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Foreword

The development during the last five years or so of
wide band local communication systems is likely to have
a large impact on our view of what a computer system
should be. These communication systems have a
bandwidth that is two or more orders of magnitude
greater than that of an ordinary telephone line, while
still being much less than that of an internal computer
bus. The work described in this book is based on the
Cambridge Digital Communication Ring, the design study
for which was published in 1975. It is, however, only
at the lowest levels of protocol that it matters
greatly what the underlying transport system is and
much of the system engineering described could equally
well have been based, for example, on an Ethernet.

The ring enables services of various kinds to be put
at the disposal of users connected to the ring, the
most obvious being a filing service and a service for
producing hard copy. In much of the work that has been
reported from elsewhere, users have been provided with
their own personal computers. An alternative approach
is to provide a bank of centrally located computers and
to allow users to attach one or more of these to their
terminals and retain them for their exclusive use
until they have finished with them. Work along these
latter lines would appear to have progressed further
in the Computer Laboratory of the University of
Cambridge than it has elsewhere. The problems raised,
especially those of resource management, are of much
interest from a systems point of view. The authors
describe a model system that they have in operation
and give their views as to how further development
should proceed. It is, perhaps, worth observing that
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the ring used to implement the system also supports
other activities; for example, a user at a terminal is
able to log in to one of several time-sharing systems.
Similarly, a user with a personal computer could be
connected to the ring and would enjoy the benefits of
the services provided.

The chapter that many readers will find particularly
timely is one on protection and authentication. These
topics have been the subject of much debate and they
take on a new aspect when seen from the standpoint of
the designer of a distributed system.

Distributed computing, based on a ring or Ethernet,
is a very new subject. The authors are to be commended
for making available some of their experiences in book
form.

Cambridge M.V. WILKES
1982



Preface

In this book we describe and give a rationale for the
distributed computing system set up in the Computer
Laboratory at the University of Cambridge, England.

When the Cambridge Digital Communication Ring
hardware was satisfactorily commissioned in 1976-7t it
seemed the obvious thing to set up a computer system
based on it and exploiting its characteristics. The
main intention originally had been to promote
peripheral sharing using the Ring. But with the advent
of inexpensive microcomputers and the ready
availability of minicomputers we were stimulated to
consider the use of interconnected machines
constituting a coherent system rather than just a
collection. Another stimulus came as a result of
experience gained by one of us (R.M.N.) when on leave in
1977 at the Xerox Palo Alto Research Center; the
feeling arose that we were near the beginning of a new
approach to the provision of computing facilities - a
novelty comparable to that of time-sharing systems in
1963. Naturally the new opportunity ought to be
embraced as energetically as the earlier one had been.
We report here work that followed from 1978 to early
1982.

We would emphasise that the system is described as
it is, rather than as it was meant to be, or might have
been, or as it would be if done again. Hindsight has as
far as possible been avoided, and where design
alternatives are discussed they are the alternatives
considered at the relevant time. We believe that this
is the best way to present our work as a case study;
the reader is invited to consider how he would have
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done it better, or which of our boundary conditions he
would like to relax. Our main hope is that our work
will be useful to other practical system designers and
to those needing something concrete on which to base
their teaching.

The Cambridge system as it stands is the product of
many people's efforts. A list of them accompanies the
bibliography; some call for particular mention here.
The successful design of the Ring is due to M.V. Wilkes,
D.J.Wheeler, A. Hopper and the late N.W.P. Unwin. The
reliable installation and operation of a substantial
Ring system owes a great deal to the careful industry
of P.J.Bennett. Many pieces of hardware and software
are the work of J.J. Gibbons and M.A. Johnson who is also
our conscience on the propriety of protocols. The File
Server was implemented by J. Dion; the TRIPOS operating
system underlying the File Server and in standard use
on the Processor Bank machines is the work of
M.Richards and his students. The TRIPOS Filing
Machine described in Chapter Seven was designed and
implemented by M. Richardson. The authentication
system is the work of C.G. Girling.

On another note of acknowledgement, we have learnt a
great deal from friends and colleagues at Xerox PARC,
where they do it differently; and the idea of writing
the book was put to us one evening in The Eagle by
W.D.Shepherd of the University of Strathclyde.

M.V. Wilkes was head of the Computer Laboratory when
much of the work was done and encouraged the project
in every possible way. The Science and Engineering
Research Council contributed generously towards the
support of the project.

Cambridge R.M. Needham
1982 A.J.Herbert
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Introduction

1.1 Background

It is well known that the dramatic developments of the
last few years in integrated circuit technology have
revolutionised the approach taken to the provision of
computer hardware. The use of many microcomputers
with substantial amounts of memory is considered
routine,and it is quite reasonable to use machines for
a single function only. The exploitation of this
possibility in the cause of simplicity has been made
much easier by another development, perhaps less well
known,in communication technology. It is now possible
to interconnect computers in a building or a cluster of
buildings by means of a local area network. Such
networks typically carry data at rates from a megabit
per second upwards with very high reliability. Both in
terms of speed and of reliability, they may be
contrasted with earlier systems using telephone lines.
In traditional networks much effort had to be devoted
to protocols that made the best use possible of the
limited bandwidth and that were as rugged as possible
against the effects of transmission error. Connection
equipment tended to be expensive, and accordingly
there was good reason to minimise the number of
systems connected. The modern local network is
capable of being interfaced much more cheaply and of
being used with much simpler protocols. It is not
nearly so necessary to optimise the use of its
bandwidth, because there is so much at hand and because
the network cost has not been perceptibly increased to
provide that bandwidth.
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2 Cambridge distributed system

The conjunction of the two developments has led to a
particular style of distributed computing in which
the work of a system is performed by a collection of
computers connected via a network. The objective is
to make use if possible of the low cost of individual
processing elements to obtain high performance
through the use of many of them. The use of many
processors may be approached through tight coupling,
in which processors typically share some or all of
their memory and cooperate closely in the execution of
parallel algorithms. This approach exploits the
developments in microelectronics but not those in
communication. The alternative approach depends on
loose coupling and functional dedication. Machines
are used for particular purposes and are placed where
appropriate for that purpose, being scattered
according to need through an office, factory, or
laboratory complex. It is this style of distributed
computing that forms the topic of the present book; the
experience recorded here concerns the design and
development of the structures necessary for the
reliable and harmonious cooperation of diverse
systems. The goal is to strike a balance between unity
and diversity. There should be sufficient unity of
approach to make it easy for machines to cooperate and
to make it easy to design and install new services;
there should not be constraints enforced by convention
or hardware that make it impossible to provide a
particular service in a satisfactory way.

This book describes the results of a project
developed in this spirit and directed towards the
particular goal of providing the kind of services one
expects from a time-sharing system based on a
substantial mainframe. In such an environment each
user has a terminal connected to a central machine; it
being typical that only a small proportion of the whole
user community is active at once. There are important
advantages to this approach. The entire user
community can benefit from the work of individuals
since there are no unnecessary barriers to the sharing
of useful programs, results, or data. It is further
guaranteed that all users are able to work in a common
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environment so that there is a certain coherence about
the programs they develop. These aspects result from
what might be called benign sharing. Unfortunately
there are drawbacks too. The performance of the
system as perceived by a user is dependent on the
number of other users active at a time; the detail of
the dependence is unknown and the performance is thus
unpredictable. Much research in operating systems has
been directed to balancing performance and making it
more predictable, but it cannot be said to have been
wholly successful. A second drawback is the
vulnerability of the system to failures of single
components. The single processor is a weak point both
in respect of hardware failures and of software-
induced crashes.

In the Cambridge Distributed System described here,
the central mainframe is replaced by a collection of
smaller computers allocated individually to users.
The administration of the allocation functions is
reminiscent of parts of an operating system for a
central machine; in the Distributed System small
computers are assigned (statically) to the various
administrative tasks. It is found convenient to use a
number of machines for this purpose rather than just
one for reasons of performance, flexibility, and
resilience. Performance is much more predictable when
different administrative functions are not competing
for machine cycles with each other or with
applications; the allocation of individual machines
makes development and software enhancement much
easier; finally it is much more likely that a
distributed system will survive partial failure. An
advantage of distributed systems that applies both to
the administrative machines and the application
machines is that hardware enhancement is very easy.
If more total power is needed, one simply adds more
application machines. If the administrative system
becomes overloaded, one subdivides the functions and
adds more administrative machines.

The remainder of this chapter surveys the general
approaches used in the class of distributed systems of
which the Cambridge Distributed System is an example.
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Systems of this type depend upon the use of local area
networks, which are discussed in general terms in
Chapter Three. The present system uses the Cambridge
Digital Communication Ring, developed in the Com-
puter Laboratory. From the point of view of the system
architect, however, the precise choice of local network
technology is not of great significance since several
such systems offer very similar facilities.

1.2 Servers

One of the most straightforward applications of local
networks is to interconnect machines that would
otherwise be viable, self-contained systems, each with
its own disc, keyboard, display and perhaps hard copy
device. The network is used to transfer files from the
filing system of one machine to the filing system of
another as an aid to cooperation and software
distribution, but occupies an ancillary rather than a
central place in the overall system. As such a design
is modified in the interest of flexibility and economy,
the network comes to play a much more central role.

All the machines in a scheme of the sort just
mentioned will have common requirements, such as the
need to produce hard copy documents. Even if it is
economically feasible to provide some sort of hard
copy facility for each machine it is certainly not a
viable proposition to provide good quality hard copy
facilities in large numbers. The cost would be
excessive, the maintenance commitment unsupportable,
and the utilisation minimal. The obvious alternative
is to provide a suitable number of printers attached to
the network so as to be conveniently available to the
users of the several computers. Such printers, or,
more accurately, the computers that control them, are
examples of servers, placed in order to provide
services upon request. Another example is that of a
file server, a machine supplied with extensive disc
storage for holding files on behalf of a number of
users. There are substantial economies of scale in the
provision of disc storage, and there are also
attractions in minimising the number of distinct
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electromechanical devices used, since they are noisy
and need maintenance.

The influence of the use of servers on the general
shape of the system is substantial, going far beyond
the financial benefits already alluded to. As soon as
facilities that are necessary for most computation are
provided in this way, the individual computers become
much less autonomous and the network much more
important. Not much can be done without filing and
printing, for example, and the absence or in-
accessibility of these services is almost as bad as not
having a computer at all. In addition, there are
advantages to a certain uniformity of service: for
example a uniform way of indicating on output the
identity of the user on whose behalf it is printed, or a
uniform way of archiving and backup for files.
Circumstances alter cases, and it would be foolish to
attempt an universal judgement on whether it is
worthwhile to accept a loss of autarky in return for
centrally organised services. In designing a system it
should not be necessary to pose the sharp question,
because the provision of one or more file servers does
not preclude the attachment of a substantial disc to
an ordinary computer.

Servers should thus be thought of as providing
additions or enrichments to the environment in which
programs operate: a function reminiscent of that of
the components of an operating system for a shared
machine. Indeed, many of the design considerations for
servers are indistinguishable from those for trad-
itional operating systems - though the analogy should
not be pressed too far. One of the motives for the
development of distributed systems is precisely to get
away from the rigid and often over-structured
environment of the shared machine, and it would be a
serious error to regenerate that environment by
imposing too much structure in the distributed case.
Fortunately, the use of a server is voluntary in a
sense that the use of an operating system facility in a
shared machine is usually not. It is not difficult, in
principle, to add a new printing server in a
distributed system, the new server having a quite
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different interface from older ones. "The management"
may well not even need to know.

Servers need not be associated with the control of
physical devices. When the machines connected to a
network form part of a coherent system, as in our case,
there are a number of management tasks to be carried
out and these may be assigned to servers in a similar
way to the control of devices. Typical examples
include authentication, access control, and message
distribution. In Chapter Two, an overview of the
Cambridge Distributed System, the functions of a
number of essential management servers will be
outlined.

Another aspect of the general approach using
servers is a resulting tolerance to certain partial
failures. If services reside in different computers
then the failure of one machine will not necessarily
affect the others, even if the system as a whole
performs at a reduced level. Replication of services
in the interest of robustness is easy; although little
deliberate effort in this direction has been made in
our experimental work it is evident from experience of
the Cambridge System in use that the effect is present.

1. 3 Personal computers

It is the conventional wisdom that users are better
served by the provision of personal computers used
exclusively by individuals rather than by giving them
access to a time-sharing system. It is also becoming
much more practical to proceed in this manner as the
price of computer hardware falls. In the sort of
environment where every user had a terminal in the
past, every user can now have a computer. The nature
and purpose of operating systems change radically in a
personal computer environment. They are no longer
there to maximise throughput but to maximise
convenience, and it is possible to design them more
readily now that they do not have to serve conflicting
purposes.

The benefits of personal computers are obvious;
they are always to hand, dedicated to the user and
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under his control. Many users of time-shared com-
puters find more traditional approaches to be lacking
in precisely these respects. Ranking high in the
demonology of habitual computer users are managerial
decisions as to whether a service should be available
at a particular time or not, insistence on the use of
particular software environments , and , perhaps most of
all, inability to predict how long a computation will
take. A less well-known advantage, which may account
for some of the popularity of personal computers with
senior people, is that the user can fumble and make
blunders in decent privacy. In isolation, however,
there are some disadvantages to personal machines.
Cooperation between people working on the same project
is diff icul t and the propagation of useful software
awkward. These drawbacks are readily overcome by
connecting the personal machines together by means of
a local network; material may then be moved between
machines, and servers may be exploited in the ways
mentioned above. As soon as this step is taken,
though, the use of servers has removed some of the
autarky desired by the personal computer user.

The conventional image of a system based upon
personal computers and local area networks is that of
a machine of modest size complete with keyboard and
display in every off ice. The machines are typically
small enough in physical dimensions to fit un-
obtrusively in an off ice. At one end of the scale
there are desk-top computers that may even be
integrated into the display. These small machines
however are of very limited capability; for example
they may be suitable for reading electronic mail and
editing files, but they cannot support major
applications such as databases, computer-aided design
systems and heavy numerical computation. These
applications may quite easily outgrow even more
substantial personal computers. As the speed and
memory capacity of a computer system grows there are
other increases beyond just physical dimensions.
High-speed circuitry may require cooling; powerful
fans blowing air through the machine will make it too
noisy for the office environment .
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The direct assignment of computers to users can be
inflexible in two respects. The first relates to
variations in a user's requirements. For much of the
time a user editing programs and compiling them does
not require the services of a large machine. However
from time to time he may wish to run a package that
needs a powerful computer. It is clearly tedious if he
has to leave his office to run the package; yet, at the
same time, it is hard to jus t i fy giving him exclusive
use of the bigger computer all of the time. The second
form of inflexibility is an extension of this with
respect to running distributed algorithms. Some
computations can be speeded up by spreading them over
several machines running together. Clearly it would be
nonsensical to fill a user's office with numerous
machines to this ef fec t . It would be better if there
was some systematic way of locating other machines
that are not being used and exercising the same
control over them as is available over the machine in
the user's office.

In the context of an office it makes practical sense
to assign a machine to each individual if that person's
job is dependent upon the use of a computer. There are
other situations where such an assignment is not
appropriate; for example in an organization that
comprises a large potential user community of which
only some proportion needs to be computing simul-
taneously. A typical example here would be the central
computing service in a university or research
establishment. It is clearly not economically reason-
able to give every user a private machine in his off ice
in this situation. Furthermore, in this sort of
environment it is common for the computing needs of
the active users to be beyond the capabilities of an
office-based computer system. It is to the resolution
of the conflicts in the use of personal computers that
the Cambridge Distributed System is directed.

1.4 The Cambridge approach

In the Cambridge Distributed System each user has a
private terminal that contains an integral personal
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computer of modest capabilities. This personal
machine is only capable of minor duties. One of these
includes the ability to connect as a remote terminal to
some other machine on the network. The bulk of the
computing power in the system rests with a collective
of more powerful computers known as the Processor
Bank. Processor Bank machines are not committed to
any particular user.

When a user wishes to engage in work that is too
demanding for his personal machine, he may approach
the system with a request for a machine. If one of
suitable characteristics is free, it is allocated
exclusively to the user for as long as he wishes to use
it. His local computer acts as a remote terminal to
the allocated machine. Thus the machines in the
Processor Bank may be thought of as processing
servers since they are provided by the system to
supply computing power to users.

