themselves to be
scheduled non-preemptively with respect to each other by sharing a resource full time.
When they share no resources, a task with an earlier deadline can always preempt a task
with a later one.

Theory

A task set � consists of a set of preemptable tasks �i (i = 1 ... n). Each task �i is specified
by a period Ti, a deadline Di, a cost Ci, and a resources specification �i. It is released
every Ti seconds and must be able to consume at most Ci seconds of CPU time before
reaching its deadline Di seconds after release (Ci <= Di <= Ti). We use capital letters for
intervals (e.g., T, D, C) and lower case for points in time: in particular, r for the next
release time and d for the next deadline.

The utilization U of � is defined as i
n

i i TCU /
0� =

= .

For � to be schedulable, U <= 1 must hold. We define two functions, processor demand
H(t), introduced by Baruah et al. [1990], and workload W(t), introduced by Audsley et al.
[1991], H(t) represents the total amount of CPU time that must be available between 0
and t for � to be schedulable. W(t) represents the cumulative amount of CPU time that is
consumable by all task releases between time 0 and t.

Figure 1: Example task set and its EDF schedule on the left,

and the processor demand and workload functions on the right.

Figure 1 illustrates the functions for an example task set. All tasks in � are released
simultaneously at t = 0. This is known as a critical instant, the time at which the release
of tasks will produce the largest response time. If � is schedulable from a critical instant,
it is schedulable from any other starting point. A critical instant occurs in resource-free
preemptive EDF scheduling when all tasks are released simultaneously. This is a well-
know result, but we have also proven it for our EDF scheduler.

The right half of the figure shows the functions H and W as a function of time. It also
illustrates the schedulability analysis. Note that the vertical distance between W and the
diagonal in the graph represents the amount of work still to do in released tasks. At point
L, there is no more work to do and the system becomes idle. H represents the amount of

0 5

. .

10

. .

15

. .

0

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W(t)

H(t)

L�
task D T C
τ 1 3 4 1
τ 2 5 8 1
τ 3 6 10 2
τ 4 9 15 4

1

2

3

4
0 5 10 15t´

178

work that must be finished. If H crosses the diagonal, then more work would have to be
finished than there is time available. The schedulability analysis tracks W and H until
either W touches the diagonal or H crosses it. If H crosses the diagonal, the task set is not
schedulable. If W touches it, the task set is schedulable. The example task set is thus
schedulable. Task sets can be constructed in which neither W nor H reaches the diagonal.
The schedulability analysis, therefore, traces these functions for only a predetermined
maximum number of steps and rejects a task set if this maximum is reached.

The scheduler manages the set of admitted tasks using two queues and a stack: The Wait
Queue holds tasks awaiting their release. When a task gives up the processor or reaches
its deadline, it is put on this queue, in release-time order, from which it will be transferred
to the next queue when it is released. The Released Queue holds processes that have been
released but have not yet run. This queue is maintained in deadline order, earliest deadline
first. The Run Stack holds the tasks that have already run; the currently running task is at
the top of the stack and pre-empted the task immediately below.

The scheduler maintains two timers. The Release Timer goes off when the task at the head
of the Wait Queue needs to be released. Released tasks are then transferred to the
Released Queue. The Deadline Timer goes off when the currently running task reaches its
deadline. When this timer goes off, the currently running task is removed from the (top of
the) stack and put back in the Wait Queue.

When a task gets to the front of the Released Queue or when a task is popped from the
Run Stack, the deadlines of the task at the head of the Released Queue � and the task at
the top of the stack �' are compared. If d� < d�', it is removed from its queue and pushed
onto the Run Stack. Then the Run Timer is set and the task gets the processor. If both Run
Stack and Released Queue are empty, best effort processes are scheduled.

A resource specification � is a series of zero or more quadruples name, R, C, { �' }, where
name names the resource, R indicates whether the resource is a shared-read or (in its
absence) an exclusive-access resource, C is the cost of the resource–the time the resource
is held, and { �' } is a sub-specification which specifies nested resources, or may be
absent. An example of a task set with a resource specification is:

D=4s T=5s C=1s resources='a R 900ms { b }'
D=5s T=8s C=1s resources='a R 800ms {b 200ms { c 100ms }}'
D=6s T=10s C=2s resources='b R 200ms c R 1.7s { b R 1.3s }'
D=9s T=9s C=3s resources='a R 1.8s { c R }'

When costs are omitted, they are inherited from their parent resource specification or, in
the case of a top-level specification, from the task’s cost C. Note, by the way, that the
strings in this example can be written precisely as they are to the scheduler file system to
specify a task’s real-time parameters.

Task 1 has a period of 5 seconds, a deadline of 4 seconds (if it is released at t, its deadline
is at t + 4 and its next release is at t + 5); it needs at most 1 second of CPU time between
release and deadline. Resource a is shared by tasks 1, 2 and 4. In all cases it is a shared-
read resource, so it imposes no restrictions on the schedulability of these tasks. Resource
b is shared by tasks 1, 2 and 3. Task 1 needs exclusive access to it and, for the full 900ms,
it also holds resource a. Task 3 needs shared-read access to resource b for 200ms and
again for 100ms while holding resource c.

 179

The principle behind scheduling a task set with shared resources is that we keep tasks on
the Released Queue until there are no tasks left in the Run Stack holding resources that
the task on the Released Queue may claim. Thus, it is not possible for a task to (try to)
claim a resource already held by another task. Such a task would simply not have been
scheduled. Tasks never need to be preempted waiting for a resource.

Here’s how we enforce this: every resource, R is assigned an inherited deadline �R =
min�∈� D� | R∈�, the minimum of the deadlines of all tasks using R. Every task � also
receives an inherited deadline �� = minR �R | R ∈ �, the minimum of the inherited
deadlines of all resources used by the task. A task’s � thus changes as the task acquires
and releases resources; � is only relevant for running tasks.

Each released task is now characterized by the triple { d, D, � }, where d is the current
absolute deadline (D is the deadline interval; d is the absolute deadline).

Earlier, we presented the scheduling rule that the task � at the head of the Released Queue
would move to the top of the Run Stack if its d� was less than d�' of the task �' on top of
the Run Stack – a released task with an earliest deadline will pre-empt the currently
running task. Now we modify that rule:

ττττττ ′′ ∆<∧<′ Ddd iff preempts

Figure 2 shows an example Run Stack (rectangles) and Released Queue (ellipses). At this
time, the task at the head of the Released Queue may not preempt the one on top of the
Run Stack 9 < 7 ∧ 3 < 4 is false). For every task �, �� <= D� and, because of the
scheduling rule, for a task � higher on the Run Stack than another task �', D� < ��'. There
is, therefore, a partial ordering from D to � to D, etc. up and down the Run Stack. This is
indicated by the arrows

Figure 2: Example Run Stack (rectangles) and Released Queue (ellipses); the arrows indicate the
partial order between the parameters.

This ordering, plus the definition of �, establishes the property that the currently running
task – which is at the top of the Run Stack will not attempt to acquire any resources held
by preempted tasks which are further down in the Run Stack, because, if they held such
resources, their � would be less than or equal to the D of the running task and this the
scheduler does not allow.

10, 9,´ 9

8, 6,´ 5

7, 4,´ 4

9, 3, 3 12, 8, 7 14, 9, 5

if (9<7 && 3<4) ... Released tasks, sorted on d

Running

Preempted

Preempted d, D, ∆

180

A second property is that there is no transitive blocking, because a process that is blocked
due to shared resource usage only has to wait for this only blocker to release the resource.
This property was already known from the Priority Ceiling protocol [Sha et al. 1990], a
protocol that was the first to introduce static priority inheritance, similar to our static
deadline inheritance.

The schedulability analysis is only moderately more complex with resource sharing. The
processor demand and workload functions do not change, because the work that needs to
be done and when it needs to be done is the same. But we do have to take into account
now that one task may block another’s access to the CPU.

This causes ‘spikes’ on the processor demand function. The height of the spikes encodes
the time a task may have to wait for a task with a later deadline that holds a resource the
task needs. A task set is inadmissible if one of the spikes crosses the diagonal. If there are
no shared resources, there is no blocking (and there are no spikes), and the schedulability
test reduces to the normal preemptive-EDF schedulability test. If there is one resource,
shared full-time by all tasks, the schedulability test reduces to Jeffay’s [1991] non-
preemptive sched

ulability test. Our schedulability test spans the range between the extremes of completely
preemptive and completely non-preemptive scheduling.

Implementation
We implemented the scheduler in Plan 9. This was a fairly straightforward process,
although we had to change the behavior of spin locks in the kernel slightly. A process is
now allowed to finish its critical section before being subject to scheduling. None of the
spin locks hold the CPU longer than 50µs or so.

As explained earlier, two timers control the real-time portion of the scheduler: the Release
Timer goes off when the task at the head of the Wait Queue must be released. If that task
gets to the front of the Release Queue, a scheduling decision is made, otherwise, the
current task continues running. When the Deadline Timer goes off, the running task has
used up its quantum and the processor is taken away from it until the next release. We
also raise an exception in the process.

The interesting part about the implementation is the use of a file system to control the
system. In the default mount point of /dev/realtime we find three files, clone,
resources, time, and a directory: task. Existing tasks are represented by files
(whose names are numbers) in the task directory. A new task is created by opening the
file clone which then behaves like the corresponding (new) file in the task directory.
The main loop for a typical real-time process would look something like this:

char *clonedev = "/dev/realtime/clone";
void processvideo(void){
 int fd;
 fd = open(clonedev, ORDWR);
 if (fprint(fd, "T=33ms D=20ms C=8ms procs=self admit") < 0)
 sysfatal("%s: admission: %r", clonedev);
 while (processframe())
 fprint(fd, "yield");
 fprint(fd, "remove");
 close(fd); }

 181

This sequence creates a new task by opening /dev/realtime/clone, sets period,
deadline and cost and puts the running process into the process group of the task. It then
asks the scheduler to admit the new task by running the schedulability test. If the write
succeeds, the task was admitted.

The main loop processes a video frame and then gives up the processor (yield) while
waiting for the next frame. When the application has finished, it removes the task from
the system and exits.

Conclusion

The real time scheduler is installed in the currently distributed version of Plan 9
(obtainable through plan9.bell-labs.com). It has already been used in several
applications, one of them an experimental wireless base station. But there have not been
any applications that have challenged the scheduler much.

We have had some lively debates over whether it is worth while to have a real-time
scheduler that can manage shared resources. Most of the real-time applications we
considered do not have any resources that are shared. But one real-time application we
built has nothing but shared resources: the Clockwise mixed-media file system has many
real-time processes with varying periods and costs sharing disks. As it turned out,
scheduling the disks was much more important than scheduling the CPU, so the Plan9
scheduler would not have been adequate for this application.

The battle about whether or not to include support for resource sharing in our real-time
scheduler was won by the resource-sharing camp when the algorithms presented here
emerged: the schedulability test is not overly complicated and the run-time complexity is
practically O(1): only the queue insertions are not constant-time operations, but the
queues are invariably very short. In addition, the scheduler prevents resource contention
from causing gratuitous context switches and it is completely deadlock free. Finally, the
same scheduler can trivially be used for preemptive or non-preemptive real-time EDF
scheduling.

References

[AUDSLEY ET AL 91]
AUDSLEY, N.C., BURNS, A., RICHARDSON, M.F. AND WELLINGS, A.J., ‘Hard Real-
Time Scheduling: The Deadline Monotonic Approach,’ in Proc. of the 8th IEEE
Workshop on Real-Time Operating Systems and Software, Atlanta, 1991.
(citeseer.nj.nec.com/article/audsley91hard.html).

[BARUAH ET AL 90]
BARUAH, S.K., MOK A.K. AND ROSIER, L., ‘Preemptively scheduling hard-real-time
sporadic tasks on one processor,’ in Proc. of the Real-Time Systems Symposium, Dec.
1990, pp. 182–190.

[BOSCH ET AL 99]
 BOSCH, P., MULLENDER S.J. AND JANSEN, P.G., ‘Clockwise: a mixed-media file
system,’ in IEEE Intl. Conf. on Multimedia Computing and Systems (ICMCS), II,

182

Firenze, Italy, Jun, 1999, pp. 277–281, IEEE Computer Society Press, Los Alamitos,
California.
(http://www.cwi.nl/~peterb/papers/icmcs99.ps.gz).

[JANSEN ET AL 99]
 JANSEN P. G., AND LAAN, R., ‘The stack resource protocol based on real-time
transactions,’ in IEEE Proc.s Software, vol. 146, no. 2, April 1999, pp. 112–119.

[JEFFAY ET AL 91]
 JEFFAY, K., STANAT, D.F. AND MARTEL, C.U., ‘On non-preemptive scheduling on
periodic and sporadic tasks,’ in Proc. Of the Real-Time Systems Symposium, 1991,
pp. 129–139.

[LIUI ET AL 73]
 LIU, C. L. AND LAYLAND, J. W., ‘Scheduling algorithms for multiprogramming in a
hard real-time environment,’ Journal of the ACM, vol. 20, no. 1, 1973, pp. 46–61.

[PIKE ET AL 95]
 PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA, B., THOMPSON, K., TRICKEY, H.
AND WINTERBOTTOM, P., ‘Plan 9 From Bell Labs,’ Computing Systems, vol. 8, no. 3,
1995, pp. 221-25 (http://plan9.bell-labs.com/sys/doc/9.html).

[SHA ET AL 90]
 SHA, L., RAJKUMAR R., AND LEHOCZKY, J. P. , ‘Priority inheritance protocols: an
approach to real-time synchronization,’ IEEE Trans. on Computers, vol. 39, no. 9,
pp. 1175–1185, Sep. 1990.

 183

Zen and the Art of Research Management

(with apologies to Sun Tzu)

John Naughton1, Robert W. Taylor2
1Open University, Milton Keynes, England

2Woodside, California, USA

1. HIRE ONLY THE VERY BEST PEOPLE, EVEN IF THEY ARE CUSSED.
Perhaps especially if they are cussed. Your guiding principle should be to employ
people who are smarter than you. One superb researcher is worth dozens of merely
good ones.

2. ONCE YOU'VE GOT THEM, TRUST THEM. Do not attempt to micro-manage
talented people. (Remember rule #1.) Set broad goals and leave them to it.
Concentrate your own efforts on strategy and nurturing the environment.

3. PROTECT YOUR RESEARCHERS FROM EXTERNAL INTERFERENCE,
whether from company personnel officers, senior executives or security personnel.
Remember that your job is to create a supportive and protective space within which
they can work.

4. MUCH OF WHAT YOU DO WILL FALL INTO THE CATEGORY OF
ABSORBING THE UNCERTAINTY OF YOUR RESEARCHERS.

5. REMEMBER THAT YOU ARE A CONDUCTOR, NOT A SOLOIST. (Rule #1
again.) The Lab is your performance.

6. DO NOT PAY TOO MUCH ATTENTION TO ‘RELEVANCE,’
‘DELIVERABLES’ and other concepts beloved of Senior Management.

7. REMEMBER THAT CREATIVE PEOPLE ARE LIKE HEARTS - they go where
they are appreciated. They can be inspired or led, but not managed.

8. KEEP THE ORGANISATION CHART SHALLOW. Never let the Lab grow
beyond the point where you cannot fit everyone comfortably in the same room.

9. MAKE YOUR RESEARCHERS DEBATE WITH ONE ANOTHER
REGULARLY. Let them tear one another’s ideas to pieces. Ensure frank
communication among them. Observe the strengths and weaknesses which emerge
in the process.

10. BE NICE TO GRADUATE STUDENTS. One day they may keep you, even if only
as a mascot. (Moreover, they are a lot of fun!)

11. INSTALL A WORLD-CLASS COFFEE MACHINE and provide plenty of free soft
drinks.

184

12. BUY AERON CHAIRS. Remember that most computer science research is done
sitting down.

13. INSTITUTE A T̀OY BUDGET', enabling anyone in the Lab to buy anything
costing less than a specified amount on their own authority. And provide a darkened
recovery room for accountants shocked by the discovery of this budget.

14. PAY ATTENTION TO WHAT GOES ON IN UNIVERSITIES. Every significant
breakthrough in computing in the last four decades has involved both the university
and corporate sectors at some point in its evolution.

15. REMEMBER TO INITIATE AND SPONSOR CELEBRATIONS when merited.

16. WHEN IN DOUBT, ASK YOURSELF: “WHAT WOULD ROGER NEEDHAM
DO IN SIMILAR CIRCUMSTANCES?”

 185

The Descent of BAN
(with apologies to Charles Darwin)

Lawrence C. Paulson

 University of Cambridge, England

The famous BAN paper – Burrows, Abadi and Needham (1989) – determined the
research agenda of security protocol verification for nearly a decade. Many others had
worked on verifying security protocols, and the problem appeared to be intractable. The
real-world systems were too complicated; too many different things could go wrong; the
formal treatments were unusable. The BAN logic was abstract, formalizing intuitive
notions directly. For example, if you receive a message containing a secret password, and
you know that the password is known only to you and Joe, then the message must have
come from Joe. BAN proofs were short and simple, and each reasoning step could easily
be rendered into plain English.

BAN certainly had some deficiencies. The paper incorrectly claimed that the Otway-Rees
protocol could be simplified in a certain way. In fact, an intruder could attack this
protocol, masquerading as Bob to Alice, when Bob was not even present (Paulson, 1998).
More generally, BAN ignored all non-encrypted information, so it could “verify” any
protocol that broadcast the session key in clear. Some criticisms arose from a
misunderstanding of the logic’s objectives. BAN assumed that the protocol would not
give secrets away – a defensible assumption, since cryptanalysts already knew how to
investigate such questions. BAN’s strength was that it provided a precise notation and
deductive mechanism for reasoning about freshness and authenticity.

Researchers introduced a great variety of other authentication logics. These were
generally more complicated than BAN. Dietrich (1997) published a proof of the Secure
Sockets Layer (SSL) protocol using the belief logic NCP (Non-monotonic Cryptographic
Protocols). This logic allowed formulae to be retracted as well as asserted, and the author
accordingly had to write lengthy lists of facts holding at each step. NCP must have been
more precise than BAN, but it was obviously difficult to use. Some people attempted to
build automatic provers for the BAN logic, which was pointless: BAN logic proofs were
easy to write, and if you wrote them yourself, you were unlikely to reach an absurd
conclusion. For the more complicated authentication logics, automation became essential;
Brackin (1996) was a leading exponent of this approach. As Do-It-Yourself logics
proliferated, their benefits (especially when applied using an automatic prover) were not
always clear. Roger may have been right to call BAN “the original and best.”

In hindsight, it is clear that all such logics must share certain limitations. Many attacks on
security protocols are not clear-cut, and involve disagreements about the working
assumptions. The famous attack on the Needham-Schroeder public-key protocol (Lowe,
1996) is a classic example: it requires an insider to misbehave, when the traditional threat
model assumes that all criminals are outsiders. Only recently have researchers come to
recognize the danger posed by corrupt insiders.

186

The failure possibilities of modern protocols are rather complicated. The Zhou and
Gollmann (1996) non-repudiation protocol is designed to be fair. Its principals are Alice
and Bob, who are arranging some sort of contract, and a trusted third party, Clarence. A
successful run should give both Alice and Bob sufficient evidence to prove the other’s
participation. It is also acceptable that neither of the pair should obtain this evidence;
however, it is unfair if one of them obtains evidence and the other does not. Gürgens and
Rudolph (2002) recently demonstrated an attack on this protocol. Alice reuses a session
identifier, retaining information from the first protocol run in order to attack a second run.
She leaves enough time between the runs to ensure that Clarence will have erased all
record of the first run. Alice will be left with evidence confirming Bob’s participation.
When Bob seeks the corresponding evidence from Clarence, it will not be available.

Formal models typically make ideal assumptions, and in this case would probably endow
Clarence with unlimited storage. Alice’s attack would then fail. In a more detailed model,
Clarence would not be able to store all past session identifiers online, and the attack
would succeed. In the real world, Clarence would probably maintain a full audit trail,
though most of it would be offline. Whether this attack can succeed or not therefore
depends on a detailed description of the dispute resolution mechanism. For this protocol,
Gürgens and Rudolph have proposed a neat solution: let Bob to contribute to the session
identifier. However, we can imagine situations in which algorithms (such as the one for
dispute resolution) must be formalized as part of the protocol description. In such
situations, authentication logics are unlikely to be helpful, and formal models of any sort
are likely to yield misleading results unless the practitioner is aware of the critical issues.

My involvement in protocol verification originated in a research project, funded by the
EPSRC, which I held jointly with Roger. The project’s original objective was to develop a
new authentication logic based upon advanced theory. Through informal discussions
(involving Kim Wagner) in Roger’s office, I became familiar with the concepts of
authentication protocols. I noticed that informal justifications of protocols used inductive
reasoning: if X went wrong in step 4, then Y must have happened in step 3, but then Z
must have happened in step 2, which is impossible by the nature of step 1. Identifying the
first step at which something goes wrong is inductive reasoning, and this underlies the
inductive approach to protocol verification (Paulson, 1998).

An inductive model has much in common with the models investigated by the Oxford
group of Lowe, Roscoe and Schneider. Principals and messages are the primitive notions.
Messages are recursively constructed from principal names, keys and nonces by
concatenation and encryption. The semantics of a protocol is given by the set of possible
traces of events, such as the sending and receiving of messages. Such models are far
removed from the real world, but more low-level than the BAN models. Roger
encouraged this new approach, though it differed radically from his own. He offered
advice of the sort that I imagine he offered his research students. He suggested, for
example, that I focus attention on a specific message of the Needham-Schroeder shared-
key protocol.

Roger’s influence, and that of the BAN paper, ensured that my models included the
necessary elements. BAN is mainly about freshness: we have received a session key, but
how do we know that it is fresh? An old key may have become compromised. One of the
BAN paper’s most interesting analyses is that of the Yahalom protocol. Here, Bob
receives in separate packages a session key K (bearing no evidence of freshness) and his

 187

nonce NB, encrypted using K. Ordinarily, encryption using a potentially compromised key
would yield no firm evidence. However, the Yahalom protocol keeps NB secret; an
intruder in possession of K would still be unable to perform the encryption {NB} K.
Therefore, this message firmly associates NB with K, proving the latter’s freshness. BAN
formalizes this argument quite easily; in my inductive model of Yahalom, it was much
more difficult (Paulson, 2001).

Freshness is no less important these days, and protocol designers are careful to include the
nonce challenges necessary to achieve it. Recent attacks seldom involve freshness, and
many recent formal models do not represent freshness. I have been lucky to work in a
research environment that is strong in both theory and computer security. (Roger can
claim credit for creating this environment.) That is how I have been able to avoid some of
the mistakes made by researchers who do not work with a security group. If some authors
do not understand what a nonce is for, or know that a timestamp should carry a valid time,
or appreciate that a certain type of field will always have the same length in bytes, then
they should spend time at the Computer Laboratory.

The BAN logic, like many other approaches to analysing security protocols, assumes
perfect encryption. This assumption means, in particular, that no information can be
deduced from a ciphertext without the corresponding key. Encryption is obviously not
perfect, but many protocols are flawed even under this assumption. However the problem
of verifying security protocols under perfect encryption is essentially solved. Numerous
researchers have worked on this problem and even the most complicated protocols have
undergone formal scrutiny. Many of today’s hard problems concern how to formalize the
vulnerabilities of specific encryption methods such as Diffie-Hellman or RSA. Even
exclusive-OR is difficult to model, particularly in typed formalisms, because the
exclusive-OR of two bit strings can yield data of any type. Probabilistic mechanisms are
also difficult to verify, although recent progress gives ground for optimism.

I have heard Roger say that the BAN logic is obsolete. How many researchers would say
that about one of their most important achievements? However, even if the BAN logic is
obsolete, the BAN paper is certainly not. It remains an excellent tutorial on cryptographic
protocols. It describes and analyzes a variety of different protocols. With Roger’s other
papers, such as Abadi and Needham (1996), it remains essential reading for anybody
wishing to do research in this area.

References

[ABADI AND NEEDHAM 96]
 ABADI, M. AND NEEDHAM, R.M., ‘PRUDENT ENGINEERING PRACTICE FOR
CRYPTOGRAPHIC protocols.’ IEEE Transactions on Software Engineering, vol. 22, no.
1, 1996, pp. 6–15.

[BRACKIN 96]
 BRACKIN, S.H., ‘A HOL extension of GNY for automatically analyzing cryptographic
protocols.’ In 9th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1996, pp. . 62–75.

[BURROWS ET AL 89]
 BURROWS, M., ABADI, M. AND NEEDHAM R. M., ‘A logic of authentication.’
Proceedings of the Royal Society of London, vol. 426, 1989, pp. 233–271.

188

[DIETRICH 97]
 DIETRICH, S., A formal analysis of the secure sockets layer protocol. Ph. D. thesis,
1997,Adelphi University, Garden City, New York.

[GÜRGENS AND RUDOLF 02]
 GÜRGENS, S.AND RUDOLPH, C., ‘Security analysis of (nn-) fair non-repudiation
protocols.’ In A. Abdallah, P. Ryan and S. Schneider, Formal aspects of security
2002. Royal Holloway, University of London.

[LOWE 96]
 LOWE, G., ‘Breaking and Fixing the Needham-Schroeder public-key protocol using
CSP and FDR.’ In T. Margaria and B. Steffen, editors, Tools and algorithms for the
construction and analysis of systems: second international workshop, Lecture
Notes in Computer Science 1055, 1996, pp. 147–166. Springer, Berlin.

[PAULSON 98]
 PAULSON, L.C., ‘The inductive approach to verifying cryptographic protocols’
J. Computer Security, vol. 6, 1998, pp. 85–128.

[PAULSON 01]
 PAULSON, L.C., ‘Relations between secrets: two formal analyses of the Yahalom
protocol.’ .J. Computer Security, vol. 9, no. 3, 2001, pp. 197–216.

[ZHOU AND GOLLMAN 96]
 ZHOU, J. AND GOLLMANN, D., ‘A fair non-repudiation protocol.’ Proc. 15th IEEE
Symposium on Security and Privacy, 1996, pp. 55–61. IEEE Computer Society.

 189

Brief Encounters

Brian Randell
University of Newcastle upon Tyne, UK

In compiling these personal reminiscences of Roger, I have - I must confess - mainly
relied on my memory rather than consulted my files in any great detail. Given my
pretensions to be somewhat of a computer historian, albeit very much part-time, it is
somewhat embarrassing to reveal this lack of regard for primary evidence. However, my
excuse is that I have no wish to encourage any of you to classify Roger (or me) as
historical exhibits.

I cannot recall when Roger’s and my paths first crossed – I’m not sure whether they did
before I left the UK in 1964 to join IBM Research in Yorktown Heights. Up to this time
I’d been working on compiler design for English Electric’s DEUCE and then for its
KDF9 computers. I had not concerned myself much with computer or operating system
design, and had had little contact with Cambridge. So after I arrived at Yorktown Heights
I was surprised to learn that one of the people they had contacted to check me out before
head-hunting me, so to speak, was Maurice Wilkes.

At Yorktown I made a very deliberate switch from compilers to computer architecture,
and this led to me operating systems and so I presume to my first contacts with Roger.
I’m not sure now how it happened, but in 1966 I became Editor of the Operating Systems
Department of the Communications of the ACM, a post I held for the next seven years. I
have tried to find whether I could proudly claim to have accepted any papers by Roger
during my seven-year editorial term. As far as I can tell he did not publish in the CACM
until after I’d left. Luckily I have no easy way of checking how many of his papers I
rejected!

In 1967 I participated in and was editor of the proceedings of the first SOSP, the ACM
Symposium on Operating System Principles. The SOSP series, which is one that Roger
has had long and extensive involvement with, has in general tried hard to live up to its
name and encourage papers that truly do deal with principles – though more recently I
gained the impression that it had for a while become somewhat of a mere “Unix
Improvements Society” – something I’m sure Roger tried very hard to prevent.

My main memories of the 1967 SOSP symposium, which was held in Gatlinburg,
Tennessee, include the fact that at the time Gatlinburg was dry – all you could get within
the town limits was something they called “near beer.” I presume Roger was in
attendance, and remembers this with even more pain than I do, though I believe that his
first SOSP paper was at the 3rd Symposium, held in Palo Alto in 1971 – in fact a paper
entitled “Handling Difficult Faults in Operating Systems” [1]. This is a paper with a
typically high signal-to-noise ratio, covering both principles and practice, whose
introductory paragraph is I think worth quoting in full: “It is commonplace to build
facilities into operating systems to handle faults which occur in user-level programs.
These facilities are often inadequate for their task; some faults or incidents are regarded as
so bad that the user cannot be allowed to act on them and this makes it difficult or

190

impossible to write subsystems which give proper diagnostics in all cases, or which are
adequately secure, or which are adequately robust. This paper looks into why there is a
need for very complete facilities and why there is a problem providing them, and provides
an outline structure which could be used.”

I returned to the UK in 1968, and joined the Computing Laboratory of the University of
Newcastle upon Tyne. The Laboratory had been created a dozen years earlier by Ewan
Page. Ewan was a Cambridge man, and the Laboratory he set up was I’m sure deliberately
patterned after Cambridge’s Computer Laboratory, and similarly combined the roles of
academic department and university computing service, a characteristic which we proudly
continued to hold and defend for many years, just as Cambridge did. I have often
characterized my move from IBM Research to the University of Newcastle upon Tyne
with a phrase due to John Buxton, dating from about this time. I cannot resist using an
appropriate variant of Buxton’s phrasing to describe Roger’s rather differently directed
career move, a few years ago, when what he did was abandon the sordid commercial
reality of a university computing laboratory for the ivory towers of industry.

But I’m getting ahead of myself. When I arrived at Newcastle, one of the tasks I took over
was the organization of the second in the series of annual Newcastle International
Seminars on Computing Science. Roger was one of my choices of speaker for this 2nd
Newcastle Seminar. His 1969 talk was on “Failure Recovery” [2], a fact that I must
confess that I’d completely forgotten. It would be intriguing to try and determine whether
this talk predated the planning we undertook at about this time, following my experiences
at the now famous 1968 NATO Software Engineering Conference, that led to our first
SERC-sponsored project on dependability, a topic that has been a major feature of my and
Newcastle’s research ever since. I have gone back and looked at the report of Roger’s
1969 talk and found that it was about the problems of file system integrity and back-up in
the face of unreliable hardware – it includes the nice remark “it is psychologically
desirable to take greater care of users’ files than they would themselves” – rather than
overall system failure and recovery, so I don’t see any strong link to our early work,
which was on techniques for providing continued service despite the presence of residual
software faults.

To my surprise, in preparing these remarks, I found that Roger was not present at the
1968 NATO Conference at Garmisch in Bavaria, only at the follow-up conference held a
year later in Rome. For various reasons this was a much less effective and influential
conference than its predecessor, but Roger made some notable contributions, including
one prepared during the conference itself in an intriguing instant collaboration with Joel
Aron of IBM Federal Systems Division. My understanding is that Roger and Joel had
never met before. Their backgrounds could hardly have been more different – Joel had
been heavily involved in the awesome computing system project that supported the
Project Apollo series of moon-shots, a project whose scale and style were vastly different
from Roger’s work on operating systems in the Cambridge Computer Laboratory. Their
styles of speaking were also very different, though in each case very attractive. Joel’s
splendid talk on the Project Apollo Ground support system, and each contribution he
made to any discussion, always sounded as though he was giving a reading of a carefully
structured and punctuated piece of elegant prose. Indeed he did this so clearly that it was
child’s play to transcribe a recording of his voice and produce a fully grammatical and
properly punctuated text, something that I and the others involved in producing the report

 191

of the conference much appreciated. Roger’s style of delivery is on the other hand more
notable for its wit and brevity, and thus as entertaining to transcribe as it is to listen to first
hand. Yet they somehow found time during a very intense conference to reach a common
viewpoint and co-author a paper, albeit a brief one, on “Software Engineering and
Computer Science.” [3]

At the preceding conference a disparate set of participants, ranging “from the inhabitants
of ivory-towered academe to people who were right on the firing line, being involved in
the direction of really large scale projects” found “commonality in a widespread belief as
to the extent and seriousness of the problems facing the area of human endeavour which
has, perhaps somewhat prematurely, been called ‘software engineering’.” However the
report on the Rome Conference, a conference which had a similarly disparate set of
participants, comments that “the sense of urgency in the face of common problems was
not so apparent as at Garmisch – instead, a lack of communication between different
sections of the participants became … a dominant feature” and explains that “eventually
the seriousness of this communication gap, and the realization that it was but a reflection
of the situation in the real world, caused the gap itself to become a major topic of
discussion.” The Aron-Needham paper was a thoughtful contribution to this discussion,
and demonstration of the bridgeability of the communication gap, one that I enjoyed re-
reading when I prepared these remarks.

Returning to the subject of Roger’s contributions to the Newcastle Seminar Series, I
should mention that during the thirty-four years of the series, we normally had different
speakers each time. Roger is one of the very few speakers who have been invited back not
just once but three times – the others being Edsger Dijkstra and Kristen Nygaard. Roger’s
first reappearance was in 1978. The overall subject of this seminar was Distributed
Computing Systems, and Roger talked on “User-Server Distributed Computing” [4]. His
two talks provided a very thoughtful analysis of the properties of local area networks such
as Ethernet and the Cambridge Ring, and how such networks could be exploited in order
to distribute many of the tasks that traditionally were all bundled together into a large
monolithic operating system across a set of much simpler specialized servers.

His next appearance was for our 25th seminar, when we used the general title “Computing
Science” and deliberately chose our speakers from the by now large set of highly-
renowned past speakers. In fact the other speakers at our Silver Jubilee seminar were
Edsger Dijkstra, Tony Hoare, Donald Knuth, Butler Lampson, John McCarthy, Kristen
Nygaard, and Michael Rabin. Almost all of the Jubilee speakers fully lived up to their
reputations and gave excellent talks - Roger certainly did, with talks on “Communication
System Development,” and on “Reasoning about Cryptographic Protocols” [5]. This latter
was of course largely based on his very influential and much-cited work with Michael
Burrows and Martin Abadi on the BAN logic, the notation they designed for use in
analyzing and verifying authentication protocols [6]. To complete the list, I should
mention that Roger was a speaker at the last in the Seminar Series, in September 2001 [7]
– this was a sort of benefit match for me, since it was on Dependability, and marked my
(so-called) retirement. It was the first seminar in over thirty years that I had not organised
– my colleague and professorial successor, Cliff Jones, was in charge – and thus for the
first time ever in the series I found myself having to lecture. But who better could Cliff
have chosen to speak on Security than Roger?

192

But again I’m getting ahead of myself. Following my return to the UK, I had many
opportunities to meet up with Roger. For example we served together for what seemed
like many years on a whole succession of DTI advisory committees. Though at times this
was an enjoyable experience – because Roger has an inimitable way of speaking to and
dealing with recalcitrant civil servants, one that I find much more entertaining than they
do – it was also, we both agree, an immensely frustrating experience. Though we were not
so naïve as to assume that all our advice would be heeded, it is clear in retrospect that we
were almost entirely wasting our time. No wonder that, as I’ve since learned, the
Department is referred to by some as the Department of Timidity and Inaction.

The one exception, the one really worthwhile experience I had with the DTI, was again
one I shared with Roger. This was on a 1981 DTI mission to Japan. There is a fairly full
description of this mission in the book “Alvey: Britain’s Strategic Computing Initiative’
by Brian Oakley and Kenneth Owen [8]. One entertaining (and all too true) passage is the
following: “On arrival in Tokyo team members were fascinated to discover a completely
alien culture, with strange customs, exotic behaviour, and quaint patterns of speech. And
that, they recall, was just the British Embassy.”

We (namely Roger, Alan Fox of RSRE Malvern as it then was called, Charles Read of the
Inter-Bank Research Organization, Reay Atkinson, an uncharacteristically splendid DTI
civil servant, and I) had been sent out to Japan by a Minister who had come back from a
visit completely entranced and highly flattered by the Japanese government’s invitation to
the UK to participate in the Fifth Generation Computer Project that they were planning.
The Alvey book attributes to me the following subsequent assessment of the Japanese
plans: “The Japanese conference presentations were an amazingly well-orchestrated series
of vague accounts of various parts of an ambitious and wide-ranging plan . . . Everybody
made respectful references, at least, to logic programming and knowledge engineering,
and some of them obviously believed, and perhaps even understood, what they were
saying. It came over to me as a very skilful plan which filled MITI’s wish for a very
ambitious goal that sounded very plausible and which could be presented to a layman in
such a way as to seem socially beneficial.”

However, though attributed to me, I think I detect the hand of Roger in that text – if not, it
is the effect on me of an extended period of close proximity to him. The team rapidly
came to the conclusion that we wished to dissuade the government from setting up a
general scheme of UK-Japanese collaboration, since it was clear to us that the main
beneficiaries would be Japanese industry. (We had discovered from visits we paid to
various Japanese computer companies that they all were much better informed on the
latest UK academic computer science research than any UK company.) Instead, we
argued, what was first needed was some effective means of encouraging collaboration
between UK academics and industry on a large-scale programme of Information
Technology R&D, a programme which should not be so narrowly focussed on logic
programming and knowledge engineering as the Japanese 5G plans.

After our return to the UK we were thus both heavily involved in the scheming that led to
the Alvey Programme, but that is a whole story by itself, and one that has already been
well-documented. However, it is important to point out how central was the role that
Roger played in the setting up of the Alvey Programme, not least as the sole academic
allowed to join the committee of senior industrialists and civil servants, chaired by Sir
John Alvey, whose report directly led to the creation of this ground-breaking programme.

 193

The Mathematical Sciences Sub-Committee of the late lamented University Grants
Committee was another arena that has provided me with happy memories of encounters
with Roger. There was for example the sub-committee visit to a particular university
(fortunately I cannot remember which one) when, during the obligatory tour of the CS
department aimed at gaining our support for additional accommodation, Roger became
aware that the faces in the various laboratories we inspected were becoming familiar. This
was because a crowd of students was being rushed round back corridors of the department
to reappear in front of us repeatedly, rather like the chorus during the Grand March in an
under-staffed performance of the opera Aïda. Such visits also normally involved meetings
with the local Vice-Chancellor – at which Roger demonstrated a skill in the sometimes
rather delicate discussions which I’m sure proved very useful when he became a Pro-
Vice-Chancellor himself at Cambridge some years later.

During this time, the UGC Mathematical Sciences Sub-Committee, under the able
leadership of Prof. Douglas Jones, a canny Scot if ever there was one, was involved not
just in a regular programme of such visits, but also in considering submissions from just
about all the UK computer science departments to a whole succession of funding
initiatives. We were thus able to gain detailed knowledge of the then fifty or so
departments, as well as to achieve a number of significant resource enhancements for UK
computer science. As a result, when we learnt that we were going to have to perform what
turned out to be the first of the dreaded Research Assessment Exercises, Roger and I
independently drew up, while waiting for our trains at Kings Cross Station, virtually
identical and remarkably accurate predictions of the gradings that later resulted from the
subsequent formal consideration of the detailed RAE submissions by the overall panel. To
paraphrase a comment once made about Algol 60, this first RAE exercise was in my
opinion, in regard both to the way it was carried out, and the degree of acceptance of the
results by the UK computer science community, an improvement over all its successors.

Enough of committees and bureaucracy – let me end with a few further remarks on
research. Roger’s and my research trajectories have diverged somewhat over the last
thirty years. He has concentrated largely on security issues – to great effect – whereas I’ve
worked on fault tolerance, as applied to reliability and availability, though I have on
occasion had fun investigating potential links between fault tolerance and security.
However, in the early days Roger was equally interested in what was essentially fault
tolerance even if he didn’t use this term – I recall an early aphorism of his to the effect
that operating systems should be designed and implemented via incremental additions to a
very robust dump and restart system. I have enjoyed looking back at a number of his early
papers – even if I now have some concerns as to whether I paid them as much attention at
the time as they evidently deserved. Thus I can sympathize very much with the comment
that Roger made in an interview in 2001: “Although for most of my career I was a
practical builder of systems, the things I’m best known for are [two papers on
authentication], both of a theoretical nature and both done when I was on sabbatical leave.
So you can work away on a complicated system for seven years, and nobody remembers
that.” [9] (Incidentally, during my little investigation of Roger’s early papers, I was
startled to find that he had published one in 1964 entitled “Exploitation of Redundancy in
Programmes” [10] – however, this turned out to be concerned with instruction set
representation, and the issues discussed were instruction storage efficiency and processor
performance, not dependability!)

194

Regarding security, Roger’s expertise regarding cryptography of course far exceeds mine
– in fact I’m sure my evident lack of knowledge of, or interest in, cryptography was of
considerable benefit when I was seeking official permission to investigate Britain’s highly
classified wartime code-breaking machines, in particular the Colossus. But we both share
a degree of scepticism about the subject of cryptography, and I very much like the
comment often attributed to Roger, including by Butler Lampson, though I gather Roger
claims it was Butler who first said that: “Anybody who asserts that a problem is readily
solved by encryption, understands neither encryption nor the problem.” [11]

To be with Roger is to enjoy, and benefit from, a whole succession of such wise and pithy
remarks – it is thus a great pleasure to place on record how highly I value all the
opportunities I’ve had of encounters with Roger from time to time over the years, and all
the enjoyment and benefit I’ve thus gained.

References
1. NEEDHAM, R.M., ‘Handling difficult faults in operating systems.’ in Proc 3rd Symp.

on operating system principles (Operating Systems Review, vol. 6, no. 1, 2, June
1972), pp. 55-57, Palo Alto, CA, 1971.

2. NEEDHAM, R.M., ‘Failure recovery,’ in On the teaching of the design of large
software systems (Proc. Joint IBM/University of Newcastle upon Tyne Seminar, 8-12
September 1969), ed. N. S. M. Cox, pp. 38-43, University of Newcastle upon Tyne,
1970.

3. NEEDHAM, R.M. AND J.D. ARON, ‘Software engineering and computer science,’ in
Software engineering techniques: report on a conference sponsored by the
NATO science committee, Rome, Italy, 27-31 Oct. 1969, ed. J. N. Buxton and B.
Randell, pp. 113-114, Brussels, NATO Science Committee, 1970.

4. NEEDHAM, R.M., ‘User-server distributed computing,’ in Distributed computing
systems, ed. B. Shaw, pp. 71-78, Computing Laboratory, University of Newcastle
upon Tyne, 1987.

5. Needham, R.M., ‘Reasoning about cryptographic protocols,’ in ed. B. Randell,
Department of Computing Science, University of Newcastle upon Tyne, 1992.

6. BURROWS, M. ABADI, M. AND NEEDHAM, R.M., ‘A logic of authentication,’ ACM
Transactions on Computer Systems, vol. 8, no. 1, pp. 18-36, 1990.

7. NEEDHAM, R.M., ‘Security,’ in Dependability, ed. C. B. Jones, Department of
Computing Science, University of Newcastle upon Tyne, 2001.

8. OAKLEY, B. AND OWEN, K.,Alvey: Britain’s strategic computing initiative,
Cambridge, MA, MIT Press, 1989, 337p.

9. OMITOLA, T., ‘ACM Fellow Profile: Roger Needham,’ Software Engineering Notes,
vol. 26, no. 1, 2001.

10. NEEDHAM, R.M., ‘Exploitation of redundancy in programmes,’ in Proc. Conf. on the
impact of users’ needs on the design of data processing systems, pp. 6-7, UK, IEE,
1964.

11. NEEDHAM, R.M., ‘Address,’ in The Marshall symposium - the information revolution
in midstream: an angl- american perspective, Rackham School of Graduate Studies,
University of Michigan, 1998. (http://www.si.umich.edu/marshall/docs/p201.htm)

 195

Retrieval System Models: What’s New?

Stephen Robertson
Microsoft Research Limited, Cambridge

Karen Spärck Jones
University of Cambridge

Automated retrieval systems

In the postwar development of computing, most people thought of computers as machines
for numerical applications. But some saw the potential for automatic text processing
tasks, notably translation and document indexing and searching, even though words
seemed much messier as data than numbers. For Roger, as one of these early researchers,
building systems for language processing was both intellectually challenging and
practically useful, and in the late 1950s he began to work on document retrieval
(Needham 1963). The specialised scientific literature was growing too fast for the existing
broadly-based and rigid indexing and classification schemes. This lack of appropriate
retrieval tools, and the opportunities offered by computers, stimulated a critical
examination of existing approaches to indexing and searching and the introduction of
radically new ones.

Document (or text) retrieval systems, like libraries before them, depend on a model of the
way documents should be characterised to facilitate searching, and of effective strategies
for searching. Many models for retrieval systems have been proposed since the 1950s.
The most innovative, attractive, and successful have been those that, unlike the earlier
library models, have exploited the behaviour of the actual words used in document texts,
and have facilitated flexible matching between queries and documents, leading to a
ranked search output. These ground features of modern systems fit automation very well,
and automation has made it possible to take advantage of the distribution of terms in
documents to allow, e.g. term weighting. There are, however, different ways of modelling
retrieval systems within this broad framework, and it has not been possible, until recently,
to provide concrete evidence for the real value and relative merits of the competing
models. It has been impracticable to conduct the necessary large-scale retrieval
experiments, because performance evaluation depends on having information about which
documents are relevant to a query, and getting this information is extremely expensive.

This situation has changed in a number of ways. The development of the Web and the
proliferation of machine-readable text (in the broadest sense) have made the ‘information
layer’ and its operations much more central to computing in general than they were in the
50s. ‘Retrieval’ is now taken to encompass a wide range of different tasks. Probably as a
consequence, seriously more resources have over the last decade or two become available
for work in the general area of text retrieval. Retrieval research since Roger worked on it
in the late 1950s and early 60s has changed out of all recognition.

These changes have brought the issue of models to the forefront, and have also afforded
much greater opportunities for experimental work. Both these themes are explored
below.

196

Retrieval system evaluation and model testing

The DARPA/NIST Text REtrieval Conferences (TRECs), initiated at the beginning of the
90s and still flourishing, have made it possible to evaluate retrieval systems far more
thoroughly than ever before. The scale of the data in TREC, the range of tasks, the
number of participants, and the multitude of tests have all contributed to this sea change.

Much of this effort has indeed gone into exploring variations on, and developments of,
familiar themes, in fact ones dating back to the beginnings of automated retrieval
research. But TREC has led to more than this, in two important ways. Many (though not
all) of the retrieval systems tested have an explicit theoretical underpinning, or at least
implicitly assume one. The Cornell Vector Space Model (VSM) is the most commonly
invoked, but the University of Massachusetts Inference Model (IM), and the
London/Cambridge Probabilistic Model (PM) have also been conspicuous since TREC
began in 1992.

TREC has been sufficiently rigorous to subject not only system implementations based on
these models, but the models themselves, to serious stress testing. The models have
benefited from the development forced on them. They have also performed very well.
Newer models have appeared too. Tests with a recent and strongly-argued Non-Classical
Logic Model (NCLM) have so far been limited, but Language Modelling, derived from
speech recognition, has been very successfully applied in TREC to the rather different
retrieval task.