A processing server cannot have local discs because
it will be allocated to different users upon demand.
Instead reliance is placed upon a central file server
for storing users' permanent data. The file server can
be accessed by any machine and, in consequence, a user
can get hold of files independently of the identity of
the allocated machine.

Mechanisms are provided so that the temporary owner
of a processing server has at least the same degree of
control over the machine as would be available if the
machines control panel was physically accessible to
its owner. Users can load different binary programs
into their machines at any time during a session of use
and operations for debugging at the hardware level are
provided. Since the necessary operations are in fact
provided by software services there is scope for
providing a richer range of functions and automation
than is possible ordinarily. There are no restrictions
placed upon the code that can be loaded into a
processing server. Users are free to write their own
operating systems and packages taking advantage of the
various services available on the network. The
freedom from arbitrary constraints upon programs is an
important aspect of personal computing.
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In the same way that a time-sharing system allocates
and controls the use of computing resources, the
Cambridge Distributed System has facilities for
exercising control over the allocation of processing
servers. However, once a user has gained use of a
machine, he may reap all of the benefits of personal
computing in terms of performance and control. Rather
than sharing the cycles of a mainframe, the user is
sharing a collection of machines. Clearly, it is
necessary that the Processor Bank be sufficiently well
endowed with computers to support the expected demand.
In practical terms this will amount to a slight over
supply of machines, but with the present trends to ever
cheaper hardware this is a small price to pay in return
for the benefits.

The Processor Bank is well placed for dealing with a
heterogeous collection of machines: a typical system
might contain a majority of one type of machine that is
suitable for most users' needs, together with smaller
numbers of machines for users with greater demands.
It is a straightforward procedure to handle dis-
tributed computations since the allocation of several
machines to one user is a simple extension to the basic
machinery.

The processing servers rely on numerous other
services to provide operating system like functions.
There are also services concerned with the allocation
and organization of the Processor Bank. The server
philosophy is taken to an extreme by assigning each
service to its own server computer. This approach is
clearly dependent upon the availability of inexpensive
computers to act as the servers and also upon the low
cost of connecting simple machines to the network. The
approach is one of functional distribution of ser-
vices. The services are truly independent: the
interfaces between them are defined in terms of
communication protocols for exchanging data over the
network. Since each service runs in a dedicated
machine, there are no problems of interference as
there could be if several of them had to be supported
by a single machine. The level of operating system
support needed by services is modest, because a single
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simple program has only limited needs for concurrency
and memory management. In particular, there is not the
problem of protecting the program of one service from
erroneous execution by another program in the same
machine, nor is there the problem of scheduling between
a number of competing services.

The Cambridge Distributed System is capable of
interworking with the other ways of using local area
networks described in the previous section. Mainframe
computers can be integrated into the system, using the
mechanisms for remote terminal access to connect users
terminals to the mainframe. The terminal in this case
may be a personal computer acting as an intelligent
terminal, or it may be a more ordinary terminal
attached to a terminal concentrator. The mainframe
may choose to use the services of the network to a
greater or lesser extent. For example, the mainframe
may have a private filing system on its own discs
rather than use a file server, but on the other hand it
may direct output to a printing server. Similar
remarks apply to the user who owns a powerful personal
computer.

It is easy to arrange that users who have access to
ordinary terminals as opposed to computers can be
integrated into the system. All that is required is a
service on the network that is capable of acting as a
place holder for a user while he seeks a processing
server to support all of his computing. Once a
processing server is allocated, the terminal connec-
tion can be routed directly to the processing server
and disengaged from the intermediary service.

1.5 Implenentation

In the preceding paragraphs, the overall architecture
of the Cambridge Distributed System has been
presented. The rest of this book is a description of
the implementation of the system. The next chapter
surveys the principal components of the implementation
from the point of view of a user. Succeeding chapters
look at particular aspects of the system in greater
detail,explaining the underlying mechanisms.
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To build a full-scale version of the system was
beyond the resources of the Computer Laboratory.
Instead a pilot model system was implemented to
investigate the important aspects of the overall
design. In the model system the Processor Bank
consists of about fifteen minicomputers sufficient to
run single user operating systems and meet the needs
of the research community for development and
extension of the system. The system is also used as a
general computing service by other groups in the
Laboratory.

Users have access to ordinary screen-based term-
inals connected to terminal concentrators. There are
a number of larger machines which can be accessed
across the network for terminal sessions, job
submission and file transfer. The only major aspect of
the total design that is absent in the model system is
that of the user with a personal machine who only makes
intermittent use of the Processor Bank. Apart from
this omission, the model implementation is faithful to
the guiding plan and is a useful computer system in its
own right.

The work reported here represents the state of the
distributed system in early 1982 when some fifty
machines of one sort or another are connected to-
gether. Development continues within the general
approach of allocating computers from a central pool
on demand.



Overview

2.1 At the terminal

The first point of contact between the ordinary user
and the system is the Terminal Concentrator to which
the user's terminal is connected. Initially the user
is talking to a simple monitor program within the
concentrator. This program organizes the connection
of the terminal to computers on the network. At any
time in the course of a session the user may press the
'break1 key on the terminal to get the attention of the
monitor program. This enables him to run several
connections from the terminal at once; there are
monitor commands to select which stream has control
over the screen and keyboard. The screen can be made
exclusive to just one connection, or output from
several can be interleaved under the user's control.
An appropriate command in the monitor sends a break
signal to a host computer. From the monitor it is
possible to close both individual connections and the
complete set. This gives the facility for dis-
connecting from a machine even if for some un-
fortunate reason the machine is ignoring commands from
the user.

To the host computer, the terminal concentrator
offers a variety of services. It is possible for the
concentrator to act in a transparent mode where every
key stroke is sent to the host which must then deal
with echoing it back. This mode is most appropriate
for programs such as screen-based editors, where
individual key strokes often result in significant
changes to the data being displayed. The other mode of

13
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operation of the terminal concentrator is that in
which it assembles complete lines of text and echoes
them locally. In this mode there are a number of
editing functions built in for erasing mistyped
characters or lines. This style of operation is suited
to simple-minded programs with a record or line
orientated view of input. There are a number of
advantages in processing lines locally in the
concentrator. One is that of uniformity; the same
editing conventions apply independently of the host to
which a connection is made. Another advantage is
efficiency; the host is spared from the task of low-
level character handling. This is particularly helpful
when the host is a small microcomputer, where the
overheads of character handling would be a nuisance.

2.2 Getting started

The user who wants access to a machine from the
Processor Bank has first to connect to a group of
network services that organize the allocation of
machines. At the heart of the group is the Resource
Manager. It is responsible for knowing which machines
are allocated, to whom, and for how long. Additionally,
it causes allocated machines to be loaded with the
program or operating system required by the user.
Commands are sent to the Resource Manager specifying a
user's requirements in terms of the identity of the
system to be loaded, how long it is wanted and the sort
of machine needed. The latter is described as a series
of attributes, some of which are very general, such as
the generic type of machine, whereas others are more
particular, perhaps demanding a machine with a large
memory configuration or faster processor. Machines
can be retained up to the maximum time declared at the
time of allocation. If a machine is not returned to
the Resource Manager before this time limit is over,
the Resource Manager will automatically regain control
over it. To simplify matters for the ordinary user the
Resource Manager knows the description and sensible
default times and attributes for a number of commonly
used systems. In this case the user simply asks for
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the system by name and the Resource Manager seeks out
in its internal tables a configuration of the system
that will be suited to one of the currently free
processing servers.

The interface to the Resource Manager is a low-level
Ring protocol so that requests to it can be made by
other computers to establish multi-machine com-
putations. For the user at a terminal there is a
service known as the Session Manager that provides a
user level interface to the Resource Manager.
Initially the user connects his terminal to the
Session Manager and then gives commands which are
translated by the Session Manager into low-level
requests to the Resource Manager. Once the Resource
Manager has caused a machine to be allocated and
loaded, the Session Manager hands the terminal
connection over to the newly allocated personal
computer. Anything typed subsequently by the user is
passed on by the terminal concentrator directly to the
personal computer. To simplify matters further, the
Session Manager service has a number of aliases: if a
user connects to it using such an alias, the Session
Manager will implicitly obey the necessary commands to
get the system conventionally associated with the
alias. For most users this is the standard way of
getting started and appears to be very similar to
logging in to a time-sharing system: the user nominates
the system he wants, there is a short pause and then
the connection is established.

2.3 Using a processing server

The most common use made of the Processor Bank is that
of running simple single user operating systems. Since
a processing server has no discs of its own, the
operating system is dependent upon the File Server
for permanent storage of data. If it had been the case
that only one system made use of the File Server, it
would have been sensible to make the File Server
responsible for all aspects of the filing system
including naming and access control. However, there
are a number of operating systems that utilise the File
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Server, each with noticeably different designs of
filing system. Furthermore, the File Server is also
used as permanent data storage by several servers,
although not within a context that can be justifiably
described as a 'filing system'. For all of these
reasons, it was decided to build a universal file
server. That is to say one that provides a set of
facilities sufficient to support many different styles
of filing system, without imposing constraints on any
of them. Thus, for example, the File Server deals with
issues such as disc space management, integrity, atomic
update of data and interlocks on access to shared
files. The File Server provides a basic naming
substrate and the client systems are left to mould this
into the particular model of a filing system they wish
to present to users. The naming of files is such that
it is impossible for an arbitrary user to access the
files of another, unless explicitly permitted to do so
by the higher level filing system. Thus the different
filing systems are protected from one another.

When an operating system is loaded into a processing
server a check is made on the identity of the user
before permitting him use of its filing system. This
is necessary as a protection against illegal access.
To effect this purpose a network-wide authentication
system is provided. In return for presenting the
correct password, the User Authentication Server will
yield a token which can be offered to other services as
proof of identity. Tokens are simply 64 bit strings
with a random component so that it is hard to forge
them, or guess them. The tokens are used as a sort of
temporary password and only persist while the user
remains logged in. When he comes to log in again a new
token is issued. Thus the short lifetime of these
tokens makes them a safer proof of identity than would
be the case if textual passwords were continuously
passed over the network. The mechanisms underlying
the authentication server are quite general and can be
used to authenticate the use of privileges, or the
right of access to a particular class of resources in
addition to the simple recognition of users by
password.
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Apart from the realization that he has a machine
entirely to himself, the user of the Processor Bank
need not be aware that he is working in a distributed
environment. The operating system he uses may care to
conceal the fact. There are occasions when the
difference does become apparent and that is when one
of the servers used by the operating system is not
available for any reason. In these cases, the
operating system can either warn the user or take
sensible default action. For example, if the Printer
Server is busy when a print command is given, the
document could be spooled locally until the server is
free. There are more severe conditions where nothing
can be done; if the File Server is broken, most systems
become impotent. One of the challenges of working in a
distributed environment is to design systems where the
user interface is sufficiently well-designed that the
user does not have to possess an image of the total
system in order make sense of the behaviour of his own
machine.

One respect in which a processing server is unusual
is in its connection to the Ring. Since the machine is
dependent upon the Ring for all services, the conn-
ection must be efficient and offer high throughput.
Furthermore, the interface to the Ring is the only
point at which control can be exercised over a
processing server because of the design policy that
the processing server itself is at the total disposal
of the user. Thus loading systems, stopping and
starting execution are all the responsibility of the
Ring interface. In fact processing servers have an
interface to the Ring controlled by a high-speed
microcomputer. It deals with the issues of getting a
machine loaded and provides a DMA interface for data
transfer across the Ring. The interface is not
sufficiently powerful to be able to cope with fetching
memory images from the File Server and unpicking a
complicated loading format. Instead this is left to a
server called the Ancilla. The Ancilla receives
orders from the Resource Manager to load particular
machines. It sets about transferring data from the
File Server, converting it to the primitive format
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expected by a processing server Ring interface. The
Ancilla is also responsible for hiding any low-level
details about the loading protocol in the Ring
interface of a particular variety of machine - thereby
offering a uniform set of operations at the higher
level.

The Resource Manager and Ancilla working together
are in a position to provide the user with help when
debugging on a bare machine. A new copy of a program
can be loaded into a previously allocated machine on
behalf of its owner in the event of a catastrophic
failure. The Ancilla has the ability to set a de-
bugging mode in processing server Ring interfaces.
The interface is given the identity of a debugging
machine and allows it to read and write memory
locations arbitrarily. These facilities can be built
upon to provide a range of debugging tools from simple
post-mortem dumping to full scale interactive systems.
It is the general aim of the Resource Manager and
Ancilla services that a user should have as much, if
not more, control over a machine as he would if its
control panel was in his office.

When a user has finished with a machine, or when the
time limit on a session expires, it is left to the
Resource Manager to tidy up. Any outstanding de-
bugging sessions have to be cancelled and a null
program is loaded into the machine to inhibit it from
further action.

2.4 The small servers

The correct working of the system at user level is
clearly dependent upon a collection of network
services such as the Resource Manager, Session
Manager, Ancilla and others. All of these services run
in small microcomputers with each machine responsible
for just one service. The servers are designed to run
unattended and to restart automatically after loss of
power and other transient forms of disconnection.
This level of management is divided between a small
control program common to all of the small servers and
a special server called the Boot Server. When a small
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server is turned on, a forced entry is made to the
control program. Its first act is to send a message
across the Ring to the Boot Server asking to be loaded
with the correct program. The Boot Server recognises
such requests and replies by sending back a simple
memory image of the appropriate code for the server.
The control program then branches into the loaded code
and the service is alive.

Clearly the Boot Server has a special position in
the overall system and must not depend upon any of the
other servers for its own operation. In the present
system, the Boot Server runs on a free-standing
computer with its own local discs. If remote login is
not possible because of a Ring disruption, the various
files and tables held by the server can all be
manipulated by logging in at dedicated terminals
attached directly to it. (Terminal concentrators,
along with all of the other servers driving
peripherals,are also examples of small servers.) It is
essential that some level of recovery should be
possible should the Boot Server fail. If the small
server control program cannot solicit a reply from the
Boot Server, it enters a special mode in which any
machine can mimic the loading protocol and insert code
into the server. This allows manual intervention to
restart a service in the absence of the Boot Server.
To cope with temporary loss of the Boot Server, the
control program will cycle alternately between polling
the Boot Server and taking a response from any machine.
Thus if the Boot Server recovers, the normal automatic
mechanisms will come into play.

The microcomputers used to support the network
services are comparatively feeble in terms of
computing power and memory capacity. From the point
of view of the services this is not a problem, since
they are mostly simple programs and undemanding.
Because of their simplicity, the servers are
inexpensive to construct and the assignment of
individual machines to services is not an
unjustifiable luxury.

For the systems programmer wishing to write and
install a new service, however, there are difficulties
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to be faced. The microcomputer systems are not
capable of supporting a filing system or running
compilers, editors and other user software. Instead,
program development must be done elsewhere, usually on
a processing server. There are various cross
assemblers and compilers to generate object code for
loading into servers. For software development and
testing there are a number of uncommitted small server
systems attached to the Ring. When an uncommitted
system is started the Boot Server loads a simple
bootstrap program that waits for object code to be
sent from any machine on the Ring. Thus a systems
programmer can test new code in one of the free
machines. As part of the loading protocol a debugging
connection between the small server and the
programmer's machine is set up. The connection directs
debugging commands from the user to the small server's
control program. The facilities provided are
rudimentary, but can be easily extended by a debugging
stub in the small server, driven by the user's
debugging program to provide high level operations
such as breakpoints, memory dumping and examining
machine registers. To complete the suite of debugging
functions, it is possible for the programmer to
generate a restart signal in order to completely
reload a machine. The culmination of all these
measures is that a systems programmer can work on a
new service from the terminal in his office without the
need to have physical access to the microcomputer
system being used. Obviously, in the case of a machine
driving a peripheral device, it is likely that for some
of the time at least the programmer will need to be
close to the device so that it can be observed. Even
so, he gains the advantage of his programming
environment running on a more powerful machine from
the Processor Bank.