All of these models operate within the generic framework mentioned in the previous
section, and are statistically-based. They exploit occurrence and co-occurrence patterns in
index terms and documents for term weighting, search query expansion, and the like. The
fact that the models perform well, and scale up, is no longer a research surprise. Nor is the
fact that they perform much the same. The basic data are all the same: there are document
texts, query texts, and documents judged relevant to queries; and these are all data
supplying some usable information about what retrieval is really about, namely document
contents, information needs, and so forth. Further, since document retrieval is essentially
an approximate task being conducted in a large and partially-understood conceptual
space, the same general properties of the objects in the space matter for all the theories
and invoke the same responses from all of them, as eventually reflected in tf*idf1 term
weighting. Several of the models also share, again not surprisingly, a generic
probabilistic approach to retrieval.

But the models at their most fundamental are rather different. So we may ask how one
might compare these different views, or on what grounds one might choose between
them. The primary issue both of comparison and of choice is usually taken to be retrieval
performance. But they may be compared in other ways, particularly in the absence of a
consistent and material performance differential. We may consider the richness of each
approach, in the sense of the extent to which it suggests or promotes different methods or
techniques. We may, in ideal scientific fashion, attempt to make and validate

1 A commonly used form of term weighting which gives more importance to a term occurring frequently
in the document under consideration, and less to a term which occurs in many documents

 197

experimentally further predictions from the models, other than of good retrieval
performance. We may also — this is the main aim of the present note discuss how each
type of model views the critical relationships between retrieval objects (documents,
queries, terms)

Model characteristics

This attempt to characterise the various models by how they see the relationship between
documents and queries is of necessity crude and over-simplified, if only because it is
often perfectly feasible for different theorists to accept the same formal framework on the
basis of very different fundamental assumptions or interpretations. However, what
follows may be a useful sketch.

The VSM treats the query-document relationship simply as an object proximity relation in
an information space. There may be other objects associated with the space, like index
terms. The vectors characterising objects (or the dimensions of the space itself, as in
Latent Semantic Indexing) are manipulated to bring queries and relevant documents
closer together (Salton et al. 1975).

The IM views the query-document relationship as a connectivity one. The connections
that can be made between the two, e.g. through terms, justify the inference that a
document should be retrieved (Turtle and Croft 1990).

The NCLM takes the query document relationship as a proof one, with the document
proving the query, e.g. through statements about their index term descriptions (van
Rijsbergen 1986).

The PM has a generative relation from a query to a document, making a prediction that a
document, e.g. because it has certain terms, belongs to the class of relevant documents
(Robertson et al. 1981).

In the LM there is also a generative relationship, but the other way round, from the
document to the query, i.e. the query is thought of as derived from the document in the
same sort of way that in speech the heard sounds are generated from a word string (Berger
and Lafferty 1999, Miller et al. 1999).

From these broad descriptions, it may not be clear whether or not the differences are
fundamental, or how important they are practically speaking. The comparison may be
further confused by other similarities between them, for instance because in the IM
inference is probabilistic, or because the PM may be given a network implementation
(Kwok 1995). One difference which does appear fundamental lies in whether the key
retrieval notion of relevance figures explicitly as a model primitive. It does this in the
PM, so that the generation relation is actually from both query and relevance to a
retrieval-worthy document. Relevance does not figure so explicitly in the VSM, or in the
IM or NCLM. We have argued elsewhere (in Croft and Lafferty in press) that the LM
does not explicitly use relevance either (although it has more recently been presented with
an explicit relevance variable included in the model - see Lafferty and Zhai in Croft and
Lafferty).

198

But though relevance may be taken as a primitive in a model, strictly relevance is
inaccessible, a hidden variable, and at a very practical level, all the models may be
interpreted as saying that the stronger the proximity/connectivity. relation between query
and document is, and thus the more highly ranked a document is in the search output, the
more likely it is that the user will find the document relevant to their information need.
Furthermore, for all the models, the specific expression of this proximity/... notion always
makes use of the same basic statistical facts.

Model implications

The point just made does not, however, imply that the models are mere notational variants
of one another. They indeed all deal in the same objects, queries, documents, terms etc,
and all (in one way or another, and in various versions) respond to the statistical
properties of retrieval data. But they make use of notions that are individually distinctive,
albeit very general. So one question is whether any of the ground notions like proximity,
inference, generation, etc is more intuitively satisfying as a (or perhaps the) key concept
for a theory of retrieval. Such a question may be taken as essentially a metaphysical
matter, but another question is whether thinking about retrieval systems in terms of one
central notion rather than another is more productive as a base for building effective (and
robust etc) systems.

One possible position here is that the fact that some generic model has been used for
different information and language processing tasks is important, because it reflects the
fact that these tasks are all, broadly speaking, discourse (text) transformation tasks with
something in common. From this point of view LM, which has been applied to translation
and summarising as well as speech transcription and retrieval, has something going for it.
But on inspection, the LM generative account for some of these tasks seems distinctly
forced. Other model mechanisms, like vector operations or the use of Bayes’ Theorem,
have been very widely exploited, but these are too abstract to make substantive task links
in the way that language modelling is claimed to do through the idea of generation.

However another view is that even if there are genuine differences between the abstract
models, this doesn’t really matter because it is not where the shoe pinches. Thus consider
the three input contributors to a retrieval system: the formal model (F); the estimation
accuracy (or training potential) of the model (E); and the implementation detail (I). As
already noted, when it comes to I, the weighting formulae used, for example, are much the
same. With F, on the other hand, there either are no real differences, or the only
differences that count are those that affect E, since this is what is going to determine
operational system effectiveness. Any system using any model, in the statistical retrieval
world, has to exploit its known data to predict what documents will be valuable. It may be
that the LM approach (with a variety of different applications already developed) has an
advantage here, in the form of a rich range of estimation methods on which to draw.

With the evaluation data we now have, we are in a much better position to assess claims
of this kind. We can hope to demonstrate whether any of the models are superior to the
others, either because its key notions are more productive in leading to good ways of
looking at different retrieval tasks, or because it provides better ways of dealing with the
challenges of estimation, or even because it leads to better performing implementations
in, say, choice of weighting formulae. The question of what a retrieval system should be
like, in its essentials, was one that Roger worked on, and his work was one of the sources

 199

of a modern probabilistic system (Spärck Jones et al. 2000). So just as we have benefitted
from his comments in the past, we look forward to his views on the present Retrieval
Model Action Space.

References

BERGER, A. AND LAFFERTY, J., ‘Information retrieval as statistical translation,’
Proceedings of the 22nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1999, pp. 222-229.

CROFT, W.B. AND LAFFERTY, J., (Eds.) Language modelling for information retrieval,
Dordrecht: Kluwer, in press.

KWOK, K.L. ‘A network approach to probabilistic information retrieval.’ ACM
Transactions on Information Systems, vol. 13, 1995, pp. 324-353.

MILLER, D.R.H. LEEK, T. AND SCHWARTZ, R.M., ‘A hidden Markov model retrieval
system,’ Proceedings of the 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1999, pp. 214-221.

NEEDHAM, R.M., ‘A method for using computers in information classification,’
Information Processing 62: Proceedings of IFIP Congress 1962, (Ed. Popplewell),
Amsterdam: North-Holland, 1963, pp. 284-287.

RIJSBERGEN, C.J. VAN ‘A non-classical logic for information retrieval,’ The Computer
Journal, vol. 29, 1986, pp. 481-485.

ROBERTSON, S.E., VAN RIJSBERGEN, C.J. AND PORTER, M.F. ‘Probabilistic models of
indexing and searching,’ in Information retrieval research, (Ed. R.N. Oddy et al.),
London: Butterworths, 1981, pp. 35-56.

SALTON, G., WONG, A. AND YANG, C.S. ‘A vector space model for automatic indexing’,
Communications of the ACM, vol. 18, 1975, pp. 613-620.

SPÄRCK JONES, K., WALKER, S. AND ROBERTSON, S.E. ‘A probabilistic model of
information retrieval: development and comparative experiments. Parts 1 and 2,’
Information Processing and Management, vol. 36, 2000, pp. 779-840.

TURTLE, H.R. AND CROFT, W.B. ‘Inference networks for document retrieval,’ Proceedings
of the13th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 1990, pp1-24.

200

 201

Slammer: An Urgent Wake-Up Call

Jerome H. Saltzer
Massachusetts Institute of Technology

Cambridge, Massachusetts, U.S.A.

The Slammer worm is an unusually urgent wake-up call, demonstrating as never before
the remarkable ease with which an attacker might paralyze the otherwise very robust
Internet. Slammer did not quite succeed, because it happened to pick on an occasionally
used interface that is not essential to the core operation of the Internet. If Slammer had
found a target in a really popular interface, the Internet would have locked up before
anyone could do anything about it, and getting things back to even a semblance of normal
operation would probably have taken a long time.

How it worked: The basic principle of operation of Slammer was stunningly simple1—

1. Discover an Internet port that is enabled in many network-attached computers, and
for which a popular listener implementation has a buffer overflow bug that a
single, short packet can trigger. IP/UDP ports are thus a target of choice. Slammer
exploited a bug in Microsoft SQL Server 2000 and Microsoft Server Desktop
Engine 2000, both of which enable the SQL UDP port. This port is used for
database queries, and it is vulnerable only on Windows computers that run one of
these database packages, so it is by no means universal.

2. Send to that port a packet that overflows the buffer, captures the execution point of
the processor, and runs a program contained in the packet.

3. Write that program to go into a tight loop, generating an IP address at random and
sending a copy of the same packet to that address, as fast as possible. The smaller
the packet, the more packets per second the program can launch. Slammer used
packets that were, with headers, 404 bytes long, so a broadband-connected (1
Megabit/second) machine could launch packets at a rate of 300/second, a machine
with a 10 Megabits/second path to the Internet could launch packets at a rate of
3,000/second and a high-powered server with an OC-3 (155 Megabits/second)
connection might be able to launch as many as 45,000 packets/second.

Forensics: Receipt of this single packet is enough to instantly recruit the target to help
propagate the attack to other vulnerable systems. Recruitment modifies no files and leaves
few traces, because the worm exists only in volatile memory. If you stop a recruited
machine, disconnect it from the Internet, and reboot it, you will find nothing. There may
be some counters indicating that there was a lot of outbound network traffic, but no clue
why. So one remarkable feature of this kind of worm is the potential difficulty of tracing
its source. The only forensic information available is likely to be the payload of the
intentionally tiny worm packet.

Exponential attack rate: The second thing that makes this worm significant is how
rapidly it increases its aggregate rate of attack. It recruits every vulnerable computer on
the Internet as both a prolific propagator and also as an intense source of Internet traffic.
The original launcher need merely find one vulnerable machine anywhere in the Internet
and send it a single worm packet. This newly-recruited target will immediately begin

202

sending copies of the worm packet to other addresses chosen at random. There are about 4
billion IP addresses, and even though many of them are unassigned, sooner or later one of
these worm packets will hit another machine that has the same vulnerability. The worm
packet immediately recruits this second machine to help with the attack. The expected
time until a worm packet hits yet another vulnerable machine is now half and the volume
of attack traffic double. Soon third and fourth machines will be recruited to join the
attack; the expected time to find new recruits halves again and the malevolent traffic rate
doubles again. This epidemic process proceeds with exponential growth until either a
shortage of new, vulnerable targets or bottlenecked network links slow it down; the worm
will quickly recruit every vulnerable machine in the Internet2.

The exponent of growth depends on the average time it takes to recruit the next target
machine, which in turn depends on two things: the number of vulnerable targets and the
rate of packet generation. If we suppose that the average recruited machine can generate
IP addresses and send worm packets at a rate of 1 thousand per second it will hit any one
IP address about once every 4 million seconds, or roughly 45 days. At my home, my
computer advertises a single IP address, and at the peak I was receiving a worm packet
every 80 seconds. Starting with that observation, we can estimate the minimum number of
recruits, assuming that the IP address generation mechanism of each worm is independent
and memoryless and hits every IP address with equal probability3:

observed arrival rate: 1/80 = 0.0125 packets/second/IP address
number of IP addresses: 232 = 4 · 109 IP addresses

aggregate rate: .0125 · 4 · 109 = 5 · 107 packets/second
assumed rate per recruit: 103 packets/second/recruit

number of recruits: 5 · 107 / 103 = 50,000

This number is a minimum, because at the peak of the packet storm it is likely that link
and router saturation in many parts of the Internet substantially reduced the observed
arrival rate. These 50 thousand or more recruits would be launching at least 50 million
packets per second into the Internet, and the aggregate extra load on the Internet of these
3200-bit packets probably amounted to something over 150 Gigabits/second, but that is
well below the aggregate capacity of the Internet, which is why reported disruptions were
localized rather than universal. (Warning: these back-of-the-envelope calculations depend
on rough measurements, unconfirmed assumptions and a speculative guess about average
rate of packet generation of each recruit. With luck this estimate of the number of recruits
may be in the right order of magnitude.)

With 50 thousand vulnerable ports scattered through a space of 4 billion addresses, the
chance that any single packet hits a vulnerable port is one in 120 thousand. If the first
recruit sends one thousand packets per second, the expected time to hit a vulnerable port
would be about two minutes. In four minutes there would be four recruits. In six minutes,
eight recruits. In half an hour, nearly all of the 50 thousand vulnerable machines would
probably be participating4.

Extrapolation: The real problem appears if we redo that analysis for a port to which five
million vulnerable computers listen: the time scale drops by two orders of magnitude.
With that many listeners, a second recruit would receive the worm and join the attack
within one second, two more one second later, etc. In less than 30 seconds, most of the 5

 203

million machines would be participating, each launching traffic onto the Internet at the
fastest rate they (or their Internet connection) can sustain. This level of attack, about two
orders of magnitude greater than the intensity of Slammer, would almost certainly
paralyze every corner of the Internet. And it could take quite a while to untangle, because
the overload of every router and link would hamper communication among people who
are trying to resolve the problem. In particular, it could be very difficult for owners of
vulnerable machines to learn about and download any necessary patches.

Prior art: Slammer used a port that is not widely enabled, yet its recruitment rate, which
determines its exponential growth rate, was at least one and perhaps two orders of
magnitude faster than that reported for the previous generation of fast-propagating worms,
Code Red and Nimda5. Those worms attacked much more widely-enabled ports, but they
took longer to propagate because they used complex multipacket protocols that took much
longer to set up. Interestingly, Slammer did not use any of several propagation
enhancement techniques suggested by Staniford, et al. Instead, the Slammer attack
demonstrates the power of brute force. By choosing a UDP port, infection can be
accomplished by a single packet, so there is no need for a time-consuming protocol
interchange. And the smaller the packet size, the faster a recruit can then launch packets
to discover other vulnerable ports.

Another risk: The worm also revealed a risk of what in the Internet are called class A or
CIDR /8 networks. At the time that my computer, which advertises a single IP address,
was receiving one Slammer worm packet every 80 seconds, a class C network (which
advertises 256 addresses) would have been receiving three packets per second, a class B
network (which advertises 65 thousand addresses) would have been receiving 750
packets/second, and a class A network (which advertises 16 million IP addresses) would
have been receiving 200,000 packets/second, with a data rate of about 640
Megabits/second. In confirmation, incoming traffic to the M. I. T. class A network border
routers peaked at a measured rate of around 500 Megabits/second with the 155
Megabits/second link to the public Internet saturated.6 Being the home of 16 million IP
addresses has its hazards.

Lessons: From this incident we can draw some important lessons for different Internet
participants: For users, the perennial but often-ignored advice to disable unused Internet
ports does more than help a single computer resist attack, it helps protect the entire
Internet. For vendors, shipping an operating system that by default activates a listener for
a feature that the user does not explicitly request is hazardous to the health of the Internet.
For implementers, the importance of diligent care in network listener implementations,
especially on widely activated UDP ports, just ratcheted up another notch or two.

Acknowledgement: This note benefited greatly from review by and ensuing discussion
with Hari Balakrishnan.

Notes.

1. This description of the operation of Slammer is based on a preliminary report found at

Internet Worm W32/SQL/Slammer.worm
McAfee Security Virus Information Library
http://vil.nai.com/vil/content/v_99992.htm
(URL verified 30 January 2002)

204

2. The initial rate of spread up to the point that Internet bandwidth limitations begin to cap
it can be described by a well-known formula called the logistic equation, applicable to
population growth and epidemics. An analysis of the application of the logistic equation
to Internet worm recruitment rate can be found in

Stuart Staniford, Vern Paxson, and Nicholas Weaver
How to own the Internet in your spare time
Proceedings of the 11th USENIX Security Symposium, San Francisco, August 5-9,
2002
http://www.icir.org/vern/papers/cdc-usenix-sec02/
(URL verified 30 January 2002)

3. An early report by disassemblers of Slammer indicates that its pseudo-random number
generator was defective, and that the equal probability assumption did not apply, at least
during the initial propagation of the worm. See

David Moore, et al.
The spread of the Sapphire/Slammer worm
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
(URL verified 1 February 2002)

4. These estimates both of the speed of onset and the Slammer worm’s relatively mild
effect on the Internet as a whole are confirmed by published measurements that show
packet loss rates averaged across many servers increasing from near zero to a peak of a
little under 20% in less than 30 minutes.

Matrix Net Systems Event Advisories, Slammer Worm Attack
Weekly summary, January 24 through January 30, 2003
http://www.matrixnetsystems.com/ea/index.jsp
(URL verified 1 February 2002)

In their paper cited above, Moore, et al., report observing Slammer to have an initial
recruitment rate of 7/minute, about 15 times as fast as our calculation. This observation
suggests that there were actually many more vulnerable hosts than estimated here. The
alternative explanation, that the generation rate of the average recruit was far higher than
1 thousand packets/second, seems unlikely, though a somewhat higher generation rate
may have contributed part of the difference.

5. The above-cited paper by Staniford et al., reported that Code Red had an initial
recruitment rate of about 2 recruits/hour. Our lower-bound estimate for Slammer of 0.5
recruits/minute is 15 times greater, and the measurement of Slammer by Moore et al. of
7/minute is 200 times greater.

6. The M. I. T. router traffic statistics were reported in an e-mail message:

From: James D. Bruce (Director of Information Systems)
To: the MIT community,
Date: 28 January 2003 09:51:51 EST
Subject: Weekend Network Outage

 205

 Caching Trust Rather Than Content

M. Satyanarayanan
School of Computer Science, Carnegie Mellon University, USA

(This contribution originally appeared in
Operating Systems Review, vol. 34, no.4, October 2000)

Position statement

Caching, one of the oldest ideas in computer science, often improves performance and
sometimes improves availability [1, 3]. Previous uses of caching have focused on data
content. It is the presence of a local copy of data that reduces access latency and masks
server or network failures. This position paper puts forth the idea that it can sometimes be
useful to merely cache knowledge sufficient to recognize valid data. In other words, we
do not have a local copy of a data item, but possess a substitute that allows us to verify the
content of that item if it is offered to us by an untrusted source. We refer to this concept
as caching trust.

Mobile computing is a champion application domain for this concept. Wearable and
handheld computers are constantly under pressure to be smaller and lighter. However, the
potential volume of data that is accessible to such devices over a wireless network keeps
growing. Something has to give. In this case, it is the assumption that all data of potential
interest can be hoarded on the mobile client [1, 2, 6]. In other words, such clients have to
be prepared to cope with cache misses during normal use. If they are able to cache trust,
then any untrusted site in the fixed infrastructure can be used to stage data for servicing
cache misses – one does not have to go back to a distant server, nor does one have to
compromise security. The following scenario explores this in more detail.

Example scenario

An engineer with a wearable computer has to visit a distant site for troubleshooting.
Because of limited client cache capacity, it is impossible for him to hoard all the repair
manuals and proprietary company documents he may require at the site. He therefore has
to be prepared to cope with cache misses while on site. Unfortunately, that site only has
occasional connectivity via a satellite link to the servers at home. Further, satellite
communications are restricted to off-peak hours to reduce cost; at other times, the site is
effectively disconnected.

At the remote site there is excellent, high-bandwidth short-range wireless coverage. There
are also many machines with ample disk capacity available for temporary use by the
engineer. It would be convenient to use one of these machines as a surrogate server,
staging data in bulk from the real servers to the surrogate so that cache misses can be
serviced efficiently on site. Unfortunately, security is lax at the remote site. The engineer
cannot be confident that the surrogate will not be tampered with. Under these

206

circumstances, how can the engineer be assured that the data he accesses at the remote
site is indeed authentic?

Integrity and privacy

A common trust model is to assume that servers are physically secure and trusted, and
that the client-server communication channel is encrypted for privacy. Staging data at an
untrusted surrogate hurts both integrity and privacy. The challenge is to preserve these
properties even when the surrogate is physically compromised. This can be accomplished
either using private or public key encryption. For brevity, the discussion below focuses on
a private key approach. The corresponding public key approach is easy to derive.

Integrity is the easier of the two security properties to preserve. We envision an approach
in which the user hoards the fingerprints (such as MD5 checksums [5]) of all files of
potential interest directly from the server before leaving on his trip. Since fingerprints are
much smaller than file contents, this is only a small burden on the disk capacity of the
client. When a cache miss occurs at the remote site, the corresponding data is fetched
from the surrogate and its fingerprint is computed by the client; the data is accepted only
if the computed and cached fingerprints match.

The problem becomes more complex if data can change at the server after the user leaves
home. In that case, the user needs to obtain fresh fingerprints. This requires a trusted
channel from client to server, but a low-bandwidth modem link may suffice. A public key
approach would be simpler in this regard, since digitally signed updates can be sent over
an untrusted channel.

It is simple to extend this idea to privacy. In addition to a fingerprint, the client also
hoards a per-file private encryption key. The server encrypts each file before staging it on
the surrogate. To handle a cache miss at the remote site, the client fetches the data from
the surrogate, decrypts it, verifies its fingerprint and then uses the data. The volume of
cached keys can be reduced by using a single private encryption key for all files, at the
price of total exposure if that key is broken.

This solution to the privacy problem is not fully satisfactory. It is not possible to ensure
purging of staged data from the surrogate because it lies outside the administrative
domain of the client and server. With enough time and effort, the keys of staged files can
be broken and their contents revealed. The keys can be chosen to be strong enough that
breaking them will take much longer than the expected duration of surrogate use.
However, it is not feasible to guarantee the privacy of staged data indefinitely. This
approach may therefore be restricted to situations where privacy is not an issue, or where
there is a well-defined time bound on privacy of information.

Status and plans

We are in the early stages1 of building a system that uses the idea of caching trust. Our
work is being done in the context of the Aura Project at Carnegie Mellon, a new research

1 Editor’s note – this status report and future plan relates to the time the original paper was written
(i.e., summer 2000).

 207

initiative whose theme is “distraction-free, ubiquitous computing’.” Support for nomadic
data access in Aura uses the Coda File System as a back end. Coda was recently extended
to exploit surrogates for efficient update propagation over low-bandwidth networks [4].
We now plan to further extend the system to exploit surrogates for servicing cache misses,
as described here. An important implementation question we hope to answer is whether
the support for using surrogates securely can be fully encapsulated in a user-level proxy
that runs on a Coda client, avoiding changes to Coda itself.

From a broader perspective, opportunistic exploitation of remote infrastructure is key to
the long-term success of mobile computing. Unfortunately, security concerns loom large
in such architectures. Caching trust may prove to be an important enabling technology for
these architectures. The idea is particularly relevant to secure coprocessors and
smartcards because their limited storage capacity may be adequate for caching trust but
not data content.

Acknowledgements

This research was supported by the National Science Foundation (NSF) under grant
number CCR-9901696, and the Defense Advanced Research Projects Agency (DARPA)
via the Office of Naval Research (ONR) under contract number N66001-99-2-8918.
Additional support was provided by IBM. The views and conclusions contained here are
those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either express or implied, of NSF, DARPA, ONR, IBM, CMU,
or the U.S. Government. Discussions with Jason Flinn, Jan Harkes and Adrian
Pavlykevych were valuable in developing these ideas.

References

1. KISTLER, J.J. AND SATYANARAYANAN, M., ‘Disconnected Operation in the Coda File
System,’ ACM Trans. On Computer Systems, vol. 10, no. 1, February 1992.