A service is normally only installed fully in the
Boot Server and allocated a dedicated machine after it
has been thoroughly tested in the environment
described above. However there are occasions when a
trusted service may encounter a previously unnoticed
bug and crash. The small server control program is
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entered,automatically in the event of several hardware
detected errors such as stack overflow, or fetching
instructions from uninitialised memory. First a
record of the crash is sent to a server, called the
Logger, which prints the information on a
teletypewriter. The record is timestamped, taking the
time from another server, the Time Server, which
monitors clock transmissions sent by radio. Once the
event has been noted, the small server is restarted in
the normal way. There are certain defensive measures
that will take a server out of use if it fails
repeatedly, as might occur because of a hardware fault.

To the ordinary user, the small server system is
entirely self-sustaining; restarting and dealing with
errors are handled automatically. Because they are
very simple circuits, the servers are in practice
extremely reliable and operating systems can make use
of them safely. Taken in unison the collection of
services amounts to a network-wide operating system.

2. 5 The Name Server

To use any of the various services it is essential to
have the ability to address them. If the system was
entirely static all services could be known by their
location on the Ring and a directory of Ring addresses
(i.e. numbers) could be published. In a changing
environment this is too inflexible: services are often
moved from one machine to another and machines may be
moved to new positions on the network. To cope with
these changes, services are located by looking up a
textual name for the service in a special Name Server.
This machine is special in that its location on the
Ring is fixed for all time and well-known. To find out
where a service is currently located a simple message
exchange with the Name Server will translate a textual
service name into a numeric Ring address. From the
point of view of system management, the Name Server is
a central register of services and machines; any
relocation in either category becomes public simply by
changing the Name Server's tables. To the user, the
use of textual names makes it easier to remember about
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services because they can be given mnemonic names
which do not change. It is very unusual for a user to
know the low-level addresses into which names are
turned. As an example of the Name Server in operation,
when the connect command is given to a terminal
concentrator monitor, the command includes the textual
name of the system required. A standard prefix
denoting remote terminal access is joined onto the
front of the system name and the whole looked up in the
Name Server. This yields a Ring address to which the
concentrator should open a remote terminal stream.
The Session Manager, which deals with terminal
connection into the Processor Bank, has a number of
names corresponding to a variety of commonly used
systems. Each name turns into a different address
which is distinguished internally by the Session
Manager, and the appropriate Resource Manager
commands are generated automatically.

2.6 Other services

Within the Cambridge Distributed System several other
free standing machines are included with their own
fixed operating systems. The most notable is the CAP
Computer, built as part of an earlier research project.
The CAP runs a time-sharing service for a number of
users concurrently. However, CAP has no peripheral
devices of its own: the File Server is used for both
filing system and swapping purposes, terminals are
connected from across the Ring and printing is done
using the Printer Server. CAP users are in general
terms not aware that so much of the operating system is
dependent upon the network.

The University of Cambridge Data Network is
connected to the Ring. It provides terminal and remote
job entry facilities into a central mainframe and also
to other machines on various national
telecommunication networks. It is also possible to do
file transfers between the machines in the Cambridge
Distributed System and the central service mainframe.
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2.7 Detailed description

Succeeding chapters deal in greater detail with the
programs and protocols at the basis of the system
overviewed here. Chapter Three deals with the
particular properties of the Ring and the influence of
high bandwidth communications on systems and
protocols. Chapter Four looks at the design re-
quirements of file servers and how they can be met. It
contains an account of the operations and
implementation of the File Server at Cambridge.
Chapter Five deals with the control and debugging of
small servers. Chapter Six lists the various simple
services available to users. Chapters Seven and Eight
are concerned with the Processor Bank. Chapter Seven
looks at the processing servers and their
capabilities; Chapter Eight describes the management
and control of the Processor Bank as a whole. Chapter
Nine explains how the various protection and
authentication problems in the system are tackled.



The Cambridge Digital
Communication Ring

3.1 Local area networks

The Cambridge Digital Communication Ring has partic-
ular properties that need to be understood in order to
follow the work described in this book. It also shares
those properties of local communication systems that
set them apart as a class from wide area networks and
affect the style in which they are used. It is
therefore appropriate to start with a brief outline of
the relevant properties of local networks in general.

Local networks are characterised firstly by speed.
Rates vary, and one has to be careful to distinguish
between network capacity and point-to-point
bandwidth; however, it is reasonable to say that, in a
local network, the relevant numbers are quoted in
megabits/second. One consequence is that, by and
large, availability of bandwidth is not really an
issue. Practical local area networks are never heavily
loaded and are designed under this assumption. When
supporting applications such as the Cambridge
Distributed Computing System, observation shows
typical utilisations of 10-30$ during a busy second.
The limitations on the rate of data transfer between
machines come from the behaviour of the machines
themselves - such as from the overheads involved in
task-switching, in copying data from buffer to buffer,
and in sending acknowledgements. It is thus important
to plan the programs used in the various machines to be
sufficiently simple so that they can exploit the
bandwidth fully. In older communication systems, by
contrast, the accent was on communicating as little as
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possible because of the limited bandwidth available
when using conventional telecommunications equipment.

Secondly, local networks are not very prone to
error. Rates of corruption of bits of one in 10^0 or
one in 1011 are common. A desirable simplicity of
protocol results because a good deal of material may be
transmitted before checking for satisfactory receipt.
Since low level error control is one of the major
sources of protocol overhead, the low error rate is
very beneficial.

Finally local networks are often, if not invariably,
sequential. Material sent over them may be lost but it
will not become disordered. The practical effect of
this is that it is considered perfectly reasonable to
send a quantity of data with the assertion that if the
right quantity arrives in correct-looking packets then
it was the right data. The network might lose data but
it certainly will not invent it.

All of these properties are very different from
those of wide area networks, and have a profound
effect on the style in which local networks are used.
Calling on other machines for trivial services can be
done at any time; it is possible to consider relying on
very high level recovery action in the event of
communication failures because they happen so rarely.
A large number of architectures have been proposed, a
considerable number implemented, and extensive
practical experience is available for several of them.
The most common architectures are contention buses,
token rings,and empty slot rings.

The best known contention bus is the Xerox
Ethernet. An Ethernet consists of a single length of
co-axial cable forming a passive bus interconnecting a
number of taps that provide the points to which
devices can be connected. Ethernets are intrinsically
broadcast mediums; information sent out by one station
goes to all stations on the bus. Data is normally
transmitted in bursts called packets and each packet
is labelled with its intended destination. It is left
to individual stations to recognise and filter off
packets for the device they connect. An Ethernet
station transmits only when the bus appears quiet.
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During transmission a watch is kept to see whether
another station begins transmitting too; if such a
collision occurs then both stations abandon their
transmissions and each pause for a random delay before
attempting to retransmit. It is this behaviour that
gives rise to use of the term contention because,
unlike some of the other architectures, there is no
orderly discipline for accessing the bus. A reasonable
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analogy is that of a meeting of polite people without a
chairman.

Token rings have all stations connected in a loop
around which a special signal called the token
circulates. To transmit, a station must wait until it
is able to remove the token, whereupon it is allowed to
send data onto the loop. Once the transmission is
complete the station should establish the token signal
once more to indicate that the loop is free. Thus the
circulation of the token establishes an orderly
discipline for accessing the loop so that at most one
station is transmitting at any time. It is rather like
a meeting with only one microphone (presumed necessary
for communication) passed from hand to hand. .

An empty slot ring circulates an endless train of
slots or packet frames of fixed size. These slots are
typically very much smaller than the size of packets
transmitted on Ethernets and token rings since the
bits comprising the train must be stored in the ring.
To transmit, a station awaits an empty slot and fills
it. Each station monitors passing slots, and
intercepts filled slots containing data destined to it.
Various rules may be adopted for emptying the slot
after its contents have been received. Thus, unlike
Ethernets and token rings, the bandwidth of an empty
slot ring can be shared between as many transmitters
as there are slots on the ring. The point-to-point
bandwidth is only some part of the bandwidth of the
transmission medium. But, in contrast to the other two
architectures, the latency of access to the medium is
greatly reduced, provided that steps are taken to
avoid particular stations hogging slots. An empty slot
ring is not like any kind of meeting; physical
analogies are possible with rollercoasters and other
fairground equipment, or with paternoster lifts.

All three types of local network have energetic and
variously moneyed advocates; for the purposes of
applications such as the Cambridge Distributed System
(though not for all imaginable purposes), they are
almost indistinguishable in practice.
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3.2 The Cambridge Ring

This section describes the Cambridge Ring at a system
level; engineering aspects are to be found in other
publications mentioned in the Bibliography. It should
be emphasised that what is described here is the Ring
that has been used for the experimental work in
Distributed Computing which is the principal subject
of this book. Later Rings developed in Cambridge and
some of the commercial products based on the Cambridge
design differ in detail.

The Cambridge Ring is an empty slot ring with a raw
data rate of 10 megabits/second. Transmission is
usually over dual twisted-pairs'' used for ordinary
telephone cable. However, since the Ring is a point-
to-point system, it is not necessary to use the same
medium throughout an installation, and fibre optic or
co-axial cable may be substituted where a long link is
needed. The most basic piece of Ring apparatus is the
repeater, which is required wherever any device is
attached and also where signal regeneration is needed.
A repeater not only passes the bit stream to its
output; the data are also passed out of the repeater
for external inspection, and, if the repeater is
suitably enabled, external data may be substituted for
the incoming bit stream. The repeaters draw their
power from the Ring itself so that the integrity of the
Ring does not depend on all connected devices being
switched on.

Data is transmitted round the Ring in minipackets.
Each minipacket consists of two data bytes, a source
address byte, a destination address byte, two response
bits and four control bits as shown below. A constant
number of slots circulate round the Ring, the number
being determined by the length of wire and the number
of repeaters. Each slot is able to contain one
minipacket. It is required that there is at least one
bit time of gap to locate the beginning and end of the

C1] Twisted pairs produce radiation, and although this is not
a problem on the original site, it may easily be avoided
by shielding.
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packet train. If there were 122 bits altogether in the
Ring there would then be three slots in the train with
an eight bit gap. It should be emphasised that the
number of slots is likely to be small. The Ring in use
at the time of writing for the distributed system is
about a kilometer long, and has over f i f ty devices
connected. It has four slots and a short gap, and is by
far the largest Cambridge Ring in use.

1 destination source data

T * — monitor bit rcc

' full-empty bit

data

t t

Wherever a device is to be connected to a repeater
it is necessary to insert a station. A station has an
eight bit address set on a coding plug which is
associated with each minipacket sent and determines to
which incoming rainipackets the station will respond.
Each station has a register which may be used to permit
reception from any source, from a nominated source, or
from no source. Stations are powered by the device
they attach, not by the Ring. It is not necessary for
the Ring's integrity that stations be powered at all.
The station unit watches the bit stream emitted by the
repeater and detects the framing of the minipackets.
To transmit a minipacket it is necessary to load into
the station the data bytes and a destination byte, and
to give a transmit signal. The station watches for an
empty slot; when one arrives it is marked full and the
source, destination, and data fields filled in. The
minipacket passes on its way, and eventually returns to
the sending station. On the way it should have passed
the destination, at which one of a variety
possibilities will have occurred.

No action - the receiving station was switched off (or
non-existent),

Accepted - the data and source bytes have been copied
into the receiving station,

Busy - the receiving station was switched on but its
reception register was not empty,
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Unselected - the selection register in the receiving
station had been set to exclude reception from this
source.

The status is marked in the minipacket and reported to
the originating station. The action to be taken by the
sending host in the event that the minipacket was not
accepted is not part of the definition of the Ring:
different hosts may take different actions. The Ring
does have a feature to prevent excess false traffic
caused by a host looping sending minipackets that are
not accepted. The more attempts are made to send the
same minipacket the longer the report of its fate
(unless accepted) is delayed in the station.
Ultimately the bad news will be held up for sixteen
Ring revolutions. When the minipacket returns to the
sending station its content is compared bit by bit with
what was sent, and the station interface includes a
facility for reporting error. When a minipacket
returns to the sending station it is always marked as
empty and passed on. This is an anti-hogging device,
and ensures that the bandwidth is shared out equally
between the stations. It is not something that is
visible to the system programmer at all.

One station is special and is called the monitor
station. It is not connected to any host and its task
is to set up and maintain the Ring framing, and to deal
with the effects of obscure errors such as a slot being
erroneously marked full. In order that the Ring may be
readily maintainable, a variety of continuous checks
are carried out by the monitor station and all other
stations. This is done to detect faulty equipment
early; a slightly defective repeater altering say one
bit in 1C)9 would otherwise pass unnoticed for a long
time2. This continuous testing is a unique feature of
the Cambridge Ring, but has little direct impact at the
system level. The details of the fault detection
mechanisms are not relevant here; it is sufficient to
state that detected errors result in the transmission

[2] To avoid giving a false impression, it should be said that
the interval between changes of repeater on practical
Rings is measured in months or years, not days or weeks.
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of a maintenance minipacket addressed to station
zero. The use made of these is described in Section
6.4.

Between the station and the host come the access
circuits which serve as interfaces between the
station and a particular host. A great variety of
access circuits exist, of widely varying degrees of
sophistication. The crudest access circuits generate
an interrupt whenever a minipacket arrives or has been
successfully sent. This takes very little hardware,
but leads to rather low throughput because most
machines have diff icul ty keeping up with the high
interrupt rate. A rapid sender sending continuous
material to such a station will be likely to experience
a considerable number of 'busies' and will have to
retry repeatedly. Equally, a host transmitting by
means of such an access circuit will not make anything
like the best use of the Ring. To obtain ideal
performance it is necessary to make a transmission
request to the station within about 3.5 microseconds
of the return of the previously transmitted
minipacketS. Few machines if any can process a program
interrupt that fast. Provided, however, that the
machine in question does not habitually receive or
send large amounts of data, the economy of circuits
resulting from a program interrupt driven interface
can be very worthwhile. In some cases the interface is
similarly simple but interrupts the host's microcode.
This typically means that the Ring will be serviced no
later than the end of the instruction being executed
when the interrupt was raised, so there is a good
chance of meeting the timing requirements for optimum
transmission. If the next level of protocol which
involves blocks of information, logical channel
numbers and checksums (the packet protocol - see

[3] The timing requirements for reception in ordinary
circumstances are much less stringent since minipackets
from a particular sender will be separated by at least the
time required for a minipacket to circulate around the
Ring.
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below) is implemented in microcode, very good
performance is possible.

More elaborate interfaces move the material to and
from the host by DMA. In this case it is possible
(though not necessary) to make additional performance
gains by arranging that the packet protocol is handled
in the interface. This relieves the host of
substantial overheads such as checksum calculation as
will be seen later. Such interfaces are typically
based on fast microcomputers that on one side simply
poll the signals from a station and drive DMA circuits
on the other.

Finally, as a sort of special case, there are simple
microcomputers that just poll the station signals.
They are only able to receive or transmit when in a
loop; the station signals are mapped into the machine's
address space and must be polled at regular intervals
in order to meet the various timing constraints. This
approach is taken when machines are provided for
simple services which do not require transfer of large
amounts of data in haste. They may be thought of as
hosts with integral access circuits.

It is characteristic of the Cambridge Ring that the
unit of data that has to be received synchronously is
very small, just two bytes. Because of this, high or
low performance interfaces can be made available
optionally as practical needs and finance dictate. In
general, extra high performance requires more
elaborate and expensive access circuits.

There are some applications for which direct use of
minipackets is appropriate, because the information to
be transmitted consists of disjoint small pieces of
material at a low total data rate. Point-to-point
digital telephony is an example, and the Ring has been
successfully used in this way. Pairs of samples from
an ordinary 64 kHz speech digitiser are sent in single
minipackets at the rate of one pair every 256
microseconds. Usually, however, it is desirable to
aggregate minipackets into larger units, and a
description of the standard way to do this follows.
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3. 3 The packet protocol

Almost all communication round the Ring takes the form
of packets1* consisting of up to 1024 data minipackets,
that is 2048 bytes of data. The format is simply
defined as follows:

— One header minipacket
— One route minipacket
— Up to 1024 data minipackets
— One checksum minipacket

The header minipacket has ten bits defining the number
of data minipackets, a fixed pattern to facilitate
recognition, and a two bit field which gives type
information to be defined later. The route minipacket
has a twelve bit field known as the port number to give
a logical channel into the host, together with four
bits which may be used to characterise, at a higher
level, the type of the packet. The checksum minipacket
is a 16 bit sum of all minipackets including header and
port, computed modulo 2^-1, i.e. with end-around
carry.

Typical implementations of the packet protocol
proceed as follows, considering reception first. The
receiving station starts with its selection register
open, so that minipackets from any source will be
accepted. Minipackets that do not conform to the
format rules for headers are discarded. On receipt of
a header minipacket , the selection register is set to
accept minipackets from the source of the header only,
and the route minipacket awaited. On its arr ival , a
check is made that a packet is in fact expected from
the relevant source and with the defined port. In
general , if the packet is expected the host will have a
buffer pre-assigned specifically for it and the
ensuing data minipackets will be read into the b u f f e r .
At the end the checksum is checked and the select

[4] Readers from a different culture may think of a packet as
a datagram. It is also the unit of forwarding in a ring-
ring bridge, a topic outside the scope of this book.
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register set to accept from all senders. If the packet
was satisfactorily received, higher levels of software
are notified.

The packet definition says nothing about selection,
and it would be open to a suitably hardy iraplementor to
arrange to receive several in parallel. For this and
other reasons nothing is said in the definition about
what to do if the source and route do not correspond to
anything expected. Some implementations swallow and
then ignore the whole packet (which is what happens in
the corresponding case for an Ethernet packet),
whereas some set the select register to reject
everything for a short period. The intent here is that
there is no other reason for a data minipacket to
receive an unselected response. It is a broad hint to
the sender that his material is being rejected by the
recipient and he might as well stop sending it.

The following is a typical implementation of sending
a packet.

1 Send the header. If the response is busy try to
send the header again. If the response is
unselected the header of the packet may be tried
again or an attempt may be made to send packets
intended for other destinations before trying
this header packet again.

2 Send the route. If the response is busy, try
again, if unselected give up.

3 Send the data. If there is an unselected
response, give up. Retry on busies.

4 Send the checksum under the same rules as the
data.

It is legitimate to send several packets (to
different physical destinations) in parallel. No
current implementations do so.

Both sending and reception of packets require the
use of time constants after which the action in
question is abandoned. Reception timeouts apply to
entire packets and are of the order of 500-1000 ms. On
transmission, all implementations that are capable of
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doing so proceed by counting attempts rather than by
overall transmission timeouts. Typical figures are
five hundred attempts to send a header and fifty
attempts to send subsequent minipackets; it should be
recalled that inability to send a header may well be
caused by the receiver having set its selection
register to receive only from another station from
which it is accepting a packet.

Two minor options in the packet protocol are
mentioned for the sake of completeness. The type bits
in the header minipacket indicate whether the block is
of the standard variety described or whether it is:

a) a literal data packet, in which the ten bits that
normally give the length are themselves data and
there are no further minipackets, or

b) a packet with zero where the checksum would
ordinarily be found. This option was provided
because it was expected that some
implementations on very feeble hosts would not be
able to compute the checksum.

Neither of these stunted options for packets are used
much in practice.

A simple protocol implemented above the packet
protocol is the single shot protocol. A large number
of the management functions of the distributed system
are implemented using it. The protocol consists of a
few conventions about simple request-reply packet
exchanges. The conventions are sketched to give the
flavour; data minipackets are referred to as 'datapkt'.

Request Packet
datapkt 0: a fixed pattern
datapkt 1: the port to be used for the reply
datapkt 2: a function number, zero if inapplicable
datapkt 3 and on:

parameters and data of request



The Cambridge Ring 37

Reply Packet
datapkt 0: a fixed pattern
datapkt 1: zero
datapkt 2: a return code, zero indicates success
datapkt 3 and on:

results and data of reply

A set of conventions has been adopted to regulate the
assignment of return codes, so that some attempt may
be made to interpret them without reference to
extensive dictionaries. In particular, it is possible
to write a general handler for the single shot protocol
which will try again in most cases where it is
reasonable to do so. This will be independent of the
particular request being made, since the return codes
for which retry is reasonable are independent of the
purpose of a particular single shot protocol
transaction. For the assistance of programs which
have to provide textual error messages for users, a
small service on the Ring produces textual messages as
translations for return codes. The single shot
protocol is generally used in the manner of a remote
procedure call.

The packet protocol does not of itself constitute a
reliable method for sending streams of data which will
be acted upon before completion. There are no
guarantees of delivery, and there is no acknowl-
edgement of the reception of a packet as a packet; the
only acknowledgement is of a higher level nature such
as a single shot protocol reply.

For some applications, such as terminal handling and
file transfer between machines with local discs where
the high performance File Server protocols would be
inappropriateS, flow control is required to regulate
the exchange of data. This requirement is met by the
byte stream protocol. Flow control is achieved by
the inclusion of request and acknowledgement commands
in the packets of data exchanged by the communicating
parties. Byte streams are bi-directional so commands

[53 See Section ^.2 for more details about the File Server
protocols.
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and data in one direction are interleaved with the
acknowledgements in the reverse direction. One
problem that can arise, even with an orderly exchange
of packets, is that one party may send the next packet
in sequence before the other has completed internal
processing of the previous packet. Given the rules of
the packet protocol, this could lead to the apparent
loss of such a packet. By a symmetrical argument, it is
possible that an acknowledgement packet could be lost
resulting in the retransmission of data, thereby
duplicating data. Accordingly byte stream protocol
packets contain a sequence number, and all request and
acknowledgement commands indicate where in the
sequence they apply. In this way lost or repeated data
will be detected so that the correct ordering of bytes
carried across the stream will be maintained. As a
side effect, if a packet is lost because of the
unlikely event of minipacket corruption on the Ring,
retransmission will occur automatically and the byte
stream will be error free. A full specification of the
protocol, including details about the way in which byte
streams are opened and closed, is given in the Appendix
together with some remarks about implementation
issues.

It is customary to relate, or to attempt to relate,
the structure of any communication system and the
protocols for its use to the ISO Model of Architecture
for Open Systems Interconnection. The layers for
which the model is so well-known are present because
they represent, to the devisers of the model, levels at
which there may be significant choices for
implementation. In a system based around a single
local network, the assignment of functions to layers
becomes somewhat arbitrary. In the present case it is
clear what constitutes the physical layer: the wires
and optical fibres, modulation methods, repeaters and
so on. The data-link layer includes stations,
addressing and minipackets. The packet protocol is a
network layer notion, though the reasons for this
assertion are not evident from anything discussed in
this chapter or book. If two rings are bridged
together, then the packet is the unit of transfer



The Cambridge Ring 39

across the bridge and nothing below the packet is
t ransferable . On a single ring, minipacket trans-
actions may be used if desired. The single-shot and
the byte stream protocols are clearly transport-level
notions.

3 - 4 Ring performance

The Ring, as already stated, has a raw data rate of 10
megabits/second. If we assume that the gap is short,
the system transmission rate for useful data will be
10*16/38 or just over four megabits/second. This will
be shared between all hosts seeking to transmit; there
is only one bulk transmission at a time in progress
(of ten there will be none) . The point-to-point data
rate depends upon the number of slots in the Ring. A
slot used for transmission is passed on empty after it
returns to the sender. In the prototype
implementation, the next minipacket cannot be used
either. Thus, if there are n minipackets in the Ring,
an individual sending host can only use 1 / (n+2) of the
total capacity, obtaining 4 / ( n + 2 ) megabits per second
of data transmission. Detailed analysis shows that if
there are m stations seeking to transmit as fast as
they can, each will get 1 / (n+m) of the total bandwidth
if m > 2 , but 1 / (n+2) if m=1 or m=26 .

A number of measurements have been made of ring
t raff ic when the system as a whole is in normal use. A
hundred samples each were taken over periods varying
from one millisecond to one second. For each sample
period we give in the table overleaf the highest
observed utilisation, i.e. the maximum of the hundred
samples, and also the mean.

Heavy loadings can be attained by suitably and
carefully providing enthusiastic transmitters and
willing receivers. In practice they do not arise, in
part because of contention for a receiver. Although
the Ring is not a contention system in the usual sense,

C6] It is necessary to re-emphasise here that the analysis
refers to the specific type of Ring used for the
developments reported in this book, and not to later
versions.
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Sample period Maximum Mean
1 ms 1456 3.758

10 ms 19$ 3-7%
100 ms 13* 3.456

1 s 1256 3.1*

in use there is a certain amount of contention because
implementations of the packet protocol, as described
above, set the select register to receive from the
packet source only. This means that header
minipackets from other sources will be rejected, and
the effect of this on transmitters is definitely one of
perceived contention.



The Cambridge
File Server

4.1 File servers

The purpose of file servers is to provide backing store
for machines in a network and to make files readily
accessible from other machines in the network. The
precise function of a file server is open to debate.
There is a spectrum of possible designs which reflect
differing judgements as to those operations which
should be supported by the file server itself and those
which should be left to its clients.

At the extreme of simplicity, there is the remotely
accessed real disc. The operations supported would be
read page and write page, each operation having as one
of its arguments a physical page address of the form
<Cylinder Track Block>. Such a file server would work
highly efficiently; its software would have very little
to do at all. The designers of client programs,
however, might be less happy with it for two different
reasons. First, the allocation of space would be
tedious; it would give rise to synchronisation
problems unless the disc system were partitioned
physically between clients. Secondly, there would be
no convenient system for ensuring the integrity of the
disc contents. As indicated, there would be no
requirement that different clients recorded
allocations made in the same way: they might have quite
different directory structures and naming
conventions. The possible extent of client-
independent clean-up and recovery would be almost nil,
with a consequent replication of code in the clients
for this purpose. It seems desirable to have some
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higher level of organisation known to the file server.
Next comes a system that may simply be described as

a virtual disc. Such a system at its crudest would
have as primitive operations allocate page, free page,
read page and write page. In such a system the
response to an allocate page request would probably be
a unique page identifier, and this would be used in
read page and write page requests. The identifier
would probably not be a physical address, for the
following reason. It is expedient to be able to check
whether the address given in a read page or write page
request is legitimate, that is to say whether the page
referred to is in fact allocated. This could be done
by marking the content of the page or by having a
separate data structure accessed on a lookaside basis.
For example, in parallel with the seek phase of a
read page request, the file server could refer to a
simple bitmap to check that the page was allocated. In
practice a different sort of address would probably be
chosen which allowed for more flexibility and some
security. If the given identifier is turned into a
physical address by a suitable translation procedure,
flexibility is gained because the binding between the
client's identifier and the physical material is under
the server's control. There is also the advantage of
being able to isolate bad tracks or pages easily. If
the identifier is chosen from a space that is very
sparsely occupied, there is a measure of protection
against accidental use of incorrect identifiers.
These two possibilities are more or less independent,
in the sense that features of one may be combined with
those of the other. For example, it is possible to
issue identifiers which combine the physical address
with a large field chosen essentially at random. In
this case it is not possible to vary the binding
between identifiers and physical disc pages very
easily, but there is the advantage of sparseness as a
guard against error.

If the points just mentioned are taken seriously, a
particular kind of virtual disc system may be
considered as being based on the ideas of capabilities.
Capabilities are usually thought of, in hardware
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implementations, as unforgeable tickets of permission
to perform some operation, and, when applied in the
design of processors, as being protected by
segregation into special segments or by tagging in the
machine's memory. The unforgeability is gained by
forbidding ordinary instructions to alter the content
of capability segments in the one case, or by making
ordinary data instructions destroy a capability tag in
the other. Capabilities may be passed between
procedures or processes, and this is done to give a
computation activated by call or message the authority
to carry out the actions called for. If it is arranged
that in a virtual disc file server the identifiers are
drawn from such a sparsely occupied space, the chance
of any person or program guessing or computing a valid
identifier may be regarded as zero. The identifiers
themselves may then be treated as capabilities and no
further access restriction need be imposed^.

A capability-based virtual disc system is a
considerable advance over a simple remote disc
service, but still leaves a great deal of work to its
clients. This may be seen by considering how very
little such a server can do to assist the client. It
can check that the set of blocks for which capabilities
exist and the set of free blocks are exclusive and
exhaustive - and that is all. Any organisation of
blocks into higher level constructs is the res-
ponsibility of the client, and no help is available to
him in doing it. It is not desirable, however, that all
responsibility should be removed from the client, as
the next example shows.

At the other end of the spectrum there lies what may
be called the file repository. This term is used to
refer to an arrangement in which the file server

[1] The analogy between sparse identifiers and capabilities in
hardware is not complete. In particular, it is possible
to assume in a capability-based computer that a capability
is what it appears to be, and often also to determine for
what type of object it is a capability, without using it.
Capabilities whose unforgeability comes from sparseness
need to be exercised to be validated, since the only way
to distinguish them from arbitrary bit patterns is to
present them for use.
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handles almost all of the organisation of material for
the client. A repository is rather like a multiple-
access system in which only the commands appropriate
to files exist. The user may log in to the repository,
authenticate himself, and then make requests for
various actions. For example, the contents of a
directory may be examined and updated , directories may
be created, and files may be moved to or copied from
the repository. The repository deals with access
controls and maintains the integrity of the directory
structure. Like any other filing system, it has an
essentially fixed set of naming conventions. Such a
system has many advantages. It provides a useful
service with a minimum of client code, and it can
maintain a good level of integrity because of the
amount of structure available to it. It certainly
supports the notion of a file which the virtual disc
server did not: it knows which collections of blocks or
pages constitute files or directories. It can check
accordingly that the files referred to in directory
entries are complete and of the size stated, that they
are disjoint, and that their internal structures are
well-formed. It can check that disc space not
referred to in directories is all marked as free. In
short it can do as much consistency checking as could
reasonably be required. This has however been
achieved at the cost of fixing the naming structure
and directory organisation, an action which has
removed the flexibility of the server designs
mentioned above.

The Cambridge File Server occupies an intermediate
design position between a virtual disc server and a
repository. It is an implementation of what Birrell
and Need ham called a Universal File Server 2. In this
design the intention was to augment a virtual disc
service by a naming substrate which would provide the
desired coherence without committing the clients to
any specific conventions at the level of text names or
directory structure. Indeed, it was a design

[2] A.D. Birrell & R.M. Needham. September 1980. 'A
Universal File Server'. IEEE Transactions on Software.
Engineering. New York. SE-6(5), 450-453.
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requirement that the server should be able to support
several name or directory structures at the same time.
Since the local implementation which will be described
below has most of the attributes of the general design
it will be unnecessary to go into detail here, but some
points of principle will be mentioned. A Universal
File Server supports two classes of objects, called
files and indices. A file is an uninterpreted vector
of bytes, and has a unique identifier that is permanent
and never re-used. This identifier is also chosen from
a sufficiently sparse space that it may be assumed
unforgeable and considered as a capability in the
sense described previously. Operations on files are
performed on the basis of the identifier, hereinafter
referred to as a PUID (Permanent Unique Identifier).
The commitment the server makes is to maintain a file
in existence as long as its PUID is recorded in an
index that is accessible from a fixed root index.
Indices also have PUIDs, and the PUID of an index may
be recorded in another index (or in itself) just like
the PUID of a file. The structure of indices thus
constitutes a general naming network. PUIDs may be
stored in more than one index and looped structures
are possible. Accordingly it is not sufficient in
general to rely on reference counts to reveal that an
object ought to be discarded and general garbage
collection facilities have to be provided. It may be
noted that the garbage collection task is not
enormous, since the name-containers that have to be
scanned consist only of the indices which will in all
practical circumstances be far less numerous than
files.

It is up to client systems to make use of the index
facility as they will. One client system might have a
complex structure of directories and also an index
corresponding to each directory, whereas another might
have a single index in which all PUIDs from a filing
system were recorded. In the latter case, the
structure of the filing system would not be mirrored at
all by an index structure. It should be noted that
indices are entirely separate from directories, and
for a very good reason. Indices are objects known to
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the file server implementation, as they have to be for
the commitment on file existence to be discharged. The
format of an index is thus fixed by the design of the
server, whereas the designers of individual client
systems ought to be free to design directories to suit
their own requirements. The information directories
contain is variable depending on textual naming
conventions, access controls, accounting methods, and
so on.