2. KUENNING, G.H. AND POPEK, G.J. ‘Automated hoarding for mobile computers,’ Proc.
9th ACM Symposium on Operating Systems Principles, Saint-Malo, France, October
1997.

3. LAMPSON, B.W., ‘Hints for computer system design,’ Proc. 9th ACM Symposium on
Operating Systems Principles, Bretton Woods, NH, USA, October 1983.

4. LEE, Y, LEUNG K.S. AND SATYANARAYANAN, M. ‘Operation-based update propagation
in a mobile file system,’ Proc. Usenix Annual Technical Conference, Monterey, CA,
USA, June 1999.

5. RIVEST, R., ‘The MD5 Message-Digest Algorithm,’ Internet RFC 1321.

6. TAIT, C.D., LEI, H., ACHARYA S. AND CHANG, H., ‘Intelligent file hoarding for mobile
computers,’ Proc. Of MobiCom ’95: First Annual International Conference on Mobile
Computing and Networking, Berkeley, CA, USA, November 1995, pp. 119-125.

208

 209

Least Privilege and More1

Fred B. Schneider
Cornell University, Ithaca, New York, USA

Introduction

What today is known as the Principle of Least Privilege was described as a design
principle in a paper by Jerry Saltzer and Mike Schroeder [4] first submitted for
publication roughly 30 years ago:

“f) Least privilege: Every program and every user of the system should
operate using the least set of privileges necessary to complete the job.
Primarily, this principle limits the damage that can result from an accident or
error. It also reduces the number of potential interactions among privileged
programs to the minimum for correct operation, so that unintentional,
unwanted, or improper uses of privilege are less likely to occur. Thus, if a
question arises related to misuse of a privilege, the number of programs that
must be audited is minimized. Put another way, if a mechanism can provide
‘firewalls,’ the principle of least privilege provides a rationale for where to
install the firewalls. The military security rule of ‘need-to-know’ is an
example of this principle.”

The power of this principle comes from leaving unspecified how frequently privileges
might change and their granularity. Back in 1972, Roger Needham certainly understood
the value of support for dynamic assignments of privileges, writing [3]:

“Protection regimes are not constant during the life of a process. They may
change as the work proceeds, and in a fully general discussion they should be
allowed to change arbitrarily. Statements would be allowed, for example, to
the effect that certain segments were only accessible if the value standing in a
system microsecond clock were prime. In practice one departs from full
generality, and limits those circumstances which may give rise to a change of
protection regime.”

My own interest in the Principle of Least Privilege developed in connection with devising
security enforcement mechanisms for systems structured in terms of a base and a set of
extensions which augment the functionality of that base. Such extensible systems are
prevalent today in mass-market PC software, where we see new hardware being
accommodated in Microsoft Windows platforms through “plug and play” and we see web

1 Supported in part by AFOSR grant F49620-00-1-0198, Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory Air Force Material Command USAF under Agreement
number F30602-99-1-0533, National Science Foundation Grant 9703470, and ONR Grant N00014-01-1-
0968. The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of these
organizations or the U.S. Government.

210

browsers—hence, the web itself—supporting new data formats by use of downloaded
“helper apps” that extend a browser’s functionality.

A misbehaving extension Ext has the potential to compromise the base system B it
extends. Examples abound: email containing executable attachments, Microsoft Word
documents bearing hostile macros, and new browser “helper apps” that are a far cry from
being helpful. This situation could be improved if we posit some sort of reference
monitor that intercepts all program actions and, based on privileges held by the issuer of
the action, blocks those that would be disruptive. However, to make this vision a reality,
two technical questions must be solved:

(1) Implementing the reference monitor.

(2) Determining a policy for it to enforce.

Regarding (1), my collaborators and I have elsewhere reported success with program
rewriters to modify an object program before execution, adding tests that effectively in-
line a fine-grained reference monitor [2]. This paper sketches my current thinking on (2).

What policy to enforce?

Least privilege. Policies consistent with the Principle of Least Privilege depend not only
on the code to be executed but also on what job that code is intended to do. For an
extension Ext and some specification �Ext of a job to be done, we define �Priv(Ext,�Ext) to
be the policy that grants the minimum privileges needed for execution of Ext to satisfy
�Ext. (A policy here is a mapping from system histories to sets of privileges.) As an
example, specification �Ext of a spell-checker extension Ext for a word processor might
specify that misspelled words be flagged in the word processor’s open file F; we would
then expect �Priv(Ext,�Ext) to be a policy that permits the spell-checker read (but not
write) access to F, read (but not write) access to a file containing a spelling dictionary,
and read/write access to a file containing user-added spellings for local jargon terms.

It is clear how the base system comes to get an extension Ext, but how does it get
�Priv(Ext, �Ext) for use by its reference monitor? Here are two possible approaches.

(1) The base system could itself compute �Priv(Ext, �Ext).
(2) The base system could fetch �Priv(Ext, �Ext) from some site S.

Approach (1) presumes that �Priv(Ext, �Ext) can be computed—a questionable
supposition. Implicit in computing �Priv(Ext, �Ext) is establishing that extension Ext
satisfies specification �Ext, and we know that question cannot be decided for general-
purpose programming and specification languages. There might exist specialized
languages, however, for which �Priv(Ext, �Ext) could be computed; this is a research
question that bears closer scrutiny. One might start by restricting consideration to
specifications �Ext that are safety properties, because the language of specifications now
can be restricted to state predicates that hold throughout system execution. The weakest
precondition (wp) predicate transformer might then provide a starting point for defining
�Priv by structural induction on Ext.

Approach (1) also presumes that �Ext is known. This, too, is a supposition of dubious
practicality. Since extensions are generally downloaded with some expectation of the job
they are intended to do, one might suspect that a high-level, task-oriented specification

 211

�Ext would be known to the initiator and serve as the impetus for the Ext download. But
employing such a high-level task-oriented specification does not suffice if Ext involves
implementation details that are not obvious for the task and thus have been omitted from
�Ext. For example, recall the spell-checker extension introduced above, which is specified
in terms of a single file F. This spell-checker actually also involves accessing two other
files (a spelling dictionary and a jargon dictionary) and might in addition even access a
backing-store file perhaps over a local network. Such knowledge of implementation
details is not going to be available to the initiator of an Ext download and, therefore,
would not be included in high-level task-oriented specification �Ext, though clearly
�Priv(Ext, �Ext) would need to include privileges for accessing the spelling dictionary, the
jargon dictionary, and the backing-store.

If Ext cannot be deduced locally, then perhaps it could be downloaded and checked?
Unfortunately, this architecture also has problems. The local checking is really a form of
policy review, and policy review is a hard problem whenever the policy being checked is
complicated. A specification �Ext that involves internal details is going to be complicated
and thus difficult for a human to understand. The alternative to policy review is simply to
trust the source of �Ext. But, then, why not simply trust the source of Ext to provide a safe
extension and dispense with reference monitoring altogether?

For approach (2) to be workable, either S must be trusted or the base system must itself
have some means to check whether what it has fetched equals �Priv(Ext, �Ext). The latter
is unworkable for the reasons argued above. Regarding the former, an obvious question is
whether trusting S to provide �Priv(Ext, �Ext) could be materially different from trusting S
to provide a safe implementation of Ext.

And more. At least for the time being, then, it seems as though obtaining �Priv(Ext, �Ext)
for use by a reference monitor associated with the base of an extensible system is
infeasible, and an alternative must be sought. So the policies we are now investigating
seek to prevent extensions from subverting a base system or, equivalently, seek to prevent
any extension from violating the assumptions underlying the design and implementation
of that base. Such assumptions include:

• Characteristics of the programming model employed for building the base, such as
properties of underlying system abstractions and language-level abstractions. For
example, the separate address spaces usually accorded to process abstractions bring
guarantees about integrity of storage; and type systems in modern programming
languages, like Java and C#, bring guarantees about how certain variables can be
used.

• Invariants that the base maintains about state. For example, a complicated linked-
list data structure might be characterized by an invariant stating which nodes are
reachable from each other; each routine to manipulate the data structure is then
designed to (i) work correctly if that invariant holds prior to execution and (ii) upon
termination, leave the data structure in a state satisfying the invariant.

Provided these assumptions can be expressed as safety properties—and most can—then
they can be enforced by use of in-lined reference monitoring. Prior to execution, each
extension is rewritten by adding checks that ensure no action the extension performs will
violate any assumption required by the base system.

212

Notice that in this alternative to �Priv(Ext, �Ext), a single policy is being employed,
independent of extension Ext. The problems of deciding what specification �Ext to use
with a given extension Ext is thus eliminated. But the use of a single policy for all
extensions implies that the policy being enforced might not be as restrictive as it could be
(thereby admitting attacks) or might be too restrictive (thereby ruling-out execution of
certain extensions). And there is thus some flexibility in formulating a policy for a given
base.

Some final comments

The articulation of abstractions and principles is an important facet of doing research in
computing systems. An implementation is certainly one way to demonstrate the utility of
a new systems abstraction or principle, with system performance a sensible figure of
merit. However, some abstractions are useful even though they cannot be implemented.
Belady’s optimal page replacement policy [1], which involves predicting future memory
references and therefore is unrealizable in practice, is one example. The Principle of
Least Privilege might be another, offering value primarily as a benchmark against which
to compare policies that are being enforced—when compared with �Priv(Ext, �Ext), a
deployed policy would be considered inferior if it either admits additional attacks or it
excludes certain classes of extensions.

The classical approach to computer security—address space isolation associated with
processes—would seem a good place to start in a comparison of security policies for
extensible systems. It isn’t. The context switches required on modern processors for
communication and synchronization between separate processes make it impractical to
have fine-grained interaction between a base implemented as one process and an
extension as another. Without the possibility of such fine-grained interaction, the set of
functions that can be implemented as extensions becomes quite limited.

But with in-lined reference monitors, different programs can be isolated from each other
without incurring the high cost of context switches. In fact, many forms of fine-grained
access control that are not practical with traditional reference monitors become practical
with in-lined reference monitors. Another concern now confronts us, though: How best
to exploit the flexibility. To make progress here, not only must we learn the art of writing
policies but we must also develop the mathematical tools for analyzing them. Collections
of weak policies are likely to provide workable defenses for broad sets of extensions, for
example. Weak policies might well be easier for humans to understand, too. Exactly how
these advantages trade with the “security” �Priv(Ext, �Ext) provides is the ultimate
question. For the present, however, it seems that practical protection for extensible
systems is most easily obtained using policies that grant more privileges than would
�Priv(Ext, �Ext)—the least privilege and more.

Acknowledgments. Helpful comments on a preliminary draft of this paper were
provided by Lorenzo Alvisi, Butler Lampson, Greg Morrisett, Andrew Myers, and Mike
Schroeder.

References

1. BELADY, L.A., ‘A study of replacement algorithms in a virtual storage computer,’
IBM Systems Journal vol. 5, no. 2,1966, pp. 78-101.

 213

2. ERLINGSSON, U. AND SCHNEIDER, F.B., ‘SASI enforcement of security policies: a
retrospective,’ Proceedings of the New Security Paradigms Workshop, Caledon Hills,
Ontario, Canada, September 1999, ACM, pp. 87-95.

3. NEEDHAM, R.M., ‘Protection systems and protection implementations,’ Proc. 1972
Fall Joint Computer Conference, AFIPS Conf. Proc., vol. 41, pt. 1, pp. 571-578.

4. SALTZER, J.H. AND SCHROEDER, M.D., ‘The Protection of information in computer
systems,’ Proceedings of the IEEE, vol. 63, no. 9 (Sept 1975), pp. 1278-1308.

214

 215

Using Sharing to Simplify System Management

Michael D. Schroeder
Microsoft Research Silicon Valley

The cost of ownership for many computer systems in non-home environments is
dominated by ongoing system management. This paper addresses the management issues
around storage-intensive systems that serve many network-attached clients, particularly
file servers, mail and calendaring servers, and database servers. The paper begins by
describing a three-layer structure for large server systems that is often employed where
availability and scale considerations require the use of multiple computers to implement a
single service. It then contrasts a system organization called the uniserver model, in which
the permanent state is partitioned among the application servers, with an organization
called the multiserver model, in which the permanent state is shared among all the
application servers. Reviewing the relative advantages and disadvantages of the two
models suggests the option of combining them by using a multiserver as a uniserver. The
sharing from the multiserver model makes a system easier to manage than a uniserver.
But if the sharing is avoided in normal operation, as in a uniserver, then the combined
system avoids many of the drawbacks of both models.

Three-layer systems

A useful structure for a multi-computer system that maintains significant permanent state
and has network-attached clients is to organize the hardware components into three layers
by function.

Network interface to clients

At the bottom is the storage subsystem, consisting of large numbers of disks and their
controllers. These days the storage subsystem is usually interconnected with a storage
area network, such as Fibre Channel, to which all the computers are also attached. In the
middle layer are the computer systems that implement the service: file servers, mail
servers, or database servers. At the top layer are the computer systems that front the
system to the network. They collect client requests from the network and distribute them
to the middle-layer computers. These top-layer computers can be simple directors that
pass requests directly to the middle layer, or they can be web servers that implement the
visible interface and formulate the needed middle-layer requests.

Top layer
Directors

Middle layer
Application servers

Bottom layer
Storage subsystem

216

The bottom-layer storage subsystem is usually responsible for reliably storing the
permanent state, although in some systems the middle layer participates, too. Reliability is
achieved by using data redundancy techniques such as RAID, as well as by replicating the
controllers and network components. Data is usually backed up to offline media. In
addition, if the bottom layer provides storage virtualization then it can do things like load
balancing to improve performance. This possibility is discussed later.

The three-layer system organization can be used in two different ways: uniserver or
multiserver. With the uniserver model, each middle-layer server acts on a unique partition
of the permanent state of the system stored by the bottom layer. With the multiserver
model, each middle-layer server can act on all of that permanent state. These two models
have different strengths and weaknesses.

The uniserver model

Today, the most common organization for dividing the work among the middle-layer
servers is to partition the permanent state of the system among them. I call this
organization with partitioned state the uniserver model.

For example, in a file system, different sub-trees of the naming hierarchy will be
implemented by different file servers in the middle layer; in an email system, different
sets of user accounts will be implemented by different mail servers; in a database system,
different tables of the database will be implemented by different database servers. The
top-layer directors understand the partitioning scheme and direct each request to the
middle-layer server that “owns” the permanent storage needed to answer it. Sometimes a
request needs to be divided into several pieces, each of which is directed to a different
server, and the results combined in order to respond to the client, although atomicity is
usually not provided for requests spanning multiple servers

As the patterns of client requests evolve and as the system state grows, it is sometimes
necessary to redistribute the state among the middle-layer servers and add new ones to
maintain good performance. Available tools can detect load pattern changes and
overloaded servers, suggest optimal partitioning of the state, and reorganize the storage
layers to achieve the optimum.

Another reason for changing the distribution pattern is the failure of a middle-layer server.
If high availability is a goal, the system will be provisioned with extra standby servers to
take over from failed servers. Failover requires detecting the failure, detaching the
associated permanent state from the failed server, attaching it to a standby server, starting
the standby server with the transferred state, and cleaning up any unfinished business
found in that state. The top-level directors are then told to direct requests to the new
owner of that partition of the permanent state.

There is some global shared state in a uniserver system: the list of member servers and the
characterization of the partition of the data they each serve. This global state needs to
change when the partitioning is changed and when failover occurs, but it changes
infrequently and is small.

The uniserver organization is sometimes called the shared-nothing approach because
middle-level servers share no permanent state. The partitions of the permanent state are

 217

attached to one middle-level server at a time. The shared-nothing approach was once
mandatory, since there were no storage interconnects that enabled disks to be accessed by
more than one computer at a time. But as this constraint has been removed by the march
of technology, people continue to argue the enduring value of the shared-nothing
approach. The shared-nothing model is used widely in commercial products. For example,
Microsoft’s SQL, Exchange, or NTFS servers deployed on Microsoft Cluster Server [1]
are examples of this organization. I use the term “uniserver” instead of “shared-nothing”
because uniserver contrasts better with its alternative, the multiserver model, discussed
below.

The multiserver model

An alternative to uniserver model for a three-layer systems is the multiserver model. In
this approach all middle-layer servers in a system can operate on all the permanent state
contained in the bottom-layer storage subsystem. For example, with a multiserver file
system a single (large) hierarchical name space is served by all servers in the middle
layer. Any of the servers can operate on any folder or file. Over the last ten years or so,
progress in storage area networks, systems area networks, and local area networks has
made shared access to storage affordable and scalable with good performance. With the
multiserver model the top-layer director function is still required in order to do load
balancing and avoid failed servers. In the case of a multiserver, however, the directors can
make dynamic decisions that are not completely dictated by data location.1 The
multiserver model makes extra demands on the implementation of the middle-layer
servers. In particular they need to coordinate their access to the permanent state.
Coordination is usually done using a global locking service that allows middle-layer
servers to set locks on portions of the permanent state. A lock prevents conflicting access
from other servers. Choosing the best granularity for the locking, e.g., per folder, per file,
or per byte range in the case of a file service, depends on the pattern of expected client
requests. The need to coordinate also complicates the management of data caches in the
servers.

Expanding a multiserver system is done by attaching a new middle-layer server to the
storage subsystem, updating the membership list so that the top-layer directors know
about the new server, and letting the new server initialize itself by reading from the
permanent state.

Failure of a middle-layer server can be covered by directing requests to another server,
because all servers can operate on all parts of the permanent state. When servers
encounter locks still held by the failed server, they must take a special action to recover
the lock and complete or abort the operations it protected. This is similar to cleaning up

1 For both uniserver and multiserver systems it is possible to put the director function in a clerk module
in the clients. The clerk module retrieves configuration information directly from the middle-level
servers and uses it to send each client request directly to the appropriate server. With this structure the
top-layer directors are bypassed. Clerk modules work best when clients are modest in number and well-
connected to the server system. For large-scale systems with many distant clients, it is best to have the
director run on top-layer servers of the system, as described here.

218

the unfinished business of a failed server when doing failover for a uniserver system. In
both cases the new server reads and acts on the operation log written by the failed server.

Multiserver systems have been around for some time. An early successful example was
the DEC VAX/VMS cluster [2] that provides a multiserver file system. More recently the
Frangipani global cluster file system prototype [3] has demonstrated good performance
and automatic operation using these techniques.

Arguments in favor of uniservers

Uniserver systems realize several benefits directly from their organization. By having
each partition of the permanent data under control of a single server, undesirable
interactions among the servers are minimized. Each server has a free hand in managing
and caching that data and in accessing the permanent state without the interference of
other servers. Lack of interference can lead to good performance. It also allows the server
to be “near” its data, in the sense that the connection from the data storage subsystem to
the server for the associated partition doesn’t need to go anywhere else until a failover or
repartitioning occurs. When a server crashes it cannot affect the operation of other servers
or other partitions. This lack of unwanted interaction contributes to system stability.
Finally, failover is an activity confined to the chosen standby server, without system-wide
repercussions other than temporary unavailability of data from the affected permanent
state.

Arguments against uniservers

The partitioning of the permanent state that characterizes the uniserver organization also
generates some problems. Perhaps most important is that partitioning is a major
management burden in operating such a system. Growth in the load, changes in the access
patterns, and growth of the permanent state require repartitioning the system. Such
repartitioning can involve copying the data. Repartitioning can be time intensive and can
take the system entirely or partially offline. In typical implementations failover is slow:
getting the standby server up to speed from scratch can take minutes. Addressing this
problem by having a hot standby mitigates some of the simplicity and non-interference
advantages mentioned earlier.

Arguments in favor of multiservers

Multiserver systems also have their benefits. Requests can be dynamically distributed
according to load. Requests to read-only hot spots in the data, for example, can be
satisfied from multiple middle-level servers in parallel without any pre-positioning of the
data. The needed data would find its way from the shared storage subsystem into the
caches of all the servers where it could be accessed rapidly at each, increasing throughput
of the overall system. Recovery from the failure of a middle-level server can be fast
because all other servers are automatically “hot.” Repartitioning the permanent state is
never necessary since all servers can access all permanent state. The result is that
management overhead for such a system is low and there are no lengthy outages for
reconfiguration.

 219

Arguments against multiservers

Problems with the multiserver organization include interference between servers needing
temporary exclusive access to the same data. Such lock conflicts can result in
unpredictable performance. Also, implementing the global lock service as a high-
performance, scalable, distributed program is complex. With a multiserver system,
failures can impact the operation of all other servers as they recover the locks held by the
failed server and take over the load. Another negative for the multiserver organization is
that many existing commercial file servers, mail servers, and database servers are not
designed to share access to their permanent data. While there is general ignorance about
how hard fixing this would be, it clearly would be a major development task. Finally, the
storage subsystem has to be able to deliver all permanent state to all servers with good
performance, a requirement that has been difficult to achieve.

Using a multiserver as a uniserver

It seems possible to combine the advantages of the uniserver and multiserver models and
lose most of drawbacks. The idea is to use the top-layer directors and distribution tables
from a uniserver system on a multiserver system with the same permanent state. The
uniserver directors will route requests in a pattern that prevents the multiservers from
sharing items from the permanent data, even though they could share. Under this scheme,
at system start-up or reconfiguration there would be an initial flurry of activity at the
global locking service while each application server collects the locks it needs as requests
come in. There would never be contention for these locks, since the directors are
implementing the same routing decisions that they would for the uniserver system having
a partitioned permanent state. Eventually lock requests would largely stop occurring as
each server obtained all the locks it needed. The steady state would be characterized by a
background level of lock renewals without contention. The performance concerns
surrounding contention in a multiserver system would not surface with this scheme.

But have we gained any of the advantages of multiservers? I think we have.
Repartitioning, scaling, and failover can happen faster and with less management
intervention or service disruption in a multiserver system. Consider each in turn.

Repartitioning — As with a uniserver system, monitoring tools watch for signs
that “repartitioning” is needed. In addition to server load, lock contention is a good
tell tale. For the multiserver, however, repartitioning is accomplished by changing
only the routing pattern implemented by the top-layer director computers. No
changes in the organization of the storage subsystem are required. As the middle-
layer servers start seeing requests that require access to new parts of the permanent
state they obtain the corresponding locks and fulfil the requests. The previous lock
holders release their claim because of these requests for contending locks from
other servers. After some interval, locking service activity would drop to a
background level again. The system continues offering service while the
reconfiguration is stabilizing, perhaps with some small loss of performance due to
increased locking traffic.

 Scaling — An added middle-layer server attaches itself to the permanent storage
of the system and internalizes the meta-data it needs to commence operation. All

220

state needed is available to the new server either in the shared storage subsystem
or in the membership list and locking service. The membership list for the system
is updated to record the new server and the distributors adjust the routing
algorithm to allow the new server to operate on a virtual partition of the permanent
state. Again, no management intervention is required other than policy direction as
appropriate. The system continues to provide service during scaling.

Failover —A failure of a middle-layer server is detected by monitoring
mechanisms that are largely similar in the uniserver and multiserver cases. Once
detected, the multiserver system adjusts the routing decisions made by the top-
layer distributor computers to effectively assign the failed partition of the
permanent data to one or more other servers. In the multiserver case, as with the
uniserver case, there can be standby servers waiting to receive the load. Lock
redistribution follows until the locking service activity quiesces in the new state.
When acquiring broken locks abandoned by a failed server, a new server inspects
the operations log of the failed server, available from the storage subsystem, to
determine the cleanup actions required.

In summary, use of the multiserver organization, but with directors that minimize or
eliminate actual sharing among active middle-layer servers, can substantially reduce the
cost of management for such systems without much impact on system performance,
reliability, or cost.

More on the storage subsystem

As described so far, the bottom-layer storage subsystem is a collection of disks,
controllers, and network components with the property that all middle-layer servers can
access all disks. Storage reliability is achieved by the use of redundancy within the
storage subsystem. This black-box model of the storage subsystem is appropriate for
discussing the distinction between uniserver and multiserver systems. Achieving
minimum intervention management and good performance for the overall system,
however, may demand additional functionality from the storage subsystem. The extra
features are equally useful in uniserver and multiserver systems. In particular, it may be
useful for the storage subsystem to implement load balancing, incremental growth, and
failover on its own. The key technique for adding these features is storage virtualization,
in which the storage subsystem implements one or more virtual storage volumes that are
addressed like very large disks. A mapping from the blocks of the virtual volume to the
physical storage hides the redundancy scheme and the distribution of the data among
controllers and disks.

Using a volume virtualization scheme, failed disks and controllers can be replaced and
new disks and controllers added on demand. The only change the middle-layer servers see
is that the virtual volumes get larger. Automatic algorithms operating in the background
copy data among the attached disks to achieve capacity and load balance and to restore
the desired level of data redundancy. No management intervention is required. Operator
intervention is required to replace or add hardware, but not to configure it. The Petal
storage management system [4] is one example of this kind of storage virtualization.

 221

A shared storage subsystem with volume virtualization clearly would be an asset to a
uniserver system as well as a multiserver system and would mitigate some of the
management burden associated with uniserver systems.

Discussion

The multiserver organization requires distributed systems software in addition to shared
physical access to the storage subsystem. Over the last ten years considerable progress has
been made on this software technology. There now are good algorithms for the global
state management needed to maintain the system membership list. Perhaps the best
algorithms are those in the Paxos family.[5] A global locking service built using leases
and depending on server operation logs for lock recovery, as in the Frangipani example,
can have good performance and scaling characteristics. This design is a simplification of
the traditional distributed lock manager [6]. Because a partitioned multiserver system
operates in a way that minimizes or eliminates actual sharing, the locking service and the
coordination mechanisms for the server data caches are not stressed.

The distinction between uniserver and multiserver systems focuses on two ends of a
spectrum of implementations. Many of the ideas I have associated with multiservers can
be applied in some form to uniservers. For example, in a uniserver using standby servers
for failover, the idea of hot standbys can be pushed to the point where the standby server
is tracking the active server, operation by operation, so that its internal state is almost
complete and up-to-date when the failover occurs. This can make failover faster. In this
case the experienced system designer will be wary, however, since we would be adding a
special purpose mechanism used only to support the unusual case of failover, whereas the
similar machinery in a multiserver would be part of the base functionality of the system
and thus more likely to be correct.

Summary

In this paper I have argued that sharing is a good organizational technique for a multi-
computer server system, especially if the system is configured so that sharing is not on the
critical path of high-volume operations. Instead, the sharing mechanisms can make the
inevitable system transitions cause by reconfiguration, failure, and growth fit more
seamlessly into system operation, minimizing the management attention required to
perform them. A system organization that combines the good features of the uniserver and
multiserver models has the potential to realize this goal.

Acknowledgements

These ideas have benefited from discussions with my colleagues Kurt Friedrich, Jim
Gray, Chandu Thekkath, and Chad Verbowski. In addition Ulfar Ehrlingsson, Andrew
Herbert, Michael Isard, Bill Laing, Butler Lampson, Roy Levin, Fred Schneider, Leslie
Schroeder, Chuck Thacker, and Lidong Zhou made useful suggestions.

222

References

1. MICROSOFT, Windows server 2003: server cluster architecture, available as
http://www.microsoft.com/windowsserver2003/docs/ServerClustersArchitecture.doc

2. KRONENBERG, N., LEVY, H. AND STECKER, W., ‘VAXClusters: a closely-coupled
distributed system,’ ACM Transactions on Computer Systems, vol. 4 no. 2 ,May 1986,
130-146.

3. THEKKATH, C., MANN, T. AND LEE, E., ‘Frangipani: a scalable distributed file system,’
Proc. 16th ACM Symposium on Operating Systems Principles, ACM ,October 1997,
224-237.

4. LEE E. AND THEKKATH, C., ‘Petal: distributed virtual disks,’ Proc. 7th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS-VII, ACM, October 1996, 84-92.

5. LAMPORT, L., ‘The part-time parliament,’ ACM Trans. on Computer Systems, vol. 16
no. 2,May 1998, 133-169.

6. SNAMAN, W. JR., AND THIEL, D., ‘The VAX/VMS distributed lock manager,’ Digital
Technical Journal, vol. 1 no. 5, Sept 1987, 29-44.

 223

An RSA Related Number Theoretic Surprise

Gustavus J. Simmons
Sandia Park, New Mexico, USA

Abstract

It is a folklore result that factoring an RSA modulus n = pq given the Euler function �(n)
only requires the extraction of a single square root. There does not appear to be a
correspondingly simple algebraic formula to factor n directly given the universal exponent
�(n). If �(n) could be calculated from �(n) then n could be factored directly, but �(n) can
be as small compared to �(n) as 2�(n), or as large as Int[√(n/2)]�(n), depending on the
choice of the primes p and q. The surprising result presented here is that in spite of this
enormous range of possible values for �(n) only a single division is required to calculate
�(n) from �(n) for any RSA modulus.

Introduction

In the first few years after the discovery of the RSA crypto algorithm several schemes
were proposed that can best be described as common modulus protocols in which a
central keying authority (CKA) chose the primes p and q and then calculated pairs of
exponents ei and di for each of the subscribers/users to the system. The reason for
considering such schemes was that at the time it was very difficult and very slow to carry
out modular exponentiations with numbers of the size required for the modulus to be
infeasible to factor. By using a common modulus it was possible for the CKA to do pre-
computations that could then be used by all of the subscribers to speed up the
encryption/decryption computations. Subsequent advances in both computational
algorithms and in VLSI chips rendered these considerations moot. Before this happened
though such systems were shown to be cryptographically insecure by Simmons [1] who
gave a probabilistic algorithm that could almost certainly factor n given any multiple of
�(n) and by DeLaurentis [1] who gave a deterministic algorithm (valid if the extended
Riemann hypothesis holds) to calculate the matching secret key for any public key under
the same conditions. Since ei di ≡ 1 mod �(n), these two results meant that any subscriber
to a common modulus system could compute the secret key for any other subscriber
making such a system totally insecure.

The problem of factoring n given a multiple of �(n) led naturally to considering the
special case of factoring n given �(n) = [(p–1) , (q–1)] since it is a folklore result that
given the Euler function �(n) = (p – 1)(q – 1) = n – p – q + 1 factoring n only requires the
extraction of a single square root. If n = pq, p > q, then:

 p = ½(S + √(S2 – 4n)) and q = ½(S – √(S2 – 4n))

 where S is defined by S = n – �(n) + 1.

 �(n) = [(p –1) , (q – 1)] always divides �(n) = (p – 1)(q – 1)

 but the quotient r = �(n)/�(n) can be as small as 2 or as large as Int[√(n/2)].

224

In fact for appropriate choices of the primes p and q, r can be forced to assume any even
integer value in this range.

Consider a special case in which the extreme values of r are realized. Let p, q1 and q2 be
three primes of the form: p = 2m + 1, q1 = 4m + 1 and q2 = 4m - 1.

For a prime triple of this form:

 n1 = 8m2 + 6m + 1, n2 = 8m2 + 2m – 1, �(n1) = 8m2 and �(n2) = 8m2 – 4m

so that the two pairs of values are asymptotically the same size.

 �(n2)/�(n1) = 1 – 1/2m and n2/n1 = 1 – 1/(2m – ½)

 while r2 = �(n2) / �(n2) = 2 and r1 = �(n1) / �(n1) = 2m.

For example, let the prime triple be 331, 661 and 359,

 then �(n1) = 660 while 	(n2) = 108,570.

The problem is to compute the factors of n, one of which is common to both n1 and n2 and
the other pair of which differ only by 2 using values of �(n) that differ by a factor of
m – ½. Unlike the case for �(n) no simple algebraic formula is known to do this.

Observation:1

Given three integers 1 < a < b < c where a |b and a c, define k to be the least integer
satisfying ka > c – b then b/a is one of the k integers in the interval ((c/a) – k, (c/a)).

Theorem:

For any RSA modulus, �(n)/�(n) is the unique even integer in the interval

 (n/�(n – 2, n/�(n))

Proof:

We show that for an RSA modulus �(n) = a, �(n) = b, n = c satisfy the conditions of the
observation and that k = 2 in this case.

Since [x,y] xy for all x and y, the first condition is trivially satisfied.

If �(n) = [(p – 1), (q – 1)], p > q, divides n = pq, then p – 1 must be q and q – 1 must be 1,

 i.e., p = 3 and q = 2.

Since this is not a possible RSA modulus pair of primes, �(n) n for any RSA modulus and
the second condition of the observation is satisfied.

To show that k = 2 first note that for the example given above

 �(n1) = 4m < 6m + 1 = n – �(n1) so that k > 1.

We next show that for all n = pq

1 This is a generalization of a special case first observed by Peter Landrock.

 225

 2 �(n) > n – �(n)

 2[(p – 1), (q – 1)] > n – �(n) = n – n + p + q – 1

 [(p – 1), (q – 1)] > ½((p – 1) + (q – 1)) + ½

But for all x > y [x,y] � ½(x + y) + ½ with equality only at x = 2, y = 1; the case already
dismissed in the consideration of �(n) dividing n. Therefore k = 2 as was to be shown.

We have only to observe that since p and q are both odd primes �(n)/�(n) is necessarily an
even integer to complete the proof.

References

1. DELAURENTIS, J. M., ‘A further weakness in the common modulus protocol for the
RSA cryptoalgorithm,’ Cryptologia vol. 8 , 1984, pp. 253–259.

226

 227

Application-Private Networks

Jonathan M. Smith
University of Pennsylvania, Philadelphia, Pennsylvania, USA

Introduction

The design space for network architectures can be conveniently described as a 3-tuple of
<Application Requirements, Protocol Elements, Network Conditions>. Application
requirements can range from reliability and small message inter-arrival delay to
communications secrecy. Protocol elements include acknowledgements and error-
correcting codes, timers and a variety of cryptographic transformations. Network
conditions include delay, delay variance, loss rates, bit error rates (BERs), topology, and
available bandwidths. For any given triple, and in particular for a choice of application
and requirements, there are assumptions about operating conditions made, and protocol
elements selected to meet the application requirements under these conditions.

Two examples, the telephone network and the Internet, are useful in understanding this
architectural framework. The telephone network in its purest form is engineered [1] to
deliver a band-limited audio channel appropriate for interactive voice
telecommunications. The application requirements then, include the ability to deliver
about 3000Hz of audio, with some limits on delay and audible impairments. These
requirements have been met in the telephony architecture by using a call set-up protocol
of considerable complexity to establish a point-to-point channel for carrying a voice
stream. Link, multiplexing, switching and capacity engineering are voice-centric.

The Internet design, requiring interoperation across a variety of networks and operating
conditions, and intended to service many applications, must choose protocols that can
tolerate an extremely wide variety of network conditions. Thus, the basic IP transport
service is a minimal datagram service, response to network dynamics such as topology
changes is provided by dynamic routing and other application requirements (ordering,
reliability, etc.) are provided by end-to-end overlay protocols such as the Transmission
Control Protocol, TCP.

If we contrast the Internet architecture with the telephony network architecture, TCP/IP is
intended to be agnostic with respect to applications, and adapts to a large (but not all-
encompassing) range of network conditions with its choice of protocol elements. To
optimize the placement of protocol functions in the architecture (as opposed to for a
specific requirement) the “end-to-end” design notion pushes functions to the end-points,
eliminating redundant implementation and giving application designers the widest range
of options for use of the basic network service.

These two examples illustrate the design space and tradeoffs made amongst its
“dimensions.” Neither architecture is ideal — for example the attempt to remove many
dynamics in network conditions within the call makes the telephony architecture limited
in its ability to efficiently handle applications with dynamics very different than that of
voice. Likewise, the IP architecture’s engineering approach to dealing with many

228

applications and network conditions has forced engineering tradeoffs, such as substantial
over-provisioning (to control delay jitter) to support applications such as voice and video.

Automated optimal network engineering

An ideal network architecture, within the constraints of our design space, would have the
property that at any given time, the application requirements and network conditions
would result in the best known selection and placement of protocol elements. For
example, if network condition dynamics result in a variable BER, as in a mobile wireless
context, the protocol architecture might be adjusted to inject forward error correction
(FEC) to move TCP/IP into an operating regime where its protocol element selections
result in meeting application requirements. While limited instances of such techniques
have been demonstrated experimentally [4], the ideal system would automate [6] such
responses, under control of high-level models of application requirements.

A great deal of detail is masked by the design space abstraction presented in the
Introduction but the basic point is not to be lost: for any specified application
requirements (including preferences, weights, etc.) and network conditions (we will
discuss how information about such network conditions might be made available using
the “Knowledge Plane” proposed by David Clark [3], in the next section), one or more
equivalent selections of protocol elements can be made which closely meet the
application requirements. As this process is fundamentally driven by application
requirements, we call such networks Application-Private Networks, or APNets. The basic
design process for an APNet, for a particular application, would result in a protocol
architecture optimized for that application’s performance, with protocol elements selected
in concert with any techniques, such as time-division multiplexing, needed to limit the
range of network conditions for these selections. The resulting network architecture is
colloquially called a “stovepipe.”

An excellent example design from the space systems domain is the “Remote Agent” [6]
architecture used in NASA’s Deep Space One (DS1) mission, where many of the
challenges are similar to those of network engineering, such as multiple timescales,
unplanned events, and overall “mission goals.” In the NASA system, very high-level
models are used to drive a planning system; current conditions are fed into a system with
a limited time horizon to drive specific actions such as recovery, reconfiguration and
reprogramming in the face of system conditions such as failed sensors and actuators.

The challenge in the more general case is large-scale sharing. That is, “stovepipe” design
is economically inefficient, inhibits adaptation and reuse, and makes interoperability with
other applications, as well as sharing of facilities, difficult. Further, it makes unfounded
assumptions for the general case, where conflicting goals between users are common. The
advent of programmability in many network components, such as network processors,
software radios and extensible routers, permits the configuration of such components to
be virtualized. That is, the component behaviour can support multiple application-driven
specializations. The problem is not easy, but is conceptually within reach [6], as
demonstrated by the DS1 experiments we have discussed. An abstraction is given in
Figure 1a, where application requirements (specified, perhaps as in the next section)
induce behaviors at various logical levels in a network, from host to link.

 229

This process will take place repeatedly based on changes in network conditions. The
reconfiguration process must be safe, network knowledge must be available to both the
protocol element selection and programmable component configuration processes, and the
network knowledge must be trusted, to deal with accidental and malicious failures.

Reactive

Deliberative

Reflective
A
P
N
e
t

IP Stack

Middleware
O.S.

Switches
Links

Application
Requirements

Figure 1a: APNet Configuration
Figure 1b: Controlling APNet Dynamics

Among the interesting technical questions to be resolved are issues of security, stability
and degree of extensibility for the architecture as a whole. To touch just briefly on these
issues, the degrees of extensibility might include those possible from a machine learning
algorithm in optimization of protocol selections, they might include addition of new
protocol elements as they are discovered, or they might include wholesale changes of the
control architecture itself. Stability issues include overreactions, damping and
convergence of distributed control schemes. Prototyping and experiments can identify the
appropriate adaptation rates for various timescales, ranging from the immediate to
relatively long-term, which some researchers have categorized as reactive, deliberative
and reflective — Figure1b illustrates how these adaptation timescales might affect the
dynamics of APNet instances. Security concerns, in addition to the trust of network
condition data, include the risk of subtle Denial of Service attacks on a complex
infrastructure, data privacy, authorization for code loading, provenance of aggregated
data, and finally, the technically difficult issue of what the telephony industry politely
refers to as “feature interaction.”

Trust architecture for network knowledge

The interaction between the “Knowledge Plane” and APNets is important, and if network
knowledge is to be widely used it will be named. Much knowledge will be represented
syntactically as strings of the form <name>=<value>, e.g., “bandwidth=64K.” This
scheme has been widely adopted, in contexts from scripting languages to WWW
“cookies,” and is readily translated to locally convenient representations. An example use
of such a variable is the TERM variable used to configure terminal handling in some
operating systems in concert with a database of information about terminal capabilities. In

230

an APNet, the host operating system might, using the variables specified by the
application, configure schedulers, networking stacks, and choose network adapters.

The string representation enables use of Trust Management [2] technology such as the
KeyNote [5] system, which represents assertions as credentials with authorizers,
licensees and conditions. Public-key technologies are used to build the web of trust, and a
compliance checking process is used to test requested actions against the credentials.
Consider public keys for rmn and jms77, where jms77’s key is the licensee, rmn’s key
is the authorizer, conditions are

 $file_owner=”rmn” && $filename=”/home/rmn/[^/]*”
 && $hostname = ”ouse.cl.cam.ac.uk” -> ”true”

 and the signature is with rmn’s key. Then jms77 is authorized by rmn to access files in
rmn’s home directory on a particular host at the University of Cambridge.

This architecture provides capability-like [7] control of resources and robust delegation of
authority in spite of distributed control through its use of cryptography to authenticate and
authorize remote operations [8], and has many other desirable features. Complete
explication would more space, but among the desirable properties of credentials and a
trusted knowledge plane for advanced applications are: data provenance, support for
micro-payment systems of various flavors, authorization for network control, code-
loading, resource allocation and digital-rights management.

Conclusion

Application-Private Networks extend the range of dynamics for protocol architectures, by
dynamically selecting protocol elements to meet application requirements in the face of
dynamic conditions. Such a network architecture is not only desirable, it is technically
achievable within the next decade. A broad range of new network uses are enabled.

References

1. Engineering and operations in the Bell System (2nd ed.), AT&T Bell Laboratories,
Murray Hill, NJ, 1983 (ISBN #0-932764-04-5).

2. BLAZE, M., FEIGENBAUM, J. AND LACY, J., ‘Decentralized trust management,’ Proc.
IEEE 17th Symposium on Security and Privacy, 1996, pp. 164-173.

3. CLARK, D., “A new vision for network architecture,” private communication,
September 2002.

4. HADZIC, I.,‘Applying reconfigurable computing to reconfigurable networks ,’ Ph.D.
Thesis, Department of Electrical Engineering, University of Pennsylvania, 1999.

5. KEROMYTIS, A., ET AL., ‘The STRONGMAN architecture,’ to appear in 3rd DARPA
Information Survivability Conference and Exposition (DISCEX), April 2003.

6. MUSCETTOLA, N., NAYAK, P., PELL B. AND WILLIAMS, B. C., ‘Remote agent: to boldly
go where no AI System has gone before,” Artificial Intelligence, vol. 103, no.1-2,
pp. 5-48.

 231

7. NEEDHAM, R.M. AND WALKER, R. D. H., ‘The Cambridge CAP computer and its
protection system,’ in Proc. 6th Symposium on Operating Systems Principles, Nov.
1977, pp. 1-10.

8. NEEDHAM R.M. AND SCHROEDER, M.D., ‘Using encryption for authentication in large
networks,” Comm. ACM, vol. 21, no.12, 1978, pp. 993-999.

232

 233

Using the CORAL System to Discover Attacks on
Security Protocols

Graham Steel1, Alan Bundy1, and Ewen Denney2
1School of Informatics, University of Edinburgh

2QSS group Inc, NASA Ames Research Center

Introduction

Inductive theorem provers are frequently employed in the verification of programs,
algorithms and protocols. Programs and algorithms often contain bugs, and protocols may
be flawed, causing the proof attempt to fail. However, it can be hard to interpret a failed
proof attempt: it may be that some additional lemmas need to be proved or a
generalisation made. In this situation, a tool which can not only detect an incorrect
conjecture, but also supply a counterexample in order to allow the user to identify the bug
or flaw, is potentially very valuable. Here we describe such a tool, CORAL, based on a
previously under-exploited feature of the ‘proof by consistency’ technique. Proof by
consistency is a technique for automating inductive proofs in first-order logic. Originally
developed to prove correct theorems, this technique has the property of being refutation
complete, i.e. it is able to refute in finite time conjectures which are inconsistent with the
set of hypotheses. Recently, Comon and Nieuwenhuis have drawn together and extended
previous research to show how it may be more generally applied, [3]. CORAL is the first
full implementation of this method.

We have applied CORAL to the analysis of cryptographic security protocols. Paulson has
shown how these can be modelled inductively in higher-order logic [15]. By devising a
suitable first-order version of Paulson’s formalism, we are able to automatically refute
incorrect security conjectures and exhibit the corresponding attacks.

In the rest of the paper, we first briefly look at the background to the problem of refuting
incorrect conjectures, and the formal analysis of security protocols. Then we outline the
Comon-Nieuwenhuis method. We describe the operation of CORAL, and then show how
it can be applied to the problem of protocol analysis. Finally, we describe some possible
further work, including some other possible applications for CORAL, and draw some
conclusions.

Background

The refutation of incorrect inductive conjectures has been studied before, e.g. by Protzen
[16], Reif [17], and Ahrendt [1]. Ahrendt’s method works by constructing a set of clauses
to send to a model generation prover, and is restricted to free datatypes. Protzen’s
technique progressively instantiates terms in the formula to be checked using the
recursive definitions of the function symbols involved. It finds many small
counterexamples. Rief’s method instantiates the formula with constructor terms, and uses
simplifier rules in the prover KIV to evaluate truth or falsehood. His method is a marked
improvement on Protzen’s, but is too naïve for a situation like protocol checking, where it
is not obvious what combination of constructor terms constitutes a possible exchange of
messages.

234

Proof by consistency
Proof by consistency was originally conceived by Musser [13], as a method for proving
inductive theorems by using a modified Knuth-Bendix completion procedure. It was
developed by various authors, [7, 9, 5], for the next fifteen years (see [19] for the story),
but interest waned as it seemed too hard to scale the technique up to proving larger
conjectures. However, later versions of the technique did have the property of being
refutation complete, that is able to spot false conjectures in finite time.

The Comon-Nieuwenhuis method
Comon and Nieuwenhuis [3], have shown that the previous techniques for proof by
consistency can be generalised to the production of a first-order axiomatisation A of the
minimal Herbrand model such that A� E� C is consistent if and only if C is an inductive
consequence of E. With A satisfying the properties they define as a Normal I-
Axiomatisation, inductive proofs can be reduced to first-order consistency problems and
so can be solved by any saturation based theorem prover. There is not room here to give a
full formal account of the theory, but informally, a proof attempt involves two parts: in
one, we pursue a fair induction derivation. This is a restricted kind of saturation, where
we need only consider overlaps between axioms and conjectures. In the second part, every
clause in the induction derivation is checked for consistency against the I-Axiomatisation.
If any consistency check fails, then the conjecture is incorrect. If they all succeed, and the
induction derivation procedure terminates, the theorem is proved. Comon and
Nieuwenhuis have shown refutation completeness for this system, i.e. any incorrect
conjecture will be refuted in finite time, even if the search for an induction derivation is
non-terminating.

Cryptographic security protocols
Cryptographic protocols are used in distributed systems to allow agents to communicate
securely. They were first proposed by Needham and Schroeder [14]. Assumed to be
present in the system is a spy, who can see all the traffic in the network and may send
malicious messages in order to try to impersonate users and gain access to secrets.