Various attributes may be associated with files in a
server of the type being discussed. Some are there for
purposes internal to the server: examples are the size
and a default pattern to be used when part of a file is
read without previously having been written. Others
are not interpreted by the server at all, but are kept
with the file for external convenience: notes as to the
file structure would be examples. The server can make
no guarantee of the accuracy of any attributions of
the second type.

Another area of design choice, to a considerable
extent independent of the choices just outlined,
concerns questions of interlock and atomicity. To
what extent should the file server provide facilities
for exclusive access to material and for causing
compound actions to appear atomic? It has been usual
to place the responsibility for interlocking on the
server itself, but there is another choice. In the
universal design it is expected that naming and access
control management will be done outside the server
(quite possibly using data stored within the server);
exclusive access and locking can, in principle, be
handled outside too. Suppose that a certain set S of
files is under the control of a management system M,
where M may reside on a single machine or on several. A
practical requirement for this is to arrange that
capabilities for the files in the set are never passed
outside M's control, because if they were allowed to
escape then M would no longer be able to take
responsibility for the treatment of the files
themselves. A consequence of this is that all access
to a file in S must be handled by M, since otherwise the
capability for the file could not be available and the
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file would be inaccessible. Accordingly, it is pos-
sible for M to provide whatever constraints on access
to files that it is desired to implement. All that it
is necessary to provide in the server is whatever set
of facilities is deemed necessary for mediating the
sharing of files which are not under a common
management in the sense outlined. These can be much
less complex than would be needed to meet more general
requirements.

On the subject of integrity there is relatively
little to be said. The integrity requirements of file
servers do not differ greatly from those of more
conventional filing systems and may be met by similar
techniques.

4.2 The Cambridge File Server

This section describes in detail the File Server
implemented as part of the Cambridge Distributed
Computing System.

The external interface is described first. All
reference to files from outside is in terms of
capabilities, which are 64-bit quantities. The client
is expected to assume that capabilities cannot be
guessed and accordingly to rely on a file being
inaccessible to anyone who has not been given the
capability from an authorised possessor of it. The
capabilities are not in fact completely unstructured,
as will be seen later in the section on implementation.
Capabilities may be stored anywhere, not excluding
outside the system altogether, for example by being
written on a piece of paper. External storage,
however, is not sufficient to guarantee that the file
will remain in existence, and special steps must be
taken to ensure this.

A file is a sequence of sixteen-bit words, starting
at offset 0 and finishing at offset size-1, where the
size was declared when the file was created or altered
subsequently by suitable commands to the server.
Commands for reading and writing files may act on any
contiguous sequence of words, as for example 19 to 36,
or o to 94304. When a file is created one of the
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arguments is the pattern that should be delivered by
the server if a previously unwritten word of the file
is read. Such a read operation is not an error: it is
quite proper to think of the create operation as
bringing into existence a file of the specified number
of words all containing the given initial pattern.
Indeed, this is how the client should think of it.

All transactions with the File Server take place
using simple and (as far as possible) repeatable
protocols based on the single shot protocol described
in Section 3.3. Wherever the transmission of commands
or data are mentioned, this should be understood as
taking place by the despatch of packets or sequences
of packets without any flow control, a point considered
further below. The sequentiality of the Ring prevents
any disorder problems. The File Server listens to
commands on a port number which is delivered to clients
by the Name Server. Each request carries with it at
least one reply port. In many cases there is only one,
as in requests to give the size of a file; however, in
the particular case of the read command there are two,
so that the data may be sent on one and a status report
on the other. A request may also be given a tag, which
is simply an identifier assigned by the client and the
File Server will append the tag to the reply. The tag
is used completely at the discretion of the client.
Its main utility is to distinguish replies to different
requests in the case that the client does not see fit
to use different port numbers for them. One case where
this may happen is that of retry after a request was
apparently lost and timed out.

Administrative commands such as READ FILE SIZE and
CHANGE FILE SIZE are conventional examples of the
single shot protocol. The only point worthy of remark
is that the latter command must be specified as
changing Jbo a value rather than by a value, to secure
repeatability. The READ command is slightly more
elaborate. It specifies the file identifier, first
word, and last word, together with a port to which the
material should be returned. The File Server will then
send the requested material as a series of unlabelled
packets which contain nothing but data. Since the user
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may request reading beyond the end of the file, or from
a non-existent file, or may do something else calling
for comment, the request is required to specify
another port to which a response will be sent after
data despatch is complete. The WRITE command is very
similar, with one more stage of interchange. The File
Server replies to the original request with a "Go
Ahead" packet, nominating the File Server port to which
the data is to be sent and indicating readiness to
receive an unvarnished string of packets with no flow
control. Again a status report goes to the client at
the end of the transfer.

Simplified read and write commands called SSPREAD
and SSPWRITE are provided to deal with the case where
only small bodies of up to 256 words of data are
involved. SSPREAD includes the data with the status
report, and SSPWRITE appends it to the command packet.
The provision of these commands recognises that there
is a tradeoff to be made between the overhead of
packet send and receive on the one hand and costs of
separating data from protocol material on the other.

It should be reiterated that there is no flow
control provided on reading or demanded on writing.
Accordingly, it is the responsibility of a client
machine not to call for more material than can be
accommodated in memory available to it as everything
he asks for will be sent regardless. Equally it is up
to the implementor to be able to accept the material
offered when writing as fast as the user can send it.
This is the more severe constraint in practice.
Equally, there is no retransmission of individual
packets in case of erroneous transmission. Failure of
one of the packets read will cause the whole to be
asked for again; loss of a packet read will cause
timeout at the recipient and eventual total
retransmission. This, and the corresponding
arrangements for writing, illustrate the exploitation
of the reliability characteristic of modern local
communications in general and the Ring in particular.

One of the few compromises it was necessary to make
in the interest of efficient implementation is the
distinction between normal and special files. The
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distinction is made when a file is created and its
status cannot subsequently be changed. A write
command is guaranteed to change a special file
atomically whereas there is no guarantee about writing
to a normal file. The difference is of importance in
the case of failure of the server, the client, or the
Ring. It is up to the client to create files of
suitable mode. For example, the CAP system uses
special files for its directories but files made on
behalf of users are normal. To implement all files as
special would give a tidier interface to the user but
would indubitably have some performance implications.

As outlined in the discussion above of universal
file servers, there is also a system of indices with
the rule that a file is only guaranteed to remain in
existence if its identifier is recorded in an index.
Indices are simply special files with an additional
distinguishing mark. Whenever a file is created, the
client must nominate an index and offset for the PUID
of the new file to be recorded in. The new PUID is not
returned to the caller until the change to the index is
committed. This is an operation that has to be
carefully defined and implemented in order to be
repeatable in some reasonable sense. Suppose that a
reply is lost. Simple repetition by the caller will
cause another PUID to be created and deposited in the
same index at the same place. The old one will be lost.
A really cautious client will repeat his request with a
different tag or reply port to deal with long delay
problems.

The commands relating to indices will now be
sketched. They are all single shot protocol commands
of a obvious sort. CREATE FILE and CREATE INDEX are
given the size of the thing to be created and also the
PUID and offset of an index slot in which the created
object's PUID may be preserved. This is not optional,
and the entire command will fail if the index slot is
inaccessible for any reason. These commands return
the created PUID. RETRIEVE requires an index PUID and
offset and returns the content. The PUID found in the
index is not checked in any way. In the RETAIN command
the PUID offered for preservation is checked for
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validity and the object's reference count increased.
In due course the reference count of any PUID
overwritten in the index will be decremented, though
this need not be done before replying to the caller.
READ INDEX SIZE and CHANGE INDEX SIZE are obvious.
Changing the size of an index downwards causes
reference counts to be decremented for any PUIDs
preserved in the discarded part of the index.

One of the indices is distinguished as the root
index. It is important in relation to continued
retention of files and indices, since the File Server
guarantees that a file will remain in being for at
least as long as a PUID for the file exists in an index
accessible from the root index. The root index is also
of importance since possessing a capability for it
makes access to all files possible; it is of some
importance to treat this particular bit pattern as a
secret. It may be noted that client subsystems do not
need to have the root index capability: for example,
the TRIPOS operating system has a capability for the
index which is at the root of the TRIPOS filing system,
not for the root index of the File Server.

It was explained above how exclusive access
facilities need only be provided by the File Server to
a limited extent. The server supports exclusive
access to single files by means of the OPEN and CLOSE
commands. An OPEN command is either rejected or
returns a temporary capability known as a TUID for the
file in question. Until CLOSE or timeout the file may
only be accessed using the TUID, so that provided the
recipient keeps it to itself or only distributes it in
a suitable manner, the desired synchronisation effects
will follow. The locking mechanism takes account of
the distinction between normal files and special files.
If a special file is opened, all operations upon it
until the close are collectively atomic, so that either
they all happen or none of them do. The CLOSE
operation itself commits or abandons the series of
operations. Since it may be desired to commit or
abandon a series of operations without relinquishing
exclusive access, an additional ENSURE command is
Provided to do just that. ENSURE when applied to
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normal files is not very useful. There is a timeout of
fifteen minutes associated with a TUID. It is reset
whenever the TUID is used. If the timeout expires, the
File Server will break the interlock on the
corresponding file.

The interfaces just described have some slightly
unobvious consequences. Unlike a capability system in
a single machine, there is no control over where
capabilities have been stored. Accordingly it is
possible for a client to present a capability for
preservation in an index before, during, or after a
decision that the object referred to by the capability
is inaccessible from the root index. It may be that
the object has already been discarded, in which case
the attempt to retain the capability must fail, or it
may be that the decision is in progress in which case
it may be abandoned. What is essential is that
successful preservation of a capability must maintain
in existence the whole of a structure which the
preservation makes accessible rather than just parts
of it. The important case is where the capability
being preserved is a capability for an index which
itself contains many capabilities for other files and
indices. It is naturally desirable to be able to deal
with the consequences of production of a capability
from the outside up to the last possible moment, but
the consistency requirement is overriding. A natural
further consequence is that before a capability is
preserved it must be checked for validity.

Another implication of what has been said is that
the File Server is able to get into a state where there
are detached looped structures inaccessible from the
root index, and genuine garbage collection is needed.
The implementation of such a garbage collector for the
Cambridge File Server will be described later.

4.3 Implementation issues

A major decision in file server design concerns the
representation of objects. The requirements are to be
able to implement the external operations on objects
in as effective a way as possible and to make the best
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use of disc space. When balancing these sometimes
conflicting demands, it is also necessary to take into
account the ease, or otherwise, of implementing
whatever atomic update properties are required. The
Cambridge File Server represents its objects (files
and indices) in a variety of formats according to size
while taking great care to make the differences of
representation invisible at the interface to the
client. The goal here was to make good use of space
and also to minimise the number of disc accesses when
making simple use of small objects.

In order to make the discussion clear, some detail
about the disc layout is required. On each cylinder
there are 21 small blocks of 512 bytes and 42 large
blocks of 2048 bytes. This distribution was expected
to make best use of the disc surfaces on the basis of
studies of the content of existing file systems in the
Computer Laboratory. The controller used is able to
transfer more than one block in a single disc command
according to a chain set up when the disc is formatted.
This facility is used to arrange that a specific small
block called the cylinder map may be read in the same
command as any of the small blocks. Every object
represented in the File Server has a header which is a
small block. This contains information about the
object type, size, initial pattern and so forth and
also for rather small objects, containing no more than
244 words of data, the data part itself. If an
operation upon an object requires the object to become
larger than 244 words then the object is transparently
reformatted as a medium object. Medium objects have
their data held in large blocks, the disc addresses of
which are recorded in the header block. The maximum
size of a medium object is thus 122 large blocks.
Similarly, the representation may be changed from
medium to large; a large object has two levels of map,
the entries in its header block pointing to further
small blocks themselves containing addresses of data
blocks.

The size of an object as recorded in its header has
little to do with the actual space allocated to it. The
size indicates an address such that attempts to write
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beyond it will not be successful. Physical disc blocks
are allocated when the physical operation of writing
takes place and requests to read from unwritten blocks
return the initial pattern specified when the file was
created, no disc transfers being involved. All objects
are initially created small, i.e. with small
representations, even if their declared size is
immense. The format change, mentioned as occurring
when a command requires it, is irreversible. No
attempt is made to turn an object back into a small
object just because there are less than 2U4 words of
good data in it. This is for three reasons: first it is
only possible to recognise the occasion for a downward
reformat in particular circumstances; secondly it
produces severe practical problems about atomicity;
and thirdly, it is not needed much.

The unique identifier of a file contains as part of
the bit-pattern the address of the header block, so
that, given an identifier, the File Server can go
straight to the header without any further lookup.
This course is justified in the interest of efficiency
provided that some escape is possible if the header
block in question is damaged or becomes unusable for
some other reason.

For each cylinder of the disc there is a cylinder
map, at a fixed address in the cylinder, containing a
description of the state and contents of each block on
the cylinder. In the case of a header block, it records
the fact that it is a header and includes the remaining
32 bits of unique identifier, originally generated at
random when the object was created. Notice that, since
the map is of necessity on the same cylinder as the
header, the map may be chained as an automatic follow-
on address for the disc controller. Care has been
taken to dispose the small blocks in relation to the
rotational position of the cylinder map in such a way
that it is inexpensive to read the map (in order to
check the bona fides of a presented identifier) after
reading the header block. An alleged file identifier
may be rejected out of hand if the address part does
not indicate a small block. In the unlikely event of an
allocated header block becoming corrupt and
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unwri teable , there is space in the cylinder map for the
necessary indirection. Our approach here contrasts
with that , for example, of a system developed at Xerox
PARC in which all identifiers are looked up in a B-
Tree3. However efficient that lookup may be made, it
seemed to us to be worth while to omit stages of lookup
wherever possible. The cylinder map also records, for
all allocated blocks other than header blocks, the
identity of the object to which they belong (in terms
of header address) and the identity of the block in the
object - data block m or intermediate map block n.
This information provides the redundant backup for the
contents of the header and map blocks and enables them
to be reconstructed if need be. It does this without
interfering with the data content of the large blocks,
each of which contains 1024 words of unencumbered user
data. Provision of the redundancy separately has the
advantage that the maps m a y b e checked for consistency
by a recovery program scanning the disc after an error
or malfunction has damaged the data structures on it,
without having to read every single block.

The cylinder maps record the state of block
allocations in a way designed to facilitate various
kinds of transactional atomicity. A block may be in
one of four states: deallocated, deallocated intended
to be allocated, allocated, allocated intended to be
deallocated. The intending states are transient,
intentions being confirmed or denied according to a
commit or decommit decision on a larger transaction.
As explained earlier, the File Server supports atomic
transactions on individual files, and accordingly the
state of a transaction may be recorded in the cylinder
map entry for the header of the file. The act of
marking the map entry of a header as committed, for
example, commits the completion of all allocation
intentions marked on blocks of that file. The
operation may easily be completed by the restart

C3] An excellent comparison and contrast of the Cambridge File
Server with that system is given in J.G.Mitchell &
J. Dion. April 1982. 'A Comparison of Two Network-Based
File Servers'. Communications of the Association for
Computing.Machinery. New York. 25(*U. 233-245._
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program which scans all the cylinder maps in the
ordinary course. It takes no action on an observed
intention until the header block entry is reached,
after which the appropriate actions may be taken. On
this basis, all requirements for atomic operations
supported by the File Server are readily met if they
are converted into allocation intentions by more or
less conventional means.

The mechanism is used in this way to implement
operations on special files, which, it will be recalled,
are all atomic either within one File Server command or
in an OPEN-CLOSE interval if these commands are used.
Whenever a write is required to a particular block of
such a file, the original block is marked 'allocated
intended to be deallocated', a replacement block is
found, marked 'deallocated intended to be allocated',
and written to. If less than the whole of the block is
to be written, the rest is properly initialised.
Commitment or otherwise of the transaction as a whole
is thus converted into commitment or otherwise of
allocation intentions. It should be noted that the
method adopted for dealing with special files does not
preserve the layout of the file: commitment moves the
data in effect to new blocks. This approach was taken
because the incidence of files with a requirement for
contiguity is low, and the present method avoids
copying. It would not be hard to implement the other
strategy.