Although security protocols are usually quite short, typically 2-5 messages, they often
have subtle flaws in them that may not be discovered for many years. Researchers have
applied various formal methods techniques to the problem, to try to find attacks on faulty
protocols and to prove correct protocols secure. These approaches include belief logics
such as the so-called BAN logic [2], state- machines [4, 10], model-checking [11], and
inductive theorem proving [15]. Each approach has its advantages and disadvantages. For
example, the BAN logic is attractively simple, and has found some protocol flaws, in
other cases found flawed protocols correct. The model checking approach can find flaws
very quickly, but can only be applied to finite (and typically very small) instances of the
protocol. This means that if no attack is found, there may still be an attack upon a larger
instance. Modern state machine approaches [12, 18], can also find and exhibit attacks
quickly, but require the user to choose and prove lemmas in order to reduce the problem
to a tractable finite search space. The inductive method deals directly with the infinite
state problem, and assumes an arbitrary number of protocol participants, but proofs are
tricky and require days or weeks of expert effort. If a proof breaks down, there have
previously been no automated facilities for the detection of an attack.

 235

All generated clauses
(via sockets)

Problem file I-Axiomatization file

Inputs:
I-Axiomatization file

Problem File

Standard
Spass

Induction derivation

Spass

(Possibly several)

Refutation control

client

File for each
Spawned Spass

Figure 1: CORAL system operation

Implementation

Figure 1 illustrates the operation of CORAL, built on the SPASS theorem prover [21].
The induction derivation, using the Comon-Nieuwenhuis method as described above, is
pursued by the modified SPASS prover on the right of the diagram. As each clause is
derived, it is passed to the refutation control script on the left, which launches a standard
SPASS prover to do the check against the I-Axiomatisation. The parallel architecture
allows us to obtain a refutation in cases where the induction derivation does not terminate,
as well as allowing us to split the process across multiple machines in the case of a large
problem. Experiments with the system show good performance on a variety of incorrect
conjectures from the literature and our own examples [20].

Application to cryptographic security protocols

We now describe the application of CORAL to the cryptographic security protocol
problem. When modelling protocols formally, much attention is paid to the modelling of
the abilities of the network intruder or spy. However, an additional consideration is the
abilities of the participants. Techniques assuming a finite model, with typically two agents
playing distinct roles, often rule out the possibility of discovering a certain kind of parallel
session attack, in which one participant plays both roles in the protocol. The use of an
inductive model allows us to discover these kinds of attacks. An inductive model also
allows us to consider protocols with more than two participants, e.g. conference key
protocols.

236

Paulson’s inductive approach has been used to verify properties of several protocols [15].
Protocols are formalised in typed higher-order logic as the set of all possible traces.
Properties of the security protocol can be proved by induction on traces. However, as
Paulson observed, a failed proof state can be difficult to interpret. Even an expert user will
be unsure as to whether it is the proof attempt or the conjecture which is at fault. By
applying our counterexample finder to these problems, we can automatically detect and
present attacks when they exist.

Paulson’s formalism is in higher-order logic. However, no ‘fundamentally’ higher-order
concepts are used - in particular there is no unification of functional objects. Objects have
types, and sets and lists are used. All this can be modelled in first-order logic. The
security protocol problem has been modelled in first-order logic before, e.g. by
Weidenbach [22]. He used a two agent model with just one available nonce (a nonce is a
unique identifying number) and key, and so could not detect the kind of parallel session
attacks described above. Like Paulson’s, our model allows an indeterminate and
unbounded number of agents to participate, playing either role, and using an arbitrary
number of fresh nonces and keys. Details of the model are in our earlier paper [20], but
we will highlight now some recent developments.

We have modified our formalism slightly to make attacks easier to find. The idea is to
prune out branches of the search space that cannot lead to an attack, or branches which
represent a less succinct expression of a state already reached. For example, we merged
together the formulae allowing the spy to send a fake message with those for the standard
protocol, so that the spy can only send messages which look like a part of the real
protocol. Sending anything else cannot fool any honest participants, since they only
respond to correctly formed messages. We also have a reduction rule which prunes out
clauses which represent states where the spy has sent two messages in a row. The spy
can’t gain anything from doing this, so by chopping off these branches we make the
search problem more tractable.

With these improvements CORAL has rediscovered a number of known attacks including
the well known ones on the Needham-Schroeder public key and Neuman-Stubblebine
shared key protocols. It can also find the attack on the Clark-Jacob protocol designed to
illustrate parallel session attacks, an attack which requires an honest agent to play the role
of both the initiator and the responder. Rather than work through a large corpus of known
examples, we intend to exploit the generality of our approach to look at some new
problems (see below).

Further work

Future work will include testing the CORAL system on group key protocols. The ability
of the system to handle protocols involving an indeterminate and unbounded number of
participants in a single round gives it an advantage over many similar systems.
Application level Bluetooth protocols look promising for this work.

There has been a proliferation of protocol analysis tools in recent years, and in the longer
term we don’t intend to try and compete with others for speed of attack finding or by
analysing an enormous corpus of protocols. Rather we intend to try to exploit the
flexibility of our system as a general tool for inductive counterexample finding, and apply
it to some other security problems. One idea is to use the system to model security

 237

problems at a higher level. We could model a company’s computer network as a system
of local networks and servers, firewalls etc. all with formally defined behaviour, and
examine how interactions in the presence of intruders might lead to exploitable
vulnerabilities. To deal with larger problems like this, we might need to enhance SPASS
to exploit domain knowledge a little more. A user defined strategy that can vary as the
proof proceeds, and a critics mechanism [8], to suggest pruning lemmas are two possible
ideas we intend to explore.

As CORAL is built on SPASS, a theorem prover capable of equational reasoning, we
should be able to reason about some simple algebraic properties of the cryptosystems
underlying protocols, such as Diffie-Helman type operations. This could allow us to carry
out a more rigorous test of a protocol than can be achieved when encryption is treated as a
‘black box’ operation.

In theory, CORAL can also show security properties of protocols to be correct when there
are no attacks to be found. However, to make this work in practice would require some
considerable work. The formulae to be proved are significantly larger than the kinds of
examples that have been proved by proof by consistency in the past. The critics
mechanism for suggesting lemmas could help with this.

6 Conclusions

We have presented CORAL, our system for refuting incorrect inductive conjectures, and
shown how it can be applied to the problem of finding attacks on faulty security
protocols. Our formalism is similar to Paulson’s, which allows us to deal directly with
protocols involving an arbitrary number of participants and nonces, and with principals
playing multiple roles. CORAL has discovered a number of known attacks and we now
intend to use it to try to find attacks on some group key protocols. In the longer term, we
hope to apply the system to other related security problems, and exploit its ability to do
equational reasoning in order to analyse some crytpoanalytic properties of protocols.

This paper is a shortened and updated version of [20].

 References

1. AHRENDT, W., ‘Deductive search for errors in free data type specifications using
model generation.’ In CADE-18, 18th International Conference on Automated
Deduction, 2002.

2. BURROWS, M. ABADI, M. AND NEEDHAM, R., ‘A logic of authentication,’ ACM Trans.
on Computer Systems, vol. 8, no. 1, pp. 18-36, February 1990.

3. COMON H. AND NIEUWENHUIS, R., ‘Induction = I-Axiomatization + First-Order
Consistency,’ Information and Computation vol. 159, no. 1-2, pp. 151-186, May/June
2000.

4. DOLEV D. AND YAO, A., ‘On the security of public key protocols,’ IEEE Trans. in
Information Theory, vol. 2, no. 29, pp. 198-208, March 1983.

5. GANZINGER H.AND STUBER, J., Inductive theorem proving by consistency for first-
order clauses, pages 441-462. Teubner Verlag, 1992.

238

6. H. GANZINGER, H., ED., ‘Automated deduction,’ - CADE-16, 16th International
Conference on Automated Deduction, Trento, Italy, July 1999, Lecture notes in
Artificial Intelligence 1632, Springer-Verlag.

7. HUET G. AND HULLOT, J., ‘Proofs by induction in equational theories with
constructors’. Journal of the Association for Computing Machinery, vol. 25, no. 2,
1982.

8. IRELAND, A., ‘Productive use of failure in inductive proof,’ Journal of Automated
Reasoning, vol. 16, no. 1-2, pp. 79-111, 1996.

9. JOUANNAUD .J-P. AND KOUNALIS, E., ‘Proof by induction in equational theories
without constructors,’ Information and Computation, vol. 82, no. 1, 1989.

10. KEMMERER, R., MEADOWS, C. AND X MILLEN, J., ‘Three systems for cryptographic
protocol analysis,’ Journal of Cryptology, vol. 7, pp. 79-130, 1994.

11. LOWE, G., ‘Breaking and fixing the Needham Schroeder public-key protocol using
FDR,’ In Proceedings of TACAS, Lecture Notes in Computer Science 1055,
pp. 147-166. Springer Verlag, 1996.

12. MEADOWS, C., ‘The NRL protocol analyzer: An overview,’ Journal of Logic
Programming, vol. 26, no. 2, pp. 113-131, 1996.

13. MUSSER, D., ‘On proving inductive properties of abstract data types,’. Proc. 7th ACM
Symp. on Principles of Programming Languages, pp. 154-162. ACM, 1980.

14. NEEDHAM R.M. AND SCHROEDER, ‘Using encryption for authentication in large
networks of computers,’ Comm. ACM, vol. 21, no. 12, pp. 993-999, December 1978.

15. PAULSON, L.C., ‘The inductive approach to verifying cryptographic protocols,’
Journal of Computer Security, vol. 6, pp. 85-128, 1998.

16. PROTZEN, M., ‘Disproving conjectures,’ In D. Kapur, editor, 11th Conference on
Automated Deduction, pp. 340-354, Saratoga Springs, NY, USA, June 1992.
Published as Springer Lecture Notes in Artificial Intelligence, No 607.

17. W. REIF, G. SCHELLHORN, AND A. THUMS, ‘Flaw detection in formal specifications,’
In IJCAR'01, pp. 642-657, 2001.

18. SONG, D., ‘Athena: A new efficient automatic checker for security protocol analysis,’
Proceedings of the 12th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1999.

19. STEEL, G., ‘Proof by consistency: A literature survey,’
 http://homepages.inf.ed.ac.uk/s9808756/papers/lit-survey.ps.gz, March 1999.

20. STEEL, G., BUNDY, A. AND DENNEY, E., ‘Finding counterexamples to inductive
conjectures and discovering security protocol attacks,’ In Proceedings of the
Foundations of Computer Security Workshop, 2002. Appeared in Proceedings of The
Verify'02 Workshop as well. Also available as Informatics Research Report EDI-INF-
RR-0141.

21. WEIDENBACH, C., ET AL, ‘System description: SPASS version 1.0.0,’ In Ganzinger [6],
pp. 378-382.

22. WEIDENBACH, C., ‘Towards an automatic analysis of security protocols in first-order
logic,’ In Ganzinger [6], pp. 314-328.

 239

On the Role of Binding and Rate Adaptation in Packet
Networks

David Tennenhouse
Intel Research, Santa Clara, CA, USA

Introduction

An ongoing debate within the network research community concerns the degree to which
packet switching especially that which is IP-based, can and should subsume other types of
networks, e.g., those based on circuit switching.

In this short paper, I discuss 4 aspects of this debate that have long been of concern to me
as a network researcher:

• The tendency of network architects to focus on the “core” of the network, which is
its least interesting architectural component.

• The common misconception that statistical multiplexing is the fundamental
advantage of packet switching.

• The proposal that late binding and rate adaption are the essential architectural
advantages of packet switching.

• The observation that it is the properties of key interfaces, rather than the network
internals, that are most deserving of our attention.

While much of what follows will be very familiar to software and systems researchers,
these concepts do not seem to be as well accepted within the networking community.

The “core” is architecturally irrelevant

Much of the recent discussion has been focused on the degree to which IP, and packet
switching in general, will directly support the underlying transport infrastructure,
sometimes referred to as the “core,” or “cross-connect,” of national scale multi-service
networks. While some would argue that it can and should, others conclude that [1] “the
core of the network will use optical circuit switching as a platform for multiple services.”

I find the question of packet vs. circuit operation of the underlying cross-connect rather
tedious because:

• The topology of the physical media comprising the core is relatively simple and
rigid. For example, in the United States, the national scale “core” has on the order
of 100’s of nodes.

• The statistical properties of the highly aggregated, or “groomed,” cross-connect
channels will be relatively predictable and slow to evolve. Since the time constants
involved are quite lengthy, relative to the round-trip times within the core, the
choice of packet vs. circuit cross-connect is a moot point.

240

But isn’t statistical multiplexing the essence of packet
switching?

The focus on the behavior of the core suggests that there is a deep misunderstanding as to
the essential merits of packet networks in general, and the Internet in particular. Molinero-
Fernandez et al [1] – and many others in the network research community – ground their
reasoning in the premise that:

“From the early days of computer networking, it has been well known that packet
switching makes efficient use of scarce link bandwidth. With packet switching,
statistical multiplexing allows link bandwidth to be shared…”

While the above position is widely held, I find the frequent and very loose generality with
which it is applied disconcerting. In particular, the importance and relationship of the
words “scarce” and “statistical” are almost always disregarded – as are the time constants
involved. Both circuit and packet switched networks take advantage of statistical
multiplexing, with the only real distinction being the time constants.1 Per-packet statistical
multiplexing is of marginal utility if the traffic is steady over long periods and/or the
bandwidth is continuously exhausted. The same is true at the other extreme, i.e., when
bandwidth is not “scarce” as a consequence of over-provisioning.

Packet multiplexing is beneficial within a limited range of statistical patterns and
scarcities, typically observed near the edge of the network. It can be highly advantageous
at “early multiplexing” points, where modest numbers of relatively dynamic flows are
multiplexed into larger aggregates. At these points the bandwidth available to the
aggregate may well be “scarce” relative to the statistical properties of the individual
tributaries.

At switching points deep within the core of a national scale multi-service infrastructure
the traffic on each channel is derived from the aggregation of vast numbers of flows.
These highly aggregated cross-connect channels will be statistically “smoother” and this
has a huge impact on the nature of bandwidth scarcities at the switching points and the
potential of any architecture to respond to them.

• Many types of core scarcities can be anticipated months in advance and dealt with
through provisioning.

• Large scale unanticipated scarcities, such as those arising from simultaneous
failures and/or coordinated surges in demand, will force any architecture into a
“degradation” mode, whose desired behavior will be more a matter of public
policy than architectural finesse.

• Most intermittent scarcities falling between the above extremes will have
sufficiently long time constants that the distinction between circuit and packet
switching may not be relevant. Although some have suggested that IP traffic might
be clumped or correlated, recent measurements [2] suggest that channels within

1 Circuit switched telephony has long relied on statistical properties of call attempts, call duration, etc.
Interestingly enough, the signaling system used to setup calls is, itself, a packet switched network.

 241

the core experience relatively small and predictable delays over the time constants
of interest.

Dynamic binding and rate adaption: the real essence of packet
switching

So what then is the architectural advantage of packet switching? While I concede the
importance of statistical multiplexing at moderate aggregation levels, I have never
believed it to be the architectural imperative.2

I suggest that the real “magic” of packet switching, especially with respect to the
operation of multi-service networks, lies in two properties: late binding and rate
adaptation.

Binding. Packet-based interfaces multiplex a very large number of logical channels onto a
“bearer” channel. In the case of IP, there is a separate logical channel for each unique
{source address, source port, destination address, destination port, protocol type} tuple.3
On any given link, this IP channel space is very sparsely populated, i.e. the vast majority
of the logical channels are unused. The bindings for those that are used is highly dynamic:
for the most part, the application(s) – and therefore the properties of the traffic –
associated with a logical channel are determined at run time; and the bindings between a
logical channel and the underlying capacity of the bearer channel are determined on a
packet by packet basis. The latter aspect by itself might be construed as “statistical
multiplexing.” However, the combination of the two degrees of binding freedom, within
the context of a vast logical channel space, is a broader architectural feature that allows
IP-based interfaces to function as a “universal solvent”4 enabling multi-service interfaces.

Rate adaption. This property of packet switching, typically realized through the use of
elastic buffers of some sort, allows applications at an endpoint, whose network point of
attachment operates at one rate, to communicate with peers whose points of attachment
may operate at arbitrarily different rates – many orders of magnitude difference in the
case of a modem-attached client vs. a data center server. Rate adaptation, over an
enormous dynamic range, is one of the most significant advantages of packet switching
and its key “trump card” with respect to both multi-service networking and the Internet’s
ability to absorb rapid innovation, e.g., by ensuring that faster nodes and links seamlessly
inter-operate with the embedded base.

Rate adaptation is particularly advantageous in closed loop scenarios where the traffic
patterns of individual packet flows can be dynamically shaped in response to changing
network and endpoint conditions. In the case of TCP/IP, rate adaption is enhanced
through the combination of lower layer queues (the elastic buffers) and the TCP layer
end-to-end control mechanism, which ensures that the long term flow of packets is
matched to the capacity of the endpoints and all of the intervening queues along the path.

2 On this specific issue, I must admit to having reached an impasse with many distinguished experts,
most notably my friend and mentor Robert Kahn.

3 As evidenced by NAT, these tuples are only unique at the interface points. Also, there is a slight
simplification here, owing to the semantics associated with multicast addresses and some protocol
types.

4 I am indebted to my colleague Vint Cerf for this wonderful metaphor.

242

In the simple case of a human user accessing data via a web browser, TCP feedback
controls the flow of data during each transaction, and an outer feedback loop, closed by
the human user, governs the overall rate of request submission, i.e., as response time
deteriorates, the rate at which new requests are submitted to the system declines.

Unfortunately, some types of “real-time” traffic, especially legacy sample streams derived
from the physical world around us5, are not readily amenable to feedback-based shaping.
Nonetheless, these sources of traffic still benefit from the architectural advantages of rate
adaptation. Furthermore, the highly predictable statistical properties of the traffic in
question (which are determined by the sampling and compression mechanisms used) may
amplify the task of dimensioning the packet network appropriately.

It’s the interfaces that count

Returning to the underlying question, the degree to which IP can be the basis of national
scale multi-service networks, one must first identify the key points at which this question
should be considered, i.e., if the “core” of a future multi-service infrastructure isn’t of
architectural interest, then what is? An important step towards answering this question
may be to view IP not so much as the basis for a homogeneous soup-to-nuts [6]
infrastructure, but as the common protocol “stack” used at a few key classes of
interoperability points. Ethernet presents a useful, though limited, analogy here. At one
stage, the term Ethernet referred to the design of an entire LAN. Today, what really
matters is a few core architectural concepts and their embodiment at the interoperability
points. The fact that many different technologies, including wireless, are now used to
realize these concepts is of little importance. All that matters at the individual endpoints is
that the NIC driver presents an interface that approximates that of the original standard.

Given this perspective, there would appear to be 3 distinct classes of IP interfaces to be
considered:

• The interfaces to individual client nodes and the “early” multiplexing points at which
client traffic is multiplexed onto larger aggregates.

• Interfaces (at or near edges) that are very highly multiplexed, i.e., that support large
numbers of active logical channels. In contrast to its initial implementation, today’s
Internet is highly asymmetric with a small fraction of the nodes (e.g., Akamai sites,
MSN, Google, etc.) terminating a large fraction of the flows.

• Interfaces that bridge peer Internet service providers. Although the initial architecture
envisaged a “catanet,” formed through the concatenation of independently operated
networks, today’s Internet supports a significant degree of service provider diversity,
i.e., core networks operating in parallel with each other.

In a multi-service environment is it feasible for all three types of interfaces to be IP-
based? Independent of whether or not IP is the best way to structure those interfaces, do
we see any fundamental limits to the “absorption” of new types of traffic at those
interface points? If there are merely impediments (vs. fundamental limits), then are they

5 Which can not easily be “slowed down.”
6 More precisely, edge through core.

 243

of sufficient economic importance to fund the emergence of an alternative interoperability
stack in the near future?

Although IP may have some unsightly warts, I am hard pressed to find any of them to be
fundamental or even so serious as to create a high enough barrier to offset the power of
incremental refinement fuelled by the investment engine driving IP. The continued
growth of Voice over IP, especially within increasingly cost-conscious enterprises, is but
one example of that engine at work.

The interesting question then may not be whether or not IP can continue to absorb new
classes of traffic, but to think about how features “around” these three classes of
interfaces, and related aspects of the protocol suite, might evolve and/or become
increasingly specialized to improve the ability of IP-based networks to absorb new types
of services:

• Can the ‘early multiplexing’ points of the Internet be engineered and/or mutate
sufficiently to absorb new types of traffic/media at the edges of the network? My best
guess is that it can and, for the most economically relevant traffic, it will. As an
alternative to some of the complex QoS schemes under consideration today, one could
easily imagine all of the traffic at these interfaces falling into one of two distinct
classes, each of whose handling could be independently provisioned and routed:
traffic that is amenable to shaping through feedback; and traffic whose statistical
properties are highly predictable.7

• What opportunities for specialization exist at the heavily multiplexed interfaces? This
is an especially tantalizing question given that there may be a considerable degree of
homogeneity with respect to the types of services carried on the logical channels of
these interfaces.

• Are there obvious specializations that would simplify the implementation of peering
interfaces, which are very high volume ingress/egress points? What mechanisms can
be introduced to support cross-provider implementation of policy-based requirements,
such as the prioritization of traffic during civil emergencies? Can virtual circuit
techniques, such as MPLS, simplify the processing at these interfaces and/or improve
their robustness to failures, e.g., by making it easier to simultaneously re-route large
aggregates? Notwithstanding the feasibility of retaining an IP-based approach, might
the relatively small numbers and high value of these interfaces be sufficient to support
enhanced architectural diversity at these points?

Summary

In this note I have attempted to identify some of the key architectural advantages of
packet-based network interfaces. Could we have arrived at a slightly better architectural
solution with a different packet-based protocol suite? Probably. Does it matter? I think
not. Does that mean IP is the end of the road for network research? Of course not!

7 Additional distinctions may be useful within the endpoints, e.g., to distinguish foreground and
background activities.

244

References

[1] MOLINERO-FENANDEZ, P., MCKEOWN, N. AND ZHANG. H., “Is IP going to take over
the world (of communications)?” HotNets ’02, Princeton NJ, October 2002.

[2] PAPAGIANNAKI, K., MOON, S., FRALEIGH, C., THIRAN, P., TOBAGI, F. AND C. DIOT,
‘Analysis of measured single-hop from an operational backbone network,’ IEEE
Infocom, New York, NY, June 2002.

 245

Technologies for Portable Computing: Outlook and
Limitations

Chuck Thacker
Microsoft Corporation, Redmond, Washington, USA

Introduction

The last few years have produced a proliferation of new portable computing devices. We
now see a wide variety of personal digital assistants, digital cameras, digital media
players, tablet PCs, and wireless phones. Many of the technologies employed in these
devices have improved as predicted by Moore’s Law1, but some are more mature and
improve much more slowly. In this paper, I will examine the current state of the art in
power and cooling technology, processors, displays, nonvolatile storage and wireless
networking in an attempt to understand the possible directions for portable devices over
the next few years. I also discuss the characteristics of several devices that have
employed leading-edge technologies.

Power and cooling

Supplying the necessary power and removing the resulting heat has been the largest
problem in portable device design. Currently, all portable computing devices are operated
from batteries, with the vast majority employing rechargeable cells. Over the last decade,
battery technology has improved somewhat, from the early nickel-cadmium cells to nickel
metal hydride to lithium ion, but the energy density available from a modern lithium ion
battery is only about 120 watt-hours per kilogram, and this has not improved significantly
in the past three years. For low duty-cycle devices such as mobile phones or PDAs,
which dissipate only a few milliwatts when idle, lithium-ion batteries provide several days
of use between charges at an acceptable weight. For more demanding applications such
as laptops, battery life is typically much less than a working day, which requires that the
user carry a charger or extra batteries.

The primary technology that may improve this situation is fuel cells. Hydrogen fuel cells
have been used in military and space applications for decades, but these devices are
complex, expensive, and operate at high temperatures. Two new variants, the proton
exchange membrane (PEM) [1] and direct liquid methanol (DLM) cells use methanol as
the fuel, and operate at room temperature. These devices provide energy densities
somewhat higher than lithium-ion cells, and can be refueled from cartridges. A number of
research laboratories and companies are exploring this technology, but products are likely
to be two to five years away.