Underlying these operations is the physical
allocation and deletion of space. Allocation is done
in a quite simple way; a free block of the required size
is allocated on the cylinder nearest to a quoted 'home'
block that contains suitable free space. The home for
a header block is the index block in which the
identifier was initially recorded at file creation; for
an ordinary block of a file it is the preceding block
(or the header if there is none). The allocation thus
secured is in general terms satisfactory. There is
probably not much gained by trying to keep a header
block close to its initial index entry, but nothing is
lost either.
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One of the parameters recorded in the header block
of a file is a reference count, indicating the number
of indices in which the PUID of the file is recorded.
No special care is taken to ensure the accuracy of this
count; it is trivial to arrange that it has at least the
proper value. This being so, an object may safely be
deleted if its reference count is observed to be zero,
and this is done. Since this is only intended to reduce
the amount of work that has to be done by the garbage
collector, it is again unnecessary to be particularly
reliable. The rule adopted is simple and safe - if in
doubt leave it to the garbage collector. In practice,
the great majority of deletion occurs via this
optimised route. The kind of genuine garbage that
cannot be found on the basis of reference counts is not
common; it mostly derives from the occurrence of
radical changes to the structure of one of the client
file management systems.

4.4 Garbage collection

In the Cambridge System, garbage collection of the File
Server is carried out by a program running in a
different machine allocated for the purpose as and
when it is required. There are a variety of reasons
for this (in addition to the obvious one that in an
establishment working on distributed computing it
seems wholly natural). First, it avoids interference
with normal service as far as possible, and secondly it
makes it easier to accomodate the rather extensive
tables that build up in the course of garbage
collection. The initiative for starting a garbage
collection lies with the File Server program.

The garbage collection method is basically a
familiar type of asynchronous algorithm. It is made
simpler by two considerations. First, provided that
the operation of committing the decision to delete
garbage is properly atomic, the action taken in the
event of failures of machines or unexpected
occurrences can simply be to stop the garbage
collection and start again. This occurs even if it
would in principle be possible to recover by
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sufficiently complex code. Secondly, the requirement
on a garbage collector is to find and delete material
that is garbage and never to delete material that is
not garbage: if in doubt, don't collect it. There is no
requirement that the garbage collected should
correspond to any instantaneous view of the system.
On the other hand, it is made more complicated by the
possibility that PUIDs may be remembered outside the
system. If a client produces a PUID for preservation
in an index, that preservation may make some elaborate
structure of indices and files, previously
inaccessible from the root and thus candidate garbage,
into an accessible structure. That structure must
either survive garbage collection completely or not at
all; in the latter case the attempt to preserve the
PUID must fail.

The procedure itself is now outlined. The File
Server has a flag indicating whether or not the
garbage collector is running. This is set as a result
of the initial message from the garbage collector to
the File Server and reset at the conclusion of
collection. While the flag is on, the File Server
reports by message to the garbage collector whenever a
PUID is preserved in an index (the communication
details are given later). This is interpreted by the
garbage collector as indicating that the object
belonging to the PUID is definitely not garbage - a
conservative assumption since the index in which the
PUID is being preserved might itself be garbage.
Setting the flag also enables an interface by which the
garbage collector can read all the cylinder maps and
thus establish a table giving the PUIDs of all objects
in existence and whether they are files or indices.
The garbage collector program is equipped with the
PUID of the root index and can carry out a conventional
accessibility scan. The scan terminates when no
accessible indices remain to be scanned and there are
no outstanding preservation messages.

At this point the garbage collector has a list of
candidate garbage, and can enter its next phase. This
consists of making calls upon the File Server to mark
the candidate garbage objects as inhibited. For the
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present, this has no effect on the way the File Server
reacts to clients' commands relating to the objects;
such commands of course must be making use of PUIDs
stored outside the system, since there is necessarily
no reference to such objects inside the accessible
index structure. During this phase preservation
messages may still arrive at the garbage collector, and
these, are processed as in the previous phase (which is
in fact called as a subroutine). It may happen that
the result of such an action is to discover that an
object is not garbage after it has been marked as
inhibited; in this case the File Server must be called
to remove the inhibition. Note that it is very
important that this action be correctly carried out.
In the absence of positive response from the File
Server the entire operation is abandoned. This
contrasts with the situation while setting inhibitions
- failure there merely leads to a little inefficiency.

At the end of the 'set inhibits' phase, the entire
operation may be committed subject to the crucial
interlock that all preservation messages sent by the
File Server have arrived at and been processed by the
garbage collector. If this is not the case, processing
has to continue until the condition is satisfied or the
collection abandoned. Usually there will be no
problem, and the File Server sets its believe inhibits
flag. Once this flag has been set, the File Server
refuses to accept any client commands relating to
inhibited objects - they are regarded as non-existent.
The garbage collector at its leisure goes through the
garbage issuing commands to the File Server to destroy
the unwanted material. The File Server restart
program, used after a File Server failure, removes all
inhibitions; if believe inhibits has been set it will
delete the objects too.

It will be clear that the garbage collector has to
be able to perform some very serious operations on the
File Server, and there is an important authentication
issue. The solution adopted is as follows. As
Previously stated, the initiative for running the
garbage collector comes from the File Server itself.
The File Server engages in a standard single shot
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protocol transaction with the Resource Manager, asking
for a suitable machine to be allocated and giving the
PUID of the file to be loaded into it. The PUID is that
of a file containing the memory image of the garbage
collector. Part of the Resource Manager's standard
reply is the address of the machine allocated, and the
File Server will then accept garbage collection
requests from the machine mentioned and from nowhere
else. Essentially, the integrity of the Resource
Manager is relied on. It would be possible to go
further - the File Server could put a one-time
identifier in the image sent and require to receive it
back on the first call. This would be more secure at
the cost of making it necessary to fix the address in
the image into which the one-time identifier is to be
put.

It is evidently necessary that the communication of
preservation messages should be secure, since missing
one may cause something to be regarded as garbage when
it is not. It is equally desirable that sending them
should be an inexpensive operation, since it has to be
done in the course of the relevant File Server command.
The procedure adopted is as follows. The message
itself is brief, consisting only of a PUID. The
messages are serially numbered, and a circular buffer
of about twenty of them is maintained in the File
Server. At each preservation the buffer is updated
and then sent in its entirety. This is very
inexpensive since, as is usual in communication
systems, short messages are dominated by software
overheads. No response is awaited or given. On
receipt of such a message the garbage collector checks
the serial numbers and fills in any gap that may arise
because of lost messages. Trouble only occurs if
twenty such messages are lost in a row. This is
unlikely, since they occur far enough apart in time
(about every 1.5 seconds) to be regarded as
independent with respect to transient Ring incidents.
Even if twenty are lost in a row, there is a completely
safe solution, namely to abandon the garbage
collection, and this is done. At the end of the
scanning phases of the garbage collection it is
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necessary to synchronise with the File Server. The
message requesting that the believe inhibits flag be
set is accompanied by the serial number of the last
preservation message received by the collector. It is
only acted upon if this is the same as that recorded in
the File Server as associated with the last PUID
preserved. This final interaction is the only
communication from the garbage collector in relation
to preservation messages, and occurs independently of
any commands given to the File Server by its clients.

4.5 Typical users

In practice at Cambridge, the root index contains a
small number of entries which are themselves the roots
of subsystems of various sorts. We shall outline three
of these which have very different properties.

One set of files contain support material for the
system of small servers. An example is the file used
by the Name Server to back up its tables. The PUID of
this file is bound into the Name Server's code and the
file need not have a textual name in any filing system
at all. The PUID is, of course, recorded in an index so
that the file continues to exist, but the index does
not correspond to any directory. These very low-level
functions do not need any of the facilities of an
ordinary filing system, and should not be required to
use them since to do so would introduce undesirable
dependency loops into the structure as a whole, making
any change or development of the filing system very
hazardous.

The TRIPOS operating system makes use of the File
Server in a quite different way. The TRIPOS file
system has a conventional hierarchy of directories, a
file being recorded in one directory only so that the
structure of directories and files is strictly a tree.
The system is intended to be convenient and useful for
a group of friendly people and there is no emphasis on
protection at all. The representation chosen uses one
File Server index and one special file to correspond to
each TRIPOS directory. Therefore, creating a file with
a certain title in a particular directory involves
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recording its PUID in the appropriate index as well as
putting the appropriate entry in the directory which,
to re-emphasise a point, is regarded by the File Server
as a completely standard file. The PUID occupies the
same place in a TRIPOS directory as a disc address
would in a local-disc version of that system. TRIPOS
is run on the processing servers, and the operating
system as it is loaded into a machine allocated to run
TRIPOS contains the file system code. TRIPOS may be
running in several machines at the same time, so the
filing system code makes use of File Server interlocks
when necessary to regulate concurrent access from the
various machines.

It would have been possible to have proceeded
differently by having a single index associated with
the entire TRIPOS filing system. Then it would have
been necessary to record in a TRIPOS directory the
offset in the master index at which the PUID was to be
found, in order that the file could be deleted
correctly. Space management in the master index would
not have been very d i f f icul t , since there would never
be more than one entry referr ing to a PUID. This
course was rejected on efficiency grounds.

Finally the File Server is host to the CAP filing
system. The CAP itself is described elsewhere1*. It is
a shared machine which now has the Ring as its only
peripheral, though originally it had the usual
complement of directly attached devices. Its filing
system constitutes a general naming network, and is
based on the preservation of capabilities in
directories5. The CAP operating system is based on
swapping segments, where a segment is the same as a
file (sometimes a window onto a file); segments are
swapped in place, to and from their permanent homes in
the filing system. When the CAP operating system was
modified to use the File Server instead of local disc,
it became evident that the organisation provided by

[M] M.V. Wilkes & R.M. ffeedham. 1979. Ihe Cambridge_Cl£
Computer and its Operating System. New York: North
Holland Publishing Company.

[5] And some other forms of protected name-container, but
these details are not necessary here.
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the File Server was sufficiently like that underlying
the CAP operating system that the sensible course of
action was to remove as much of the file management as
possible from the operating system and make the best
use of the File Server structure. Accordingly, an
index was set up to correspond with each directory and
many parts of the CAP operating system below the
directory level were abolished. However, it was
necessary to have some additional apparatus using the
File Server for the following reason. The CAP
operating system is capability-based, and the basic
retrieve operation on a directory is to request and
receive a capability for a named object. If the
directory entry is subsequently deleted, the
capability in the hands of the user remains valid. In
the earlier implementation of the system the existence
of a capability in the currently active virtual memory
was readily noticed and the existence of an object
could be controlled by a temporary reference count of
capabilities in current use as well as a permanent
reference count of capabilities preserved in
directories^, in the new implementation it was not
sufficient to remember inside CAP that capabilities
were in active issue for an object, since the decision
to abandon an object is taken in the File Server.
Accordingly, there is an additional index called the
Active Object Index in which the PUIDs of all objects
with capabilities in current use are recorded. The
ramifications of doing this without gross inefficiency
were described by DellarT.

[6] CAP also had an asynchronous garbage collector for its
file system.

C73 C.N.R. Dellar. October 1980. 'Removing Backing Store
Administration from the CAP Operating System'. ^Operating.
Systems Review. New York. 14(4), 41-9.



Small Servers

5.1 Introduction

This chapter is concerned with the details of the small
servers used to implement the great majority of
services in the Cambridge Distributed System. In
Chapter One how the idea of stand-alone machines
providing static services has developed in distributed
systems was explained. At Cambridge, the concept has
been taken further whereby the distribution of
services is along functional lines. Each server only
provides a single service so that there shall be true
independence between services. A consequence of this
approach is the need for a plethora of simple,
inexpensive machines to support fine-grained dis-
tribution. Furthermore, it becomes increasingly
necessary as the number of servers grows that control
over them should be largely automatic in order that
starting the system from cold and recovery after
errors can proceed without human involvement.

This chapter presents a description of the
construction of small servers, their management, and
the standard software packages for use by services.
Individual services, in terms of their function and
implementation, form the subject of the succeeding
chapter.

5.2 Small server construction

Nearly twenty small servers have been built in the
Computer Laboratory based on the Z80 microprocessor.
The physical construction of the servers has been
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modified a number of times and the following des-
cription relates to the most recent versions. To the
programmer, all versions of the servers are identical
except for some variation in memory size.

A server is packaged as a single wire-wrapped card,
measuring approximately 7.5 inches square, containing
a Z80 processor, Ring access circuit, 1K bytes of read-
only memory, 32K bytes of dynamic random access memory
and associated decoding and refresh logic, adding up to
a total of about forty chips. The Ring access circuit
is extremely simple; the internal registers of a
station are mapped onto memory addresses, outside the
range of actual memory. Software in the Z80 has to
handle minipackets directly and implement higher level
protocols without any further hardware assistance. A
library of subroutines for driving the Ring has been
written in support of the standard protocols. There is
little need for the small servers to have more powerful
Ring access circuits, because generally they are used
for applications that do not require high data rates or
overlapped computation and data transfer. The read-
only memory is used to hold standard code for
bootstrapping and debugging the server, together with
a collection of subroutines for driving the packet
protocol.

A socket on the circuit card gives access to the
major logic signals of the system so that an auxiliary
card holding circuits to interface to a device or
special purpose application hardware can be connected
to the processor. The use of separate processor and
application circuit cards allows for some flexibility
during testing and repair because of the inter-
changeability of the units.

The simplicity of the servers enables them to be
constructed cheaply; the raw component cost is about
£100. This figure does not include power supplies,
cabinets, repeaters or station units. Early models of
the servers were packaged individually, mainly because
they were intended to connect peripherals to the Ring
and had to be located in close proximity to the devices
concerned. The more recent versions can be collected
together into groups sharing the same case and power
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supplies, thereby reducing the overall cost. A further
lowering of cost comes from the development of a
special attachment to a repeater , called a repeater
extender, that enables up to six stations to be
connected to the Ring from a single repeater. This
device is well suited for connecting a box full of
small servers to the Ring. When programming a new
service, the additional cost of making a new small
server is held to be comparable to the manpower costs
of installing a new process into a shared machine and
ensuring that it does not interfere with software
already there. In addition, there are all of the
advantages outlined in Chapter One that stem from the
ability to develop software on a dedicated machine.

The physical limitations of the small servers have a
pronounced influence on the way in which they are used.
An important point is that the machines are too small
to support a filing system or to run compilers for high
level languages. Furthermore, the machines generally
have no direct terminal connections. These factors
led to the development of a system for remote control
of the servers so that software development could take
place on larger, more powerful computers. A
programmer can therefore work on a small server, even
though it is located some distance away from him. One
important benefit that comes from using a larger
machine for programming services is that it allows the
use of high level languages and powerful program
development aids.

5.3 SBOOT

The control program found in the read-only memory
( R O M ) of small servers is called SBOOT and an
identical copy is placed in each server. Any service
can be run by any machine, apart from those services
tied to special devices. SBOOT implements a minimum
set of primitives needed to enable the server to
communicate across the Ring, to down-line load code and
to provide support for remote debugging. There is a
deliberate intention to keep SBOOT as simple as
possible so that the likelihood that it contains
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errors is small and so that it will fit into the 1K
bytes of ROM provided on these machines. All of the
more complicated aspects of small server management
are left to a special server called the Boot Server.
Thus, for example, SBOOT takes no part in control over
who can install a new version of a service, but relies
instead upon protection within the Boot Server. Any
changes in the way that small servers are controlled
can be made by alteration of the Boot Server alone,
without disturbing the copy of SBOOT in each of the
servers.

5. 4 Program loading

It is best for several reasons that the initiative to
reload the program into a small server should come from
the SBOOT control program. One is that it is possible
to replace a faulty server in situ and have the new
machine reload the service without any further action
being necessary. This is very useful if the system has
to be restarted after a complete shutdown such as
occurs with a major power failure and it also makes it
possible for engineering personnel to replace suspect
equipment with only a minor disruption to the system as
a whole. In addition, the arrangements for dealing
with software errors (which will be described in
Section 5.5) ensure that a service is be reloaded if it
crashes so that the small servers are tolerant of
failure and will to a considerable degree recover
automatically.