Practical cooling alternatives include passive techniques that distribute the heat generated
by the electronics to the device’s case, and active cooling using fans. The former solution

1 Gordon Moore, Intel chairman, said in 1965 that transistor densities would double every 18 months for
the foreseeable future. Thirty-five years later, this “law” still holds, and is expected to do so until the
end of the decade.

246

is quite limited in the amount of heat that can be removed successfully — the Microsoft
tablet PC, for example, dissipates a peak power of about 14 watts and even though the
heat is spread fairly uniformly over the rear surface of the device, the case can become
uncomfortably warm. Fortunately, peak performance is rarely needed by today’s
applications2, so this situation is infrequently encountered.

The use of fans is typical in both the largest and smallest portable computers. Today’s
large laptops make use of desktop-class x86 CPUs, which must be actively cooled.
Although the smaller devices make use of lower-powered processors, their radically-
reduced surface area makes passive cooling impractical.

Processors

While “traditional” laptop computers have chosen to employ desktop-class x86 processors
in spite of their high power and stringent cooling requirements, both recent “thin and
light” laptops, and smaller devices with new form factors have opted for lower powered
but slower processors.

For devices that run Windows XP, x86 compatibility is mandatory. Until recently, the
primary sources for low power x86 CPUs were Transmeta and National Semiconductor.
Transmeta uses a combination of interpretation and dynamic compilation which they call
“code morphing” to run x86 programs on a VLIW core that is considerably simpler than a
typical x86. The results of the compilation are held in a region of the system’s RAM that
the CPU reserves to itself. While this technique works well for applications (e.g., audio
and video codecs) that contain loops, starting an application involves interpreting the
code, which makes the CPU appear slower than it actually is. Transmeta processors draw
between 1.5 and 8 watts, depending on load.

National Semiconductor has approached the low-power market with its “Geode” family of
x86 processors. The Geode GX2 operates between 200 and 333 MHz, and dissipates a
maximum of 5 watts, with “typical” power between 0.8 and 1.4 watts. Intel has recently
responded to competitive threats with its “Banias” processor, but details of its power
consumption are still sketchy.

For devices that do not need to run Windows XP, several energy-efficient options are
available. Intel’s XScale processor (PXA 250), based on the DEC StrongArm, operates at
400 MHz while dissipating 750 mW. The AMD Alchemy Au1100, a MIPS architecture
machine, operates at 500 MHz and dissipates 500 mW. These devices are considerably
more energy-efficient than an x86 of comparable performance due to their simpler
structure and an emphasis on efficiency rather than maximum clock rate.

Dynamic voltage and frequency scaling have also proven valuable in reducing CPU
power. These schemes3 reduce the clock rate and the supply voltage during periods of
light computational load. Since dynamic device power is linear in clock frequency and

2 Although the use of speech recognition and other energy-intensive user interface techniques may
worsen this situation in the future.

3 Called “Speed step” by Intel, and “Long run” by Transmeta.

 247

quadratic in supply voltage, small changes can have dramatic effects (~3x) on device
power.

One problem that may limit the achievable power reduction in future processors is
leakage current. As device sizes become smaller and supply voltages decrease, static
leakage current becomes an increasing fraction of the device current. A substantial
amount of architectural research is underway to mitigate this problem by gating clocks
and powering down entire functional units when they are not needed.

Displays

Today, liquid crystals are the only choice for portable displays. LCDs have undergone
intense development to reduce their cost and increase their size, but there has been little
progress on increasing the robustness and brightness of LCD panels. Display breakage is
still an almost inevitable result of dropping a laptop, and few laptops can be used outdoors
due to their low brightness. Some pocket PCs have employed transflective displays with
front- rather than back-lights to make outdoor use possible, but these devices suffer from
extremely poor contrast ratios, which makes reading quite difficult.

The display subsystem and its backlight consume about half the power drawn by a
modern “thin and light” laptop, or about 5 watts. This power is to a large extent
proportional to the area of the display, so it is much less in smaller devices.

From a battery life perspective, an unfortunate trend is that graphical user interfaces are
making increasing use of 3-D effects and animation. This increases the power consumed
by the system’s graphics controller substantially, similar to the way in which speech
recognition and other real-time tasks increase the power demands on the CPU.

The most likely replacement for LCDs is a display based on organic light-emitting diodes
(OLEDs). The necessary organic polymers have existed for several years, but there has
been relatively slow progress in turning these materials into commercially viable displays.
The leading manufacturers of these materials are Cambridge Display Technologies [2]
(CDT) and Kodak [3]. The latter has recently entered a partnership with Sanyo to exploit
their materials.

OLED panels are likely to be brighter and have a larger viewing angle than LEDs for a
given power level, and can potentially be much more robust, since they do not need to be
transparent and can be fabricated on a metal substrate. Unfortunately, the electronics
associated with each pixel are more complex than in an LCD. In LCDs, a single transistor
serves to set the voltage of each pixel, which acts as a capacitor. This is similar to the
arrangement in a single-transistor DRAM cell. In an OLED, each pixel must include
circuitry to provide a varying level of current through each diode during the entire frame
time. This requires at least two transistors — one to do the multiplexing, and one to do
voltage-to-current conversion. These devices, as in a thin-film-transistor LCD, must be
fabricated on a glass substrate, and doing it at acceptable yields has eluded manufacturers.
Although CDT initially (1998) predicted commercial OLED panels in 2001, most
manufacturers are now indicating that the devices will not be competitive with LCDs until
2005.

248

Nonvolatile storage

Disk storage has exceeded Moore’s law in density increase for the past few years. The
current state-of-the-art disk for portable devices is a Toshiba 1.8” drive that is the size of a
credit card, has a capacity of 20 Gbytes, an areal density of 22.4 Gbits/in2, and consumes
only 1.4 watts. These devices are intriguing, as they enable portable devices that contain
all of the digital state for a single user. Allowing users to make their state available on
any of the computers with which they normally interact might be an attractive alternative
to the complex synchronization and copying that is the norm today.

Ultimately, experts believe that magnetic disk density will soon be limited by the “super
paramagnetic limit” at which individual domains can be switched by thermal noise.
Current estimates for this density are on the order of 100 Gbits/in2, which corresponds to
80 x 80 nanometer bits.

A number of companies are exploring the use of microelectronic mechanical systems
(MEMS) to overcome magnetic density limitations. Researchers at IBM [4], for example,
have demonstrated their ability to record and read data at a terabyte per square inch, using
a heated atomic force microscopy (AFM) probe to melt nanometer-scale pits in a polymer
medium. Hewlett-Packard and a small startup company called Nanochip [5] are both
building similar devices.

All of these devices are similar in that they move either the probes or the medium in X
and Y using actuators that are fabricated using normal semiconductor processing. IBM
uses electromagnetic actuators, HP uses electrostatic motors, and Nanochip uses a
technique that exploits the thermal expansion of heated wires. Because the devices have a
large number of probes, the required motion is small — on the order of 100 µm. The
medium (in the IBM device) or the probe array (in the Nanochip device) is supported by
springs that are fabricated at the same time as the actuators. The Nanochip device is
shown in Figures 1 and 2. It consists of sixteen independently moveable sub-arrays, each
with sixteen probes. The IBM device has a low read/write bandwidth (~20 Kbits/second
per probe), so it must operate hundreds of probes in parallel to provide bandwidth
competitive to that of a magnetic disk. This led to their choice of a moving medium and
stationary probes. The large number of simultaneously-operating probes also requires the
fabrication of on-chip multiplexing electronics. The Nanochip device, which uses a
different recording medium that supports higher bandwidth, does not require on-chip
active devices.

While MEMS devices can be built in fabrication facilities that are well behind the state of
the art, they are still not expected to be competitive in per-bit cost with magnetic disks.
The primary competitor that most MEMS manufacturers hope to displace initially is flash
ROM. Flash ROM cells are intrinsically smaller than DRAM cells, and since less
stringent testing is required4, the devices should be cheaper than DRAM, which is now
priced at about twenty cents per megabyte. To date, these price levels have not been
achieved, perhaps because of lower volumes and lack of sufficient fabrication capacity.

4 Flash cells may be erased and rewritten a limited number of times, so error correction is needed for
reliability. Manufacturers exploit this by shipping parts with a small fraction of bad bits.

 249

Figure 1. One of the sixteen Nanochip sub-arrays, showing four actuators and sixteen cantilevered

probes.

Figure 2: The Nanochip device in schematic form

Ultimately, MEMS storage devices might replace disks in applications that do not require
huge capacity, or in applications in which their low power and complete silence are
important. The companies developing MEMS storage anticipate having products
available in from two to four years.

Substrate

Well

Wire Bundles
(x4)

Cantilevers
+ Tips (x16)

Platform

Thermal
Actuators

Pull Rod
Bimorph Elements
(w/ redundancy)

50 µ

50 µ

50 µ 50
µ

250

Networking

For portable devices, there is an expectation (largely fueled by the popular press) that
wireless networking will improve at a pace similar to the improvement in CPU
performance. This seems implausible for several reasons. First, increased transistor
density in radios doesn’t translate into higher performance as it does in a CPU, but only
into reduced cost. Secondly, the available spectrum is finite, and increased per-
connection bandwidth uses more of it. Spectrum use is regulated by local law and
international treaty, and current users have resisted attempts to displace their services.

Improvements in coding have improved the bandwidth efficiency of radio channels, but
these improvements are rapidly approaching their limit. One proposal to mitigate these
limits is to use spectrum at ~50 GHz. These frequencies are strongly absorbed by
atmospheric oxygen, so very small cells will be needed for ubiquitous coverage.
Providing the necessary wired infrastructure will be costly, and it is unclear that users will
be willing to pay for it.

For a given cell size, there is also a direct trade-off between power and bandwidth.
Current 802.11b radio cards draw approximately 1 watt. Better protocols and better
designs can improve this a bit, and the superior modulation used by 802.11g promises a
fourfold bandwidth improvement, but these improvements require a smaller cell size.

Example systems

Several companies are developing systems designed primarily for small size and energy
efficiency. Figures 3 and 4 show two recent examples, the Tiquit Eighty-Three [6], and a
wallet-sized system from OQO Corporation [7]. Both are full Windows XP machines,
with 256 MB of DRAM, 20 GByte hard disks, and color VGA (480 x 640) displays. The
Tiqit device uses a 300 MHz National Geode processor, and is fanless. The somewhat
smaller OQO device uses a 1GHz Transmeta CPU, and requires a fan.

A number of other devices that combine the functions of a PDA and mobile phone are
also appearing in the market. It will be interesting to see whether these devices become
popular, since the user interfaces needed for phones and PDAs are quite different.
Although carrying a single device is appealing, finding a single form factor that can serve
both purposes might be difficult.

Conclusions

The goal of providing a portable, truly personal computer that can provide all the
computing, communication, and storage needs of a single user has not yet been achieved,
although it seems clear that the underlying technologies needed are very nearly adequate
today.

The existence of such devices will pose new challenges for software developers: How
can we build new user interfaces that provide acceptable levels of interaction with a very
small display? How can we provide an easy-to-use user authentication system that
protects the user’s data if the device is lost or stolen, or which makes a stolen device
unusable? How should these devices interact with the larger world of computing of
which they are only a small part?

 251

Figure 3: The Tiqit Eighty Three Computer.
This device provides a keyboard, a joystick and a stylus for user interaction.

Figure 4: The OQO Ultra Portable Computer.

Providing software and services for these devices will provide new opportunities for
innovation in many areas of computing.

References

1. http://www.sciencenews.org/20020907/bob10.asp

2. http://www.cdtltd.co.uk

3. http://www.kodak.com/US/en/corp/display/whatsNew.jhtml

252

4. VETTIGER, P., ET AL., “The ‘Millipede’ – Nanotechnology Entering Data Storage,”
IEEE Trans. Nanotechnol., vol. 1, no. 1, pp. 39-55 (2002).

5. http://www.nanochip.com

6. http://www.tiquit.com

7. http://www.oqo.com

 253

Multiple Alternative Voting

David Wheeler
University of Cambridge, England

Introduction

This paper was the result of discussions with Roger Needham in April 1983. The
University was intending to introduce single transferable voting for official ballots, and
did so, even though this method has the defects discussed below. More generally since
then, electronic voting has become a public policy issue. It is evident that there are more
complexities about this, both in principle and in practice, than many may suppose (see
e.g., Mercuri 2002). What follows is an early note on some pertinent problems. Voting is
also widely used, for many different technical purposes, in computing systems, and the
note implicitly also draws attention to the need for care in the choice of algorithms in
these technological contexts.

STV and MAV in brief

The single transferable vote system (STV) suffers from one major fault. As it is a single
vote system, it uses the second and remaining choices of a voter in an algorithmic but
arbitrary way when more than one vacancy is being filled. This fault can be eliminated
with an alternative strategy, multiple alternative voting (MAV), while retaining the
advantages of STV. (The two methods are identical when there is a single vacancy.)

In MAV, each voter gives a preference list for the candidates, just as for STV. If there are
V vacancies, then one vote is counted for each of the first V preferences of each elector.
The candidate with the lowest vote is eliminated from all the preferences and the count
repeated until only V candidates remain.

The problems with single transferable voting

The major objection to the STV system is that the second and higher preferences are used
in an arbitrary way. That is to say, the voter does not know if or how his preferences are
to be used. This arises because the method uses a quota, the minimum number of votes
needed to elect a candidate. If the first preference is part of an exact quota the voter’s later
choices are unused. This is reasonable for a single vacancy, but not for multiple
vacancies, where surplus preferences are reassigned without voter control.

Example

Assume 303 voters filling 3 vacancies from five candidates, namely A, B, C, D, E.
Assume the votes are cast as follows:
 76 voters list A, D, E
 76 voters list B, D, E, C
 76 voters list C, D, E, B
 75 voters list D, E, A

With STV, calculation quota = 303/4 +1 =76. Thus A, B, and C are elected.

254

Multiple alternative voting

Now consider another strategy, multiple alternative voting. To calculate MAV, suppose
the votes cast are::

 A B C D E
 vote sums 151 76 76 303 303

Use the tie rule and delete, say, B from the ballots. Thus 76 fourth preferences for C are
used, giving the voter sums

 A B C D E
 151 0 152 303 303

Thus D, E, and C are elected. If no one cast fourth preferences then D, E, and A are
elected.

Given the illustrative voting figures and all the preferences, one would expect D and E to
be elected and an extra one from A, B or C. However STV gives A, B and C, and not D or
E at all, because it only considers first preferences, with its arbitrary quota. How does an
STV voter indicate he wishes to select three candidates with about the same weight? He
cannot because he is at the mercy of the arbitrary quota.

The example just given shows how the MAV strategy is more nearly in accord with what
the electors might expect, and how the information from them is used more effectively.

The average elector would expect his first V preferences to be used if he filled them in. He
would expect that if a candidate of his were defeated, then his next preference would be
used. He would not expect that the use of his preferences would depend on the arbitrary
quota.

A few might expect that a single vote would carry more power than if it were split among
V candidates. However this is really a matter of philosophy, and the system is simpler if
we arrange that when voters use less than V votes their votes do not carry greater than unit
weight. This means also that when preferences run out for a voter because his early
preferences have been rejected, his residual votes do not carry more than the unit weight.

In no case yet found does the MAV result appear to be further from what can be claimed
to be the voters’ intentions and expectation than the STV system in any of its forms.
When there is a single candidate the two systems will give identical results unless the tie
arrangements are different.

We now give a more detailed description of the MAV system.

MAV in detail

Voter's ballot form
This consists of a list of candidates, preferably in random order. Each item in the list
consists of the candidate’s name followed by a box or space for an integer.

 255

Voter’s instructions
Mark your first preference by 1 in the box of the candidate you prefer. Mark your second
preference by 2 in the box of your second choice and so on. If fewer than the number of
vacancies is filled in, then the empties are taken as abstentions and the effectiveness of the
earlier votes is unchanged.

Counting rules
Assume there are V vacancies. The first V unrejected candidates on each voter’s list are
each given one vote. If V or fewer candidates have non-zero vote sums, these are elected,
otherwise the candidate with the least vote sum is rejected and the count is repeated.

Ambiguities are resolved by rejecting the candidate with the least number of first
preference votes then, if still unresolved, use the second, third etc. The ambiguities
remaining are resolved by algorithmically tossing a coin so that it cannot be “forced.” For
example, one such rule is to divide the total number of votes by the number of choices to
be made and use the remainder to select the candidate to be rejected.

Printed results
First give the V sums for each candidate, i.e., the number of votes for candidate A with
mark 1, the number of votes for candidate A with mark 2 and so on. Then add the number
of votes transferred from the rejected candidate to each of these sums. This is repeated
until the final sums for the elected candidates can be given. (One null candidate should be
included to simplify the treatment of null votes.)

The above suffices for the simple system. However a number of extra points arise.

Printed list of voters:
Should a list be published of those who have voted be printed? It can help in detecting
fraud.

Printed lists of votes cast:
This can be done secretly if every ballot paper has a unique reference number by the side
of each candidate.

A list can be published for each candidate and mark. The list contains the reference
numbers of each vote cast for that candidate and mark. Only the user of the ballot paper
and the central counting procedure (probably a computer in this case) know the unique
reference number. Thus each voter can assure himself that his vote has finished in the
correct count.

Secure counting can be done with separate authenticated programs and computers. There
exist a number of precautions to take, but these are known to many people.

Remote voting
If ballot papers can be sent securely to the recipients, then it is easy for a computer to
arrange that the random candidate permutation is different for each ballot paper, or is
uniformly distributed among the ballot papers. The list of contents of the boxes on the
paper, together with the voter identification number, is returned as the vote. This also
prevents alphabetical bias in the voting.

256

Li Gong has pointed out that if the identification number is wrong it is possible to arrange
the printing and response such that the vote has been apparently cast but does not
contribute to the totals. Thus the buyer of a vote has no guarantee of his purchase, so that
postal or online voting can be made about as secure as a voting booth.

Counting methods
If done by computer there is little point in shortcuts and a simple MAV program can be
verified and checked much more easily than for STV. If the number of votes is small, say
less than 100, the work is relatively simple and quick. Where the number of votes is large,
and manual methods are used, then the repeated scanning can be almost eliminated by
having (C+1)v separate piles during the first scan. Each pile corresponds to one possible
sequence of the first V preferences. Then only the rejected candidates' piles need to be
referred to again. Where C is large this process can be modified easily. For example if
some candidates were likely to attract few votes, their piles could be combined.

Compared with the counting required for STV, the counting at the first stage is more
onerous as V times as many votes are handled. However the further counting movements
are likely to be fewer.

If all the intermediate sums are not printed, then some further shortcuts are possible. For
example, when the low counts cannot affect the result, there is no point in transferring
them.

[MERCURI 2002]
 R. MERCURI, ‘A better ballot box,’ IEEE Spectrum, October 2002, pp. 46-50.

 257

The Semiotics of Umbrellas

John Wilkes,
HP Laboratories, Palo Alto, California, USA

It’s always more fun to tilt at an appropriately-sized windmill – and agreeing on which
windmill to tilt at often makes the difference between success and failure in research.
What I offer here is a humble suggestion for some vocabulary with which to discuss
windmill tilting, in the hope that the endeavor will be more productive for all concerned if
the beast can better be identified, named, and communicated about.

Once upon a time, I found myself engaged in a discussion with a colleague on the relative
merits of prototyping a piece of software. That conversation proved unfruitful: as we later
discovered, we had very different ideas about what was meant by the term “prototype.”
One of us was convinced that the only prototype of value would have to be a first-cut of
the software that could be shipped as a product, after some engineering had been
“applied” to it. The other was equally adamant that prototypes were merely vehicles to
get across an idea – a way to sell a proposal, and perhaps either to demonstrate that it did
something useful, or to determine if it did. We parted company, each mystified at the
other’s intransigence.

Some time later, having become older, if not wiser, I, and a new team of people that I was
privileged to work with, decided that this was all simply a confusion over vocabulary, and
that banning the “p-word” would serve us all well. Indeed it has – but we never really
found a satisfactory replacement for it that we could remember from one day to the next.

Then, a couple of years ago, something clicked after one of those interminable discussions
about “what should we do next.” The images shown here emerged (a little soggy) the
following morning during my shower. Just for fun, I’ve reproduced my first scribbles of
them – illegibilities and all, together with their definitions, and a few related thoughts.

Research nugget: a coherent unit of research work, and
typically the result of a small(ish) research project – maybe as
little as a person-month’s work, maybe as much as a dozen or
so. Often achievable by a person or three; good ones can result
in nice technical papers.

Connotations of gold mining are not unintentional.

Testbed: a vehicle for obtaining research results as rapidly
and efficiently as possible. The purpose of a testbed is to
develop, nurture, and support one or more research
nuggets – nothing more. Although a testbed may be (too
often is) pressed into service in other roles, such as
showing off the research work, this mixing of purposes is
best viewed for what it is – a distraction. The evaluation criterion for a testbed is the ease
with which research can be performed. (To help get this across, in a UNIX-centric

258

culture, we used to say “if MS-DOS works better, use it”!)

Vision: a description of some goal, a result that a project is trying to
achieve – an “end state” in the consultant’s jargon. I’ve found it helpful
to separate out the vision from the research – the research (at least in my
world) is best thought of as supporting or enabling a vision. (Indeed, it
often comes about by working backwards from a vision – “what’s
impossible in that vision, today?”)

Visions are helpful in justifying work – explaining “what it all
means” and why we want to go there. Good visions seem to be
contentious and attractive – bad ones vacuous, or simply dull.
Visions are good vehicles for teasing out subjective notions of
“value” from possible participants in, or customers of, a piece of
work: if a vision doesn’t catch people’s imagination, the work to
achieve it is unlikely to be pursued with enthusiasm.

It’s usually helpful if there is a common vision, since that means people who subscribe to
it agree on the goal. But associated with the one larger vision, it’s also common to have
multiple, smaller-scale or smaller-scope visions. Ideally(!) the smaller visions
complement one another, and can be seen as contributing to the bigger one.

Showcase: a tool used to demonstrate some or all of: (1) a vision, (2) research work,
and/or (3) that a team is making progress. A showcase that’s an executable piece of code
is sometimes called a demonstrator. Other forms include published papers, mocked-up
user interfaces, storyboards, and presentations (preferably with attractive animations)
claiming magnificent things. The test for a good showcase is that it makes visible what
the excitement is all about, and focuses attention on the accomplishments, rather than on
the effort required to achieve them. Unfortunately, this seems to mean that it’s quite hard
to build good showcases for operating systems, middleware, or anything that hides or
reduces work.

In some cases, a testbed may be usable in – or even as – a showcase. But these two roles
are different, and suggestions to “economize” in this form should usually be treated with
skepticism: it’s all too easy to end up with an unconvincing showcase that it is
inconvenient to do research in.

Most research nuggets can fruitfully fit into one or more showcases. Indeed, it’s often a
useful idea to think through how the research will be demonstrated before too much effort
is put into doing it!

Showcases can readily complement one another: a larger vision may best be described

 259

and demonstrated in pieces, especially early on, although it’s often helpful if there’s a
“core” showcase that is being aimed for, and some of my colleagues have reported that
mocking up such a showcase is often all that it takes to sell a key idea.

Umbrella projects: a grouping or coalescing “wrapper” that ties together a set of other
activities into a common theme. Like the p-word, the “umbrella” concept often seems to
cause confusion. Indeed, I’ve heard it used to describe a vision, a single large project, and
a politically-correct shield for continuing business as usual (especially after inputs of the
form “it is now a corporate mandate that all projects must …”)! More useful, perhaps, are
the relatively benign forms described here.

1. Flying in formation: here, there is a set of
research nuggets that share a common vision, but
the ties between the pieces of work that go into the
nuggets are relatively weak, and it’s unlikely that a
single, coherent showcase is put together.