When a small server is powered on, or an external
reset switch is depressed, the server will enter a
program loading routine in SBOOT. This routine
initially goes to the Name Server to lookup the name
of a loading service called 'BOOT'. This service is one
of those provided by the Boot Server. SBOOT then sends
off a single shot protocol request packet to the
loading service. The reply packet from the Boot Server
is followed by a train of packets containing the
Program to load into the server's random access memory
( R A M ) . The reply packet contains the loading address
for the data in the first packet of the train, and each
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packet contains the loading address for the next
packet in sequence. The last packet contains a special
marker to indicate that no further packets follow.
SBOOT restarts the loading operation from the
beginning if the Boot Server fails to send a well-
formed chain of packets within a reasonable time.
Normally this will only happen if a communication error
causes one of the packets in the chain to be lost or
rejected. Once the program is loaded, SBOOT transfers
control to a standard location in the RAM so that the
service program will start running.

When it receives a load request, the Boot Server has
to determine which program to send to the server.
Since the SBOOT program is service independent, it
cannot yield this information. Instead the Boot
Server sends the station number from which it has
accepted a request to the Name Server reverse name
look up service. This service will translate the
station number of the server into a mnemonic machine
name. The Boot Server contains tables that relate
machine names to the files holding the code for
services and so can select the appropriate file on the
basis of the answer from the Name Server.

It is desirable that it should be possible to reload
small servers independently of the Boot Server on two
grounds: the first is that it must be possible to run
the system even if the Boot Server is not operational,
perhaps because of a hardware faul t ,and the second is
that, for testing new versions of services or running
ad hoc programs, it is inconvenient to have to install
them in the Boot Server first. The requirement is met
by arranging that if SBOOT fails to get a positive
response from the Boot Server within twenty seconds of
issuing a loading request, it allows a further twenty
seconds to see if a single shot protocol request
arrives, directed to a special loading port in itself,
from any machine. If such a request does not arrive in
time, SBOOT tries the Boot Server again and so on until
eventually there is a response.

The request sent to the loading port contains a Ring
address that SBOOT can contact in order to get a
program to load using the normal protocol. The source
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of such a request usually comes from a program called
'Z80LOAD' which can be run on a number of machines. The
parameters of the Z80LOAD program include the name of
a machine to load and a file name for the program to be
loaded. As an example, suppose that the machine called
'PRINTER1 enters the program loading sequence and does
not receive a reply from the Boot Server because the
Boot Server is not running. If the Z80LOAD program is
run with the name PRINTER supplied as its argument, the
program will first of all look up the name 'LOAD-
PRINTER' in the Name Server to determine the Ring
address of the loading port for PRINTER. Then it sends
off a request to PRINTER giving a route back to itself
as the address for sending loading requests to. This
causes the copy of SBOOT in the machine PRINTER to send
such a request to the Z80LOAD program and get back
program code in return. Once the server has been
loaded, it forgets about the route to the Z80LOAD
program and the next time the server reloads it will
start off by trying the Boot Server as before.

If the Boot Server is approached by a small server
for which it has no loading file, a default program is
loaded which will wait for a loading request from any
machine. In this case, code will be loaded into the
server by use of the Z80LOAD program. This mode of
operation is typically used when a service is under
development and not ready for installation in the Boot
Server as an operational service.

As a contingency against the failure of the Boot
Server, copies of the programs for the most important
small servers are kept in the filing systems of a
number of free standing machines. If one of the
servers fails and has to be reloaded, this can be done
by running the Z80LOAD program on one of these
machines. This process is not automatic, as it is when
the Boot Server is operational, but it is sufficient to
allow recovery of the system by manual intervention.

5.5 Remote debugging

SBOOT contains a simple debugging control routine
designed to act as the agent of a more powerful
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debugging system running on another machine. The
debugging system is normally used during the
development of new services; programs that are
regarded as being in service are not in dialogue with a
debugging control routine per se, but, if they suffer a
software failure which leads to an entry into the
debugger, they contact a simple failure recording
service before reloading.

The SBOOT debugging control routine can be entered
voluntarily by the program running in a server.
Additionally, each location in the memory of a server
is initialised to a value which, if executed as an
instruction, causes an entry into the debugging
routine so that runaway execution will be trapped.
Hardware stack overflow and underf low also provoke
entry to the debugging control routine.

Sometimes it is necessary to force the program in a
small server to enter the SBOOT debugging control
routine so that the remote debugger can regain control
over the server. This is done by arranging that the
Ring software used by SBOOT recognises a special
interrupt minipacket that contains a bit pattern
which distinguishes it from header minipackets in the
packet protocol. If the Ring driving routines in SBOOT
observe such a minipacket, control is immediately
diverted into the SBOOT debugging control routine.
The special interrupt minipacket is not accepted from
arbitrary machines, otherwise it would be possible for
any user to cause a server to enter its debugger and
corrupt its program. The restriction is that the
interrupt minipacket must come from the Name Server
machine (which has a fixed Ring station number that can
be put into the SBOOT R O M ) . The Name Server machine
provides a service called 'Z80INT1 which can be asked
to send an interrupt minipacket to a nominated server.
In the present implementation, Z80INT makes no checks
on the use of its service, and anyone can interrupt a
machine. In a more protected system it would be
necessary to arrange that Z80INT has access to a table
of who was allowed to reset particular machines and to
require that requests to it were authenticated using
the mechanisms described in Chapter Nine.
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The interrupt minipacket scheme is not foolproof

because a program stuck in a loop, not polling the Ring,
will ignore them. In such an eventuality the machine
has to be interrupted by hand. The additional
complexity of some sort of watchdog scheme was
considered, but was not thought to be worth the small
extra gain and, fur thermore, it is not apparent how to
make a device that is capable of detecting every
conceivable sort of program failure.

The only other way to enter the SBOOT debugging
control routine is by depressing a switch on the server
which causes a 'non-maskable interrupt' . This switch
is used as a last resort if the program in a server
goes completely out of control.

The address of the remote debugging service is set
up whenever a server is loaded from one of the results
returned in response to the loading request. SBOOT
remembers this address for use when its debugging
control program is entered for the first time. The
registers of the server are saved on entry to the
control program, together with all of the system
variables which the routine might alter, so that it is
possible to restore the machine state on exit from the
debugging routine. The first action of the debugging
control routine is to send a message to the debugging
service using the single shot protocol. The remote
debugging program running sends back a reply packet
containing a command for the debugging control routine
in SBOOT. When this command has been processed, the
debugging control routine sends a further request to
the remote program. This new request contains the
result, if any, of the last command. The remote
program must then reply with the next command to be
obeyed by SBOOT. If at any time this simple dialogue
breaks down, the debugging session is abandoned by
SBOOT and the program loading routine invoked so as to
reload the machine. In this way a small server does
not wait indefinitely if the remote debugging program
loses contact, but reloads itself from the Boot Server
if possible and resumes ordinary operation.

The permitted commands to the debugging control
routine in SBOOT are as follows:
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—read memory location
—write memory location
—resume execution
—change debugging service port number

These primitives are sufficient for the remote
debugging program to control the server and provide
the substrate upon which more powerful operations such
as break-pointing can be erected.

When describing the program loading system, it was
explained how the Z80LOAD program could be used to
load programs into servers. In addition to specifying
the bootstrap file name and machine to load as
parameters, the name of a computer on which the remote
debugger is running can be given. All machines that
can run a remote debugging program have a name
'Z80DEB-X' in the Name Server, where 'X1 is the name of
the machine. Thus a command of the form below:

'Z80LOAD MACHINEsPRINTER FILE=.code DEBUGsALPHA'
causes the file '.code' to be loaded into the server
called 'PRINTER'. The Z80LOAD program looks up the
name of the debugging service, 'Z80DEB-ALPHA' in this
example, and includes the result with the loading data
sent to the machine PRINTER. When the loaded program
first enters the SBOOT debugger, either by a
programmed entry or as the result of receiving an
interrupt minipacket, the SBOOT debugging control
routine tries to contact the debugging service at the
address corresponding to 'Z80DEB-ALPHA'.

The standard remote debugging program is called
'Z80DEB' and reads the name of the machine to be
debugged as a parameter. Z80DEB waits to receive a
request from that machine. If need be, Z80DEB can send
a request off to the Z80INT service so that an
interrupt minipacket is directed to the server in
order to secure its attention. The first command
executed by Z80DEB is one to change the port number to
which SBOOT should send debug request packets from
there on. This is so that the standard port associated
with the 'Z80DEB-X' service on the machine could be
made free for use by another activation of Z80DEB.
This allows several activations of the Z80DEB program
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to run in parallel on the same machine; this is very
useful if a number of small servers are being debugged
simultaneously.

When a debugging session is over, the programmer may
leave the server running or he can cause it to be
reloaded with some other program. If the server is
left running and enters the SBOOT debugging routine
subsequently, it tries to contact the debugging
service set up when the machine was last loaded. If
the remote debugging program is no longer in operation,
no contact is made and SBOOT goes into its program
loading routine to try to obtain a new program to run.

For services in every day use it is not generally
useful to load them with a remote debugger set up.
However, it is convenient to be able to record some
information if such a server does suffer a failure
taking it in to the SBOOT debugging routine.
Therefore, by default , when programs are loaded from
the Boot Server, the debugging service address points
to a service called 'Z80DUMP1 . This service simply
extracts a dump of the registers of the machine and the
SBOOT debugger entry reason. Z80DUMP is, for
convenience, run on the same machine as the Boot Server
and directs its output to the Logger for printing (see
Section 6.3) and subsequent examination. Once the
information has been recorded, Z80DUMP causes the
program loading routine to be entered so that the
server will be reloaded and the service resumed. There
is a simple algorithm to prevent a persistent failure
from 'provoking a continuous cycle of loading and
dumping: the rule is to refrain from reloading a server
if it calls Z80DUMP twice within one minute.

5.6 The Boot Server

The functions of the Boot Server are currently
provided by a PDP-11/45 running the RSX-11M operating
system. The bootstrap memory images for the servers
are kept on discs local to the PDP-11 A5 system so that
the Boot Server is only dependent upon the Name Server.
*t is an essential requirement that the Boot Server
can be reloaded and manipulated without the assistance
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of any other Ring services, otherwise it would be im-
possible to restart the whole distributed system af ter
a total shutdown.

The Boot Server provides several commands that are
used to control bootstrap files and to interact with
servers. A programmer gives commands to the Boot
Server by connecting a virtual terminal stream to the
Boot Server and interacting with a simple command line
interpreter.

Control over who is allowed to install or change
services is under the jurisdiction of the Boot Server
and use can be made of the user authentication system
described in Chapter Nine to protect services from
interference. Since the authentication system is
based on a number of small servers, it is necessary
that the Boot Server has a directly attached terminal
at which commands can be given without the need for
authentication, or with independent, local authen-
tication.

There are commands to install new versions of
services, to back up to an earlier version and to
delete services. Servers can be remotely reloaded 1
when it is desired to put a new version into service.
There is a command to determine details about
bootstrap files, such as module names, by interrogating
special information records in the files. Another
command allows a specified bootstrap file to be loaded
into any machine. This is useful for hardware test
programs that are left in the Boot Server, not bound to
any machine in particular, ready to be loaded when
required.

5 .7 Small server software

The small servers are programmed either in assembly
code, using a locally written assembler, or in
ALGOL68C2. in both cases, programs are cross-
assembled or cross-compiled and modules linked
together on some machine other than the server itself.

C1] This is done by sending a request to the Z80INT service.
[2] ALGOL68C is an extended subset of the language Algol 68,

and was developed by another group in the Laboratory.
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The earliest servers were written in assembly code
because the ALGOL68C system was not available at the
time. Since the introduction of the latter system it
has been used for writing most new services and the
influence of a powerful , type checked language on
programmer productivity has been beneficial. A
considerable library of utility software and protocol
packages has been developed fpr the servers. The
library is written in assembly code in order to
minimise the memory space it requires and also so that
servers written in assembly code can use it. ALGOL68C
programs access routines in the l ibrary through 'code
sections' in programs, using a feature of the language
which permits machine code to be incorporated into
program text. Typically a code section is embedded in
a procedure with the same name as the assembler
subroutine being used. The code section picks up the
parameters of the procedure and loads them into
registers before calling the subroutine. Results are
passed back as the result of the ALGOL68C procedure
containing the code section.

An outline description of a number of the major
packages in the library is given below.

Packet Protocol Package. SBOOT contains routines for
transmitting packets (TXBLK) and receiving them
( R X B L K ) which are used by the loading and debugging
routines. These routines are sufficiently general
that they can be called by the program running in a
server as well as by SBOOT itself. A packet protocol
transfer is described by a small control block which
specifies the address and size o f ' t he buffer for the
data in question, together with addressing details.
For transmission, the address takes the form of the
destination station number and route minipacket for
the packet to send. Reception control blocks indicate
the port number on which data for the buffer should
arrive and whether or not the port is reserved for use
by a single station. In addition a number of control
bits select the checksum algorithm to be used and the
action to be performed when the transfer is complete.
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Transmission of packets is very simple. TXBLK
retries transmission of the header packet up to a limit
which may be set by the program. If the header is not
accepted within the limit, a return code indicating
failure is given. Otherwise, the entire packet is
despatched before the routine returns. Thus, the
sending of minipackets is not usually overlapped with
ordinary computation.

Reception is a little more complicated because of
the need to have a number of reception requests
outstanding in some circumstances, for example when a
machine is supporting several transactions in
parallel. The Ring access circuit for the server can
be polled to see if a minipacket has arrived by
inspecting a certain memory address. If a minipacket
has turned up, the routine RXBLK should be called with
a chain of control blocks passed as its argument.
RXBLK reads the header and route minipackets of the
incoming packet and searches the chain of control
blocks to see if there is one that is suitable for
receiving the incoming packet. If there is no suitable
control block, the packet is discarded. Otherwise a
packet is copied off the Ring in its entirety into the
corresponding buffer and the checksum inspected for
correctness. It is possible to set a marker bit in the
control block to indicate that one field of the control
block is the address of a subroutine that should be
called when the packet arrives. Therefore, if the
marker bit is set, RXBLK calls the subroutine before
returning to the original caller. Usually such
subroutines set flags in memory in order to signal to
other parts of the program that the transfer is
complete and the data are ready to be processed. In
very simple services, it is sometimes the case that the
subroutine can actually get on with the requested
operation and send back a packet in reply using TXBLK.
For these services, the program is a trivial loop that
polls the Ring waiting for a minipacket to arrive and
then calls RXBLK to take in a packet and deal with it,
before resuming the polling cycle once more.
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Coroutine Package. Systems based on polling are
conveniently driven by a structure of coroutines. A
package is accordingly provided to manage a circular
chain of coroutines under the control of a simple
coroutine coordinator. Normally each coroutine is
associated with a separate parallel activity within a
server. A coroutine retains control until it finds
that it cannot make progress because an external
device is not ready or data is wanted from the Ring, in
which case the coroutine returns to the coroutine
coordinator. Control is then passed on to the next
coroutine in sequence. As the coordinator cycles
around the coroutines, they each try to make progress
and hand over control when they run out of work. By
using shared memory locations as semaphores,
coroutines can interlock with one another and
synchronise with the subroutines called when packets
are received.

This simple approach to concurrency works well in
most cases, because none of the parallel activities in
a simple service involve large amounts of computation
and control returns to each coroutine in a very short
time. It was not felt necessary to go to the expense
of writing a multi-tasking system, mainly because of
the memory space it would occupy, and because the
simple scheme is good enough.

jingle Shot Protocol Package. Single shot trans-
actions are represented by a simple data structure
known as a channel which holds information about the
buffers for the request and reply packets, together
with the address of the service to be called. There is
a subroutine that sets up a channel and takes the name
of the service to be called as a string of characters.
The request packet is sent by calling a subroutine and
then the channel is inspected at regular intervals to
see if a reply has arrived, or to time out if there is
no reply. Such an interface is well suited for use in a
system based on the coroutine package because the
system can proceed with other work while waiting for
the reply. The subroutine that transmits a request
packet automatically handles the allocation of a port
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number for the reply packet and the setting up of a
reception request control block. The single shot
protocol package keeps a chain of all reception
control blocks and a polling subroutine has to be
called at intervals to see if a packet addressed to any
of the buf fe r s can be received.