Compared to the next alternative, the lack of a single showcase can greatly reduce the
amount of integration work required, but it still may be possible to spin (sorry: present) all
the research as conforming to a single coherent vision.

2. A unifying showcase: this is closer to the “single
large project” model – a single showcase is used to tie
together the individual pieces of research, and
demonstrate them and their inter-relationships.

This is usually significantly more work to get set up –
especially for the first few nuggets – but can present a
correspondingly more compelling façade. In my experience, getting one of these unifying
showcases agreed to is a black art. It requires somebody to have the courage of their
convictions – and a silver tongue – to persuade others of the viability, utility, and
excitement of the associated vision. It can be done. I wish it were done more often. The
(slightly) greater ability to pull this off is one of the few distinguishing factors associated
with a top-notch industrial research establishment, as compared to an academic one.

If effective, such a unifying showcase has the advantage of achieving higher impact than a
single research nugget can manage by itself. The obvious disadvantages are the relatively
high risk (“what if we pick the wrong problem?”), exacerbated by the fear of putting too
many eggs in one basket; the difficulty of reaching a common understanding of the goal

(“what about this other interesting side
issue?”); and the potentially high integration
cost of the showcase artefact, which now
becomes more of an industrial-strength
vehicle than a research tool per se.

In practice, of course, nothing is as simple as
this exposition suggests, as the (deliberately
rather muddled) diagram to the left attempts
to illustrate. Real-life projects mix and match
approaches and techniques, in response to all

260

sorts of outside and internal pressures, requests, and ideas. Research nuggets, test beds,
and showcases come and go – or morph into new ones as understanding, interest, and
opportunity allow.

Most projects end up with a mixed bag of assorted test beds, supporting changing research
nuggets that contribute to different showcases at different times. But good projects seem
to retain at least a thread of a common vision – even if parts of it may be submerged
temporarily, and new elements appear.

I’ve found that attempting to tease out the different roles and assumptions of each piece is
still a beneficial activity. Recursion is often useful in this exercise: what looks to be a
research nugget (or vision, or …) can often be sub-divided, and the same analysis applied
to each piece.

Over the past couple of years, these ideas have seemed to resonate with my colleagues,
and they have proven useful as a way to communicate ideas for structuring and focusing
some of our work. One day, perhaps, they might help us approach the scale of effects and
impact achieved by the apparently effortless, laissez faire project management processes
that the Computer lab used in the heyday of the Cambridge Distributed System. We can
but dream.

 261

Computers for Specialized Application Areas

Maurice Wilkes
University of Cambridge, England

With the end of CMOS looming ahead–although there is still a significant way to go–it is
natural that people should begin to search for innovative computing devices that would be
very fast on certain specific problems, even if they were not capable of running a general
work load. The economic viability of these devices would depend on finding what is
known as a “killer” application, that is, an application of such importance that it would by
itself justify the financial investment.

The first of these approaches that I heard about was DNA computing. In nature, a DNA
molecule has the role of storing genetic information. However, there is no reason way an
artificially synthesised DNA molecule should not be used to represent information of a
very different kind. In spite of long continued effort, it was not found possible to identify
a killer application, and, in consequence, DNA computing has dropped out of the picture
as far as high-performance computing is concerned.

Quantum computing is now attracting great interest. A form of universality can be
claimed for a quantum computer, but this is a theoretical claim only. It is only
applications that could efficiently exploit the special quantum features that would run at
super-speed. Others would run at a snail’s pace. A quantum computer would not,
therefore, be capable of running a general workload in the way that a PC or a workstation
can. For this reason, I am inclined to think that the old fashioned (analogue) computers,
such as the differential analyser, provide a better operational model for quantum
computing than the modern PC or workstation does.

The principal application being talked about as a killer application for a quantum
computer is the factorisation of large numbers, an operation of importance in code
breaking. However there may be others.

The physics behind the quantum computer is in the early stages of development and the
practical problems of making a working quantum computer have hardly been explored. In
spite of the great public interest that has been aroused, it is clear to me that practical
applications in the computer field are so far away that developments should be left for the
time being exclusively in the hands of the physicists. It is hard to see any present
justification for the computer industry investing more than token sums in quantum
computing.

However, it is interesting to speculate on what would happen if a quantum computer that
would enable very large numbers to be factorised easily were ever developed. This is a
subject on which I would much like to hear Roger Needham’s views. The use of
encryption algorithms, based on numbers that are hard to factorise, has become so
pervasive throughout the computer field that an “industry” may be said to have grown up
around it. Would the effect of the quantum computer be to destabilize that industry, with
widespread repercussions? What alternative means of encryption could be used instead?

262

In my view, it is through its impact on computer security that quantum computing, if it
ever comes, might have a major impact on the computing world. Even if other killer
applications were to emerge and were to become of great importance in their respective
specialized areas, they would be of small importance for the computer field as a whole.
Here again I would like to know what Roger thinks.

 263

Roger Needham’s Publications

WITH T. JOYCE:
‘The thesaurus approach to information retrieval,’ American Documentation, 9, 1958,
pp. 192-7.

WITH M. MASTERMAN AND K. SPÄRCK JONES:
‘The analogy between mechanical translation and library retrieval,’ Proceedings of the
International Conference on Scientific Information (1958), National Academy of Sciences
- National Research Council, Washington, D.C., 1959, vol. 2, pp. 917-935.

‘Classes and concepts,’ paper read at the Annual Conference of the British Society for the
Philosophy of Science, Cambridge, 1959.

WITH A.F. PARKER-RHODES:
‘A reduction method for non-arithmetic data,’ Information Processing: Proceedings of the
International Conference on Information Processing, 1959, Paris, 1960, pp. 321-327.

WITH A.F. PARKER-RHODES:
‘The theory of clumps,’ Cambridge Language Research Unit, Report M.L. 126, 1960.

WITH A.H.J. MILLER AND K. SPÄRCK JONES:
‘The information retrieval system of the Cambridge Language Research Unit,’ Cambridge
Language Research Unit, Report M.L. 109, 1960.

‘The theory of clumps II,’ Cambridge Language Research Unit, Report M.L. 139, 1961.

Research on information retrieval, classification and grouping 1957-1961, Ph.D. thesis,
University of Cambridge; Cambridge Language Research Unit, Report M.L. 149, 1961.

‘A method for using computers in information classification,’ Information Processing 62:
Proceedings of IFIP Congress 1962 (Ed. Popplewell), Amsterdam: North-Holland, 1963,
pp. 284-287.

‘Automatic classification for information retrieval,’ in Information Retrieval (Ed.
Serbanescu), I.B.M. European Education Centre, Blaricum, Holland, 1963.

‘Automatic classification for information retrieval,’ lectures given at the NATO
Advanced Study Institute on Automatic Document Analysis, Venice, 1963; abstracts
published as Cambridge Language Research Unit Report M.L. 166, 1963.

‘The exploitation of redundancy in programs,’ in ‘The impact of user’s needs on the
design of data-processing systems,’ Proceedings of the British Joint Computer
Conference, 1964.

WITH K. SPÄRCK JONES:
‘Keywords and clumps,’ Journal of Documentation, 20, 1964, pp. 5-15.

‘Automatic classification - models and problems,’ in Mathematics and Computer Science
in Biology and Medicine, The Medical Research Council, London, 1965, pp. 111-114.

‘Computer methods for classification and grouping,’ in The Use of Computers in
Anthropology (Ed. Hymes), The Hague: Mouton, 1965, pp. 345-356.

‘Applications of the theory of clumps,’ Mechanical Translation, 8, 1965, pp. 113-127.

264

‘Semantic problems of machine translation,’ Information Processing 65: Proceedings of
IFIP Congress 1965 (Ed. Kalenich), Washington D.C.: Spartan Books, 1965, vol. 1,
pp. 65-69.

‘Information retrieval and some cognate computing problems,’ in Advances in
Programming and Non-numerical Computation (Ed. Fox), London: Pergamon Press,
1966, pp. 201-218.

‘The termination of certain iterative processes,’ The Rand Corporation, Santa Monica,
Report RM-5188-PR, 1966.

‘Automatic classification in linguistics,’ The Statistician, 17, 1967, pp. 45- 54.

WITH D.W. BARRON, A.G. FRASER, D.F. HARTLEY AND B. LANDY:
‘File handling at Cambridge University,’ Proceedings of the 1967 Spring Joint Computer
Conference, AFIPS Conference Proceedings, vol. 30, 1967, pp. 163-167.

WITH K. SPÄRCK JONES:
‘Automatic term classifications and retrieval,’ Information Storage and Retrieval, 4,
1968, 91-100.

WITH M.V. WILKES:
‘The design of multiple-access computer systems: Part 2,’ The Computer Journal, vol. 10,
1968, pp. 315-320.

WITH D.F. HARTLEY AND B. LANDY:
‘The structure of a multiprogramming supervisor,’ The Computer Journal, vol. 11, 1968,
pp. 247-255.

‘Computer operating systems,’ in Encyclopedia of Linguistics, Computation and
Control, (Ed. Meetham and Hudson), London: Pergamon Press, 1969.

WITH D.F. HARTLEY:
‘Theory and practice in operating system design,’ 2nd ACM Symposium on Operating
System Principles, Princeton, 1969, New York: ACM, 1969, pp. 8-12.

‘Software engineering techniques and operating system design and production,’ in
Software Engineering Techniques (Ed. Buxton and Randell), NATO Scientific Affairs
Committee, NATO, Brussells, 1970, pp. 111-114.

‘Handling difficult faults in operating systems,’ 3rd ACM Symposium on Operating
System Principles, Stanford, 1971, New York: ACM, 1971, pp. 55-57.

WITH B. LANDY:
‘Software engineering techniques used in the development of the Cambridge multiple
access system,’ Software - Practice and Experience, vol. 1, 1971, pp. 167-173.

‘Tuning the Titan operating system,’ in Operating Systems Techniques (Ed. Hoare and
Perrott), London: Academic Press, 1972, 277-281.

‘Protection systems and protection implementations,’ Proceedings of the 1972 Fall Joint
Computer Conference, AFIPS Conference Proceedings, vol. 41, 1972, pp. 571-578;
reprinted in The Best Computer Papers of 1972.

‘Protection - a current research area in operating systems,’ Proceedings of the
International Computing Symposium 1973 (Ed. Gunter, Levrat and Lipps), Amsterdam:
North-Holland, 1974, pp. 123-126.

 265

WITH M.V. WILKES:
‘Domains of protection and the management of processes,’ The Computer Journal, vol.
17, 1974, pp. 117-120; reprinted in The Best Computer Papers of 1975.

WITH R.D.H. WALKER:
‘Protection and process management in the CAP computer,’ Proceedings of the
International Workshop on Protection in Operating Systems, IRIA, Paris, 1974, 155-160.

Articles in Encyclopedia of Computer Science (Ed. Ralston and Meek), New York:
Petrocelli/Charter 1976.

‘The CAP project - an interim evaluation,’ (6th ACM Symposium on Operating System
Principles (1977)), Operating Systems Review, vol. 11 no. 5, 1978, pp. 17-22.

WITH R.D.H. WALKER:
‘The Cambridge CAP computer and its protection system,’ (6th ACM Symposium on
Computer Operating System Principles (1977)), Operating Systems Review, vol. 11 no. 5,
1978, 1-10.

WITH A.D. BIRRELL:
‘The CAP filing system,’ (6th ACM Symposium on Computer Operating System
Principles (1977)), Operating Systems Review, vol. 11 no. 5, 1978, pp. 11-16.

WITH M.D. SCHROEDER:
‘Using encryption for authentication in large networks of computers,’ Comm ACM, 21,
1978, pp. 993-999; reprinted in Advances in Computer Security (Ed. R. Turn).

WITH A.D. BIRRELL:
‘An asynchronous garbage collector for the CAP filing system,’ Operating Systems
Review, vol. 12 no. 2, 1978, pp. 31-33.

WITH A.D. BIRRELL:
‘Character streams,’ Operating Systems Review, vol. 12 no. 3, 1978, pp. 29-31.

WITH H.C. LAUER:
‘Duality in operating system structures,’ Proceedings of the 2nd International Conference
on Operating Systems, IRIA, Paris, 1978; reprinted in Operating Systems Review, vol. 13
no. 2, 1979, pp. 3-19.

‘Protection,’ Advanced Course on Computing Systems Reliability, Newcastle, 1978; in
Computer Systems Reliability (Ed. Anderson and Randell), Cambridge: Cambridge
University Press, 1979.

‘Protection - theory and practice,’ Proceedings of the SEAS Anniversary Meeting 1978,
vol. 1, 1978, pp. 80-84.

WITH M.V. WILKES:
The CAP computer and its operating system, New York: Elsevier North-Holland,
1979.

‘Adding capability access to conventional file servers,’ Operating Systems Review, vol.
13 no. 1, 1979, pp. 3-4.

‘Systems aspects of the Cambridge Ring,’ (7th ACM Symposium on Operating System
Principles (1979)), Operating Systems Review, vol. 13 no.5, 1979, pp. 82-85.

266

WITH M.V. WILKES:
‘The Cambridge model distributed system,’ Operating Systems Review, vol.14 no.1, 1980,
pp. 21-29.

WITH A.D. BIRRELL:
‘A universal file server,’ IEEE Transactions on Software Engineering, vol. SE-6, 1980,
pp. 450-453.

WITH N.H. GARNETT:
‘An asynchronous garbage collector for the Cambridge file server,’ Operating Systems
Review, vol. 14 no. 4, 1980, pp. 36-40.

WITH A.J. HERBERT:
‘Sequencing computation steps in a network,’ (8th ACM Symposium on Operating System
Principles (1981)), Operating Systems Review, vol. 15 no. 5, 1981, pp. 59-63.

WITH A.D. BIRRELL, R. LEVIN AND M.D. SCHROEDER:
‘Grapevine - an exercise in distributed computing’ (8th ACM Symposium on Operating
Systems Principles (1981)), Comm. ACM, vol. 25, 1982, pp. 260-274; reprinted in Birrell
et al, ‘Grapevine: two papers and a report,’ Xerox Palo Alto Research Centre, Report
CSL-83-12, 1983.

WITH A.J. HERBERT:
The Cambridge distributed computing system, Reading, Mass.: Addison-Wesley,
1982.

WITH M.F. RICHARDSON:
‘The Tripos Filing Machine - a front-end to a file server,’ (9th ACM Symposium on
Operating Systems Principles (1983)), Operating Systems Review, vol. 17, no. 5, 1983,
pp. 120-128.

WITH A.J. HERBERT AND J.G. MITCHELL:
‘How to connect stable memory to a computer,’ Operating Systems Review vol. 17 no. 1,
1983, p16.

WITH M.D. SCHROEDER AND A.D. BIRRELL:
‘Experience with Grapevine: the growth of a distributed system,’ ACM Trans. on
Computer Systems, vol. 2, no. 1, 1984; reprinted in Birrell et al, ‘Grapevine: two papers
and a report,’ Xerox Palo Alto Research Center, Report CSL-83-12, 1983.

WITH I.M. LESLIE, J.W. BURREN AND G.C. ADAMS:
‘The architecture of the Universe network,’ (SIGCOMM 84 Tutorials and Symposium:
Communications Architectures and Protocols), Computer Communications Review, vol.
14, no. 2, 1984, pp. 2-9.

WITH A.G. WATERS, C.G. ADAMS AND I.M. LESLIE:
‘The use of broadcast techniques on the Universe network,’ (SIGCOMM 84 Tutorials and
Symposium: Communications Architectures and Protocols), Computer Communications
Review, vol. 14, no. 2, 1984, pp. 52-57.

‘Fifth generation computing,’ in Information Comes of Age (Ed. Oppenheim), London:
Rossendale, 1984, pp. 71-77.

‘Protection,’ in Local Area Networks: An Advanced Course (Ed. Hutchison, Mariani
and Shepherd), Berlin: Springer, 1985, (Lecture Notes in Computer Science 184),
pp. 261-281.

 267

WITH M.D. SCHROEDER AND D.K. GIFFORD:
‘A caching file system for a programmer’s workstation,’ (10th ACM Symposium on
Operating Systems Principles (1985)), Operating Systems Review, vol. 19, no.5, 1983,
pp. 25-34.

‘Is there anything special about AI?’ (Workshop on the Foundations of Artificial
Intelligence (1986)), in The foundations of artificial intelligence: a source book (Ed.
Partridge and Wilks), Cambridge: Cambridge University Press, 1990.

WITH A.D. BIRRELL, B.W. LAMPSON AND M.D. SCHROEDER:
‘A global authentication system without global trust,’ IEEE Security and Privacy
Symposium, Berkeley, 1986.

WITH D.L. TENNENHOUSE, I.M. LESLIE, C.A. ADAMS, J.W. BURREN AND C.S.
COOPER:

‘Exploiting wideband ISDN: the Unison exchange,’ INFOCOM Conference Proceedings,
San Francisco, 1987.

‘The Unison experience,’ Proceedings of the 23rd Annual Convention of the Computer
Society of India, (Ed. Raghavan and Venkatasubramanian), New Delhi: Macmillan, 1988,
pp. 51-57.

WITH D.K. GIFFORD AND M.D. SCHROEDER:
‘The Cedar File System,’ Comm. ACM, vol. 31, 1988, pp. 288-298; reprinted, in Japanese,
in Bit November 1989, pp. 30-50.

WITH A. HOPPER:
‘The Cambridge fast ring networking system,’ IEEE Transactions on Computers, vol. 37,
1988, pp. 1214-1223.

WITH M. BURROWS AND M. ABADI:
‘Authentication: a practical study of belief and action,’ Proceedings of the 2nd Conference
on Theoretical Aspects of Reasoning about Knowledge, 1988.

WITH M. BURROWS:
‘Locks in distributed systems – an observation,’ Operating Systems Review vol. 22, no. 3,
1988, p44.

WITH M. BURROWS AND M. ABADI:
‘A logic of authentication,’ Report 39, DEC Systems Research Centre, Palo Alto, 1989;
Proceedings of the Royal Society of London, Series A, vol. 426, 1989, pp. 233-271;
reprinted in Practical cryptography for data internetworks (Ed. Stallings), Washington
DC: IEEE Computer Society Press, 1996.

WITH M. BURROWS AND M. ABADI:
‘A logic of authentication,’ (12th ACM Symposium on Operating System Principles
(1989)), Operating Systems Review, vol. 23, no. 5, 1989, pp. 1-13; and ACM Transactions
on Computer Systems, 1990.

WITH T.M.A. LOMAS, L. GONG AND J.H. SALTZER:
‘Reducing risks from poorly chosen keys,’ (12th ACM Symposium on Operating System
Principles (1989)),Operating Systems Review, vol. 23, no. 5, 1989, pp. 14-18.
‘Authentication,’ in Safe and secure computing systems (Ed. Anderson), Oxford:
Blackwell Scientific, 1989.

268

‘Names’ and ‘Using cryptography for authentication,’ (Arctic 88; Fingerlakes 89:
Advanced Courses on Distributed Systems), in Distributed Systems (Ed. Mullender),
New York: ACM Press and Addison-Wesley, 1989.

WITH J.M. BACON AND I.M. LESLIE:
‘Distributed computing with a processor bank,’ Technical Report 168, Computer
Laboratory, University of Cambridge, 1989.

WITH M. BURROWS AND M. ABADI:
‘The scope of a logic of authentication,’ Proceedings of the DIMACS Workshop on
Distributed Computing and Cryptography, 1989, (Ed. Feigenbaum and Merritt), New
York: American Mathematical Society, 1991, pp. 119-126.

WITH L. GONG AND R. YAHALOM:
‘Reasoning about belief in cryptographic protocols,’ Proceedings of the 1990 IEEE
Symposium on Security and Privacy, Washington: IEEE, 1990, pp. 234-248.

‘Capabilities and security,’ in Security and Persistence: Proceedings of the International
Workshop on Computer Architectures to Support Security and Persistence of Information
(Ed. Rosenberg and Keedy), Bremen, Germany, 1990.

WITH M.D. SCHROEDER AND OTHERS:
‘Autonet: a high-speed, self-configuring local area network using point-to-point links,’
Report 59, DEC Systems Research Centre, Palo Alto CA, 1990; IEEE Journal on
Selected Areas in Communications, vol. 9, no. 8, 1991, pp. 1318-1335.

‘What next? Some speculations,’ in Operating systems of the 90s and beyond, (Ed.
Karshmer and Nehmer), Berlin: Springer Verlag, 1991.

‘Names’ and ‘Cryptography and secure channels,’ in Distributed systems (Ed.
Mullender), 2nd ed, Reading, MA: Addison Wesley, 1993, pp. 531-541.

WITH L. GONG, M.A. LOMAS, AND J.H. SALTZER:
‘Protecting poorly chosen secrets from guessing attacks,’ IEEE Journal on Selected Areas
in Communications, vol. 11, no. 5, 1993, pp. 648-656. Abraham Award for Best Paper in
the Journal for 1993.

‘Denial of service,’ Proceedings of the 1st ACM Conference on Communications and
Computing Security, 1993.

‘Distributed computing,’ Guest Editorial, The Computer Bulletin, 6 (2), 1994, 2.

WITH M. ABADI:
‘Prudent engineering practice for cryptographic protocols,’ IEEE Symposium on Security
and Privacy, 1994, pp. 122-136. Outstanding paper award.

‘Computers and communications,’ Computer Science and Informatics, (Computer Society
of India), vol. 23, no. 4, 1993.

‘Denial of service,’ expanded version of 1993 paper, Comm. ACM, vol. 37,no. 11, 1994,
pp. 42-46.

WITH M. ABADI:
‘Prudent engineering practice for cryptographic protocols,’ expanded version of 1994
IEEE Symposium paper, Report 125, DEC Systems Research Centre, Palo Alto CA,
1994, IEEE Transactions on Software Engineering, vol. 22, no. 1, 1996, pp. 6-15.

 269

WITH D. WHEELER:
Two cryptographic notes, Technical Report 355, Computer Laboratory, University of
Cambridge, 1994.

WITH A. NAKAMURA:
‘The dependency protocol for real-time synchronisation,’ Transactions of the Institute of
Electronic, Information and Communication Engineers, vol. J78-D-I, no. 8, 1995.

WITH P.W. JARDETSKY AND C.J. SREENAN:
‘Storage and synchronisation for distributed continuous media,’ ACM Multimedia Systems
Journal, vol. 3, no. 4, 1995, pp. 151-161.

WITH R. ANDERSON:
‘Programming Satan’s computer,’ in Computer science today (Ed. van Leeuwen),
Lecture Notes in Computer Science 1000, Berlin: Springer, 1995.

WITH R.J. ANDERSON:
‘Robustness principles for cryptographic protocols,’ in CRYPTO 95, Lecture Notes in
Computer Science No 963, Berlin: Springer, 1995, 236-247.

‘Fast communication and slow computers,’ 12th International Conference on Computer
Communication, Seoul, 1995.

‘Computers and communications,’ in Computing tomorrow, (Ed. Wand and Milner),
Cambridge: Cambridge University Press, 1996, pp. 284-294.

 ‘The changing environment for security protocols,’ IEEE Network, May-June 1997.

WITH R.J. ANDERSON AND A. SHAMIR:
‘The steganographic file system,’ Proceedings of the Second International Workshop on
Information Hiding (Portland OR, April 1998), Ed. Aucsmith, Lecture Notes in Computer
Science No 1525, Berlin: Springer, 1998, pp. 74-84.

‘Logic and over simplification,’ Proc. 13th IEEE Symposium on Logic in Computer
Science, Indianapolis, June 1998, pp. 2-4.

‘Computer security?,’Philosophical Transactions of the Royal Society, Series A,
Mathematical, Physical and Engineering Sciences, vol. 361, 2003, in press.