There is an additional subroutine in the package
which is used to set up reception control blocks in
order to receive single shot protocol requests. The
reply to a request can be sent back by using TXBLK
directly.

Byte Stream Protocol Package. Byte streams are also
represented by data structures called channels.
Subroutines exist for both setting up outgoing byte
streams to a named service and for picking up incoming
byte streams. .Buffers and ports for the byte stream
are allocated automatically, and the programmer need
not concern himself with the details of the exchange of
byte stream protocol signals around the Ring. However
a polling subroutine should be called with reasonable
frequency in order that incoming packets can be
received and pending transmission packets sent. To
transfer data along the byte stream there are
subroutines for reading and writing individual bytes
of data. These subroutines give a return code to
indicate whether or not the byte stream is ready to
transfer another byte. If it is not, the program
should cycle, repeatedly calling the subroutine until
the transfer is successful. Additionally, there are
several other subroutines for closing down byte stream
connections, dealing with various error conditions and
forcing the transmission of buffered material. Here
again the subroutines making up the package are
designed with the coroutine polling system in mind.



Simple Services

6 .1 Introduction

This chapter describes several of the services that
run on small servers. Others are described in the
following chapters dealing with the Processor Bank and
the authentication system.

6.2 The Name Server

The Name Server is the most fundamental of all of the
services provided by the distributed system. Its
function is that of name look up; that is, the
translation from textual names of services and
machines into numeric values. Machines are identified
by the Ring station to which they are attached. This
connection is not necessarily permanent; a machine may
be physically moved to some other location, or stations
may be renumbered for administrative reasons.
Therefore, the binding of machines to Ring station
numbers is not f ixed, but must instead be discovered by
asking the Name Server.

The Name Server is different from all the other
small services in that it cannot be loaded from the
Boot Server, because the loading system depends upon
the Name Server for its operation. To deal with this,
the Name Server program is kept in ROM so that it will
not be destroyed if the machine loses power. There is
also an initial name table in the ROM. The whole name
table is kept on the File Server (see Chapter Four) and
is read in by the Name Server when it is powered on.
Thus, the name table in ROM must contain at least the

79



80 Cambridge distributed system

name of the File Server. If the Name Server is unable
to contact the File Server, it runs using the table
held in ROM until the File Server responds. This table
contains sufficient names to enable a restart of the
major system services from cold.

Every machine in the network has a name, distinct
from the name of any other machine or service. If this
name is presented to the Name Server name look up
service, using the single shot protocol, the eight bit
number of the station to which the machine is currently
attached will be returned. The address of the name
lookup service is fixed and cannot be varied, so that
it may be safely written into programs. To find out
the location of a particular service rather than a
machine.it is necessary to find out:

a) on which machine the service is running

b) the port to which requests should be sent

c) for some protocols, a function code to indicate
the service required.

The use made of port numbers (in route minipackets)
and function codes varies from service to service. In
general, port numbers are used to direct packets into
appropriate buf fers in a machine and function numbers
are used to decide how to process the contents of a
buf fe r . If a machine provides only a few services, it
can allocate a buffer to each service and the port
number alone is sufficient to decide what service is
required when a request arrives. If a machine provides
many services, it will probably only have as many
buffers available as it is able to support concurrent
activities, and function numbers will be used to select
a particular service when a request arrives at any of
the 'general enquiry' ports.

The Name Server supplies an indication of the
protocol associated with a service when its name is
looked up. This information is used by some operating
systems to reject attempts by programs to use an
inappropriate protocol when calling upon a service.

Textual names have no structure as far as the Name
Server is concerned, but are treated as arbitrary
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character strings within a restricted alphabet so that
structure can be added later. However, for con-
venience, services that are provided by many machines,
the 'GIVEFILE ' file transfer operation for example,
take the form of a service component and a machine
name. For example, the string 'GIVEFILE-BRAVO' is the
name of the GIVEFILE service on the machine BRAVO.
Thus programs that drive common services can easily
manufacture the service name, given the name of the
target machine.

To facilitate future developments in inter-
networking, in addition to returning a local Ring
address in response to name lookup, the Name Server
also returns a string. For local services, this string
is null. For remote service, if a non-null string is
re turned, the string should be passed onto the next
stage of communication for interpretation. Thus,
local names for remote services may map onto the Ring
address of a gateway which will use the string returned
by the Name Server to set up communication paths in the
internetwork.

The function of the Name Server is purely that of
name look up, and it does not offer any guidance on
whether or not a service is actually running. Thus the
presence of an entry in the name table only determines
where the service will run on those occasions when it
is offered.

The Name Server has a reverse name look up service
which will translate a station number into a textual
name. This service is used if a computer wishes to
report the identity of one of its clients in a readable
way. There is a 'who am I?' service which reflects the
fact that it is impossible for a machine to discover
directly the number of the station to which it is
attached. The service responds with the textual name
of the machine making the request. If need be, this
can be looked up to determine the actual station
number.

From time to time new services have to be inserted
into the name table and existing service names moved or
deleted. Obviously, operations of this sort must be
protected. At present the scheme is very simple: a
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machine can only alter the names of services it
provides itself. There are two single shot protocol
based Name Server operations, add name and delete
nam e, that are used to put a name into the name table
and delete a name from the table respectively. The
restrictions on the use of the add name service do not
prevent a programmer installing a name that is either
pre-emptive, misleading or obscene for a service on his
machine. In general, this problem cannot be solved
without human intervention at some stage when new
names are to be installed. In a more powerful name
server it could be arranged that new names have to be
vetted unless all of their components are standard.
This would mean that there would be no difficulty in
adding a name such as 'GIVEFILE-DELTA1 , but a more
novel name would have to be approved first.

The restriction that names have to be changed from
the machine to which they point is inconvenient,
especially if the machine is a small server. It is also
a great nuisance if many names have to be changed
because a machine has been attached to a d i f ferent
station, or if the name table on the File Server is to
be compacted or sorted. In these circumstances a
modified name table may be generated as follows: a copy
of the Name Server program with the restrictions on
add name and delete name removed is loaded into a
spare small server; this version of the Name Server
program reads down the name table from the File Server.
Like the real Name Server, the version running in the
spare machine updates the File Server copy of the name
table in response to add name and delete name requests.
In this way a new name table is built up in the File
Server. If the real Name Server is then restarted, it
will take the new table and use it in normal operation.
This rather primitive scheme could be improved upon if
the Name Server made use of the interlocks on files
provided by the File Server so that updates to the name
table from the main Name Server were locked out while a
new table is being generated. At present, any such
update is lost but since names are not added very often
this is not a problem in practice.



Simple services 83
There is a service provided by the Name Server that

can be used by any machine to generate a list of the
entries in the name table. This service is used mainly
to automate the production of an up-to-date printed
list of all the services and their locations for
reference purposes. The service is also used by the
program that drives the unrestricted Name Server when
a new name table is to be set up in order to discover
the current contents of the table. Like all Name
Server operations, this service is implemented using
the single shot protocol. Each call contains an entry
number and the Name Server replies with a copy of the
data in that entry of the name table. The name table is
represented as a vector of entries. When an entry
beyond the end of the vector is requested a dummy
terminating entry will be returned so that it may be
determined when all of the table has been read out. In
addition to details about an entry, the name listing
service also returns a name table version number so
that a program scanning the table can detect changes
taking place during the course of the scan.

The important role played by the Name Server in the
distributed system makes its continued operation of
paramount importance. In practice, the small server
hardware, upon which the Name Server is based, is very
reliable with no failure of the Name Server having been
recorded in over two years of operation.

6.3 lime Server and Logger

The Time Server is used as a central source of local
date and time information. The machine on which it
runs is connected to a simple radio receiver that picks
up 60 kHz time signals emitted by the MSF transmitter
at Rugby, England. The Time Server has a timing
circuit driven by the clock oscillator for the
processor chip. Interrupts from this timing circuit
are used to determine time intervals. In parallel,
signals from the radio are monitored and put to a
number of integrity checks because the radio channel
is subject to considerable noise within the Computer
Laboratory. Correctly received signals are used to
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resynchronise the time computed on the basis of the
local oscillator. It is essential that the Time Server
should be able to run in the absence of the radio
signal, because the transmitter is turned off for
several hours from time to time in order to carry out
maintenance work. The Time Server is tuned to be as
accurate as possible in the absence of a radio signal.
It will, therefore, never have to change the time very
much when the radio signal is resumed, but the change
could be a short step backwards. This feature renders
the present Time Server implementation unsuited to
synchronisation and timestamping; were this desired,
it would be necessary to arrange that in the absence of
a radio signal the Time Server was slightly slow.

The Time Server provides two services: 'DAT' for
date and time information and 'CLOCK' which sends off
packets at regular intervals. Both services are
implemented in terms of the single shot protocol.

The DAT service returns an indication of the current
date and time to a resolution of one second. The date
is represented in numeric form so that it can be used
directly for calculations. The format is straight-
forward and can be readily converted to a textual form
suitable for display. The DAT service is used by some
machines to set clocks in their operating systems
running from the correct initial value. In particular,
the TRIPOS operating system when run on a processing
server starts its clock in this way.

The CLOCK service is intended for machines that do
not have an internal clock and require regular time
signals. The initial request to the CLOCK service
specifies what the frequency of signalling is to be, in
the range one to 255 seconds. Each packet sent by the
CLOCK service is directed to a reply port specified in
the initial request. Each packet sent contains full
date and time information together with a sequence
number so that the client can detect lost packets
easily.

The machine that supports the DAT and CLOCK
services has a teletypewriter attached to it and
provides a logging service, referred to below as the
Logger. The logging service has the name 'WTO-LOG' and
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it prints out textual messages sent as strings of
characters in single shot requests. The printed
message is accompanied by a timestamp derived from the
Time Server. The logging service is used mainly to
keep a record of significant events which may be useful
during fault finding. For example, the Boot Server
logs machines loaded after being reset and the Z80DUMP
service sends a record of small server crashes to the
log. Additionally, the Processor Bank management
system notes the failure of any of its machines or
services. WTO-LOG is a particular example of a general
WTO (Write To Operator) service provided by many
machines as a way of sending short textual messages
across the Ring for the attention of the operator or
operating system of a machine.

The Logger tries to detect Ring failures and to
record when machines are turned off and on. Once a
second or so the Logger sends a minipacket to every
station. If a minipacket comes back marked as
accepted, busy or unselected, the addressed machine is
assumed to be powered on. If the ignored response is
obtained, either there is no such station, or else it
has been switched off. From this information it is
possible to deduce when machines are turned off and on.
These events are printed and timestamped. The Logger
attempts to give machine names, if possible, by using
the Name Server. If the Name Server does not reply,
machine station numbers are printed so that the log
will still contain useful information even if the Name
Server has been lost.

6. H Error Reporter

One of the notable features of the Cambridge Ring is
the level of self checking carried out by Ring
stations. If a station detects an error such as a loss
of framing, modulation failure, data corruption and so
forth, a special maintenance minipacket is sent to
station number zero at the first opportunity. On the
current Ring station zero is connected to a dedicated
machine, based upon the small server hardware and
known as the Error Reporter, which keeps a record of
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the errors and prints them out on a teletypewriter.
The program in the Error Reporter is kept in ROM so
that the logging remains operational even if none of
the standard services are available, as might be the
case on a small development Ring, or if there are
errors disrupting normal use of the Ring. New versions
of the program can be tested using the small server
software development system and need only be fixed in
ROM when they have been thoroughly tested.

The Error Reporter prints out an immediate record,
timestamped if possible, of errors when they occur. It
also accumulates error totals over a twenty four hour
period. The Error Reporter attempts to obtain the
current time from the Time Server. If the Time Server
is not accessible, an internal cycle count is printed
and this can be used to estimate the time between
errors.

For much of the time the Ring makes very few errors
and .it is useful to have a machine recording any that
do arise and at what time. If there is a break in the
Ring, the next station down stream from the broken link
will send maintenance minipackets to station zero
where they will be logged and can be interpreted by an
engineer in order to locate the break. The Error
Reporter will produce a compressed report when there
is a severe failure or if the Ring becomes dis-
connected, so that helpful information will not be
swamped by a flood of error messages.

6.5 Pointing Machine Server

The Computer Laboratory has a semi-automatic wire-
wrap machine, usually referred to as the pointing
machine from its mode of operation. It consists of a
table onto which a circuit board may be fixed and a
head which is moved over the table by a pair of
stepping motors. The machine is driven so that the
head moves from pin to pin across the circuit board.
At each pin the operator rests a wire-wrapping tool on
the head to make a connection. There are a number of
lamps which are used to signal to the operator and
there are some buttons which may be pressed t°
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indicate such things as completion of a wrap, the need
to repeat one, and so forth. A teletypewriter attached
to the server is used to give instructions to the
operator and to provide a means by which the operator
can communicate with the machine sending commands.
The pointing machine is attached to the Ring via a
standard small server.

There is a program which takes a description of a
circuit, in terms of the location of the components and
the interconnections between them, and constructs a
wiring schedule for the pointing machine. The output
of this program is a series of coordinates to be joined
with an indication of the length and colour of wire to
use. The wiring schedule is annotated with a
description of each connection referring to the names
of circuits used when the schedule was generated.

The code required to interpret a wiring schedule is
fairly large and, in consequence, a more powerful
computer than a simple microprocessor is required.
The program is run on a computer in the Processor Bank
on those occasions when the pointing machine is in use.
This avoids dedicating a big machine to be the pointing
machine server all of the time. The small amount of
code needed in the small server interfacing the
pointing machine to the Ring is very simple. The
division of responsibility between the small program
in the microcomputer and the more complex program
running in a processing server has the great benefit
that the latter could be developed within the
framework of the TRIPOS operating system, which
provides a greater range of programming tools than the
small server software system.

The driving program has a byte stream connection
with the server. The driving program sends
coordinates to the server, patterns to set on the lamps
and messages for the teletypewriter. The server uses
fche byte stream to send signals back to the driving
Program when the head has been positioned, buttons are
pressed, and when the operator types on the keyboard.
The protocol between the server and the driving
Program is designed to make it easy for the latter to
keep a record of how much of the schedule has been
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completed so that the operator could stop one job part
way through in order to give precedence to another job.

The normal mode of operation of the Pointing Machine
Server is for the operator to type a start up message
on the keyboard giving the file name of the wiring
schedule for the current job. The Pointing Machine
Server then contacts the Resource Manager (see
Section 8.1) to obtain a processing server to run the
driving program. Once the processing server makes
contact, the operator can start receiving instructions
about the connections to be made.

6.6 Terminal Concentrators

A number of small servers have been built to act as
Terminal Concentrators, connecting up to eight
terminal lines to the Ring at standard rates up to
19200 baud. Terminal communication is conducted using
the virtual terminal protocol which is built on top
of the byte stream protocol. Every terminal
connection is represented as a separate byte stream to
the host computer and there is no multiplexing of
connections down a single byte stream.

There are a number of conflicting requirements for a
Terminal Concentrator. For many machines it is useful
to have the Concentrator deal with keyboard echoing
and line editing locally so that the host is presented
with lines of input ready for use, with no further
processing needed. On the other hand, there are
programs such as screen editors that wish to make
their own interpretation of keystrokes and do not
require any action in the Concentrator. The virtual
terminal protocol provides for this by allowing each
request for an input record to specify how the
Concentrator is to act in terms of a series of
attributes. The various possibilities are listed
below as independent pairs of mutually exclusive
options:

1 Local echoing of keystrokes by the Concentrator
2 No echoing of keystrokes by the Concentrator
3 Interpret line editing functions such as rubout;



Simple services 89
treat carriage return (and certain other
keystrokes) as record terminators

4 No line editing or record terminators; records
are only terminated when completely filled

5 Interpret escape sequences for non-standard
characters

6 No interpretation of escape sequences
7 Terminate records on any control character (in

addition to either option 3 or 4)
8 Treat all control characters (except those used

by option 3, if selected) as data characters
within a record

Attributes 1, 3, and 5 -keystroke echoing and full line
editing - are those used by programs that want a simple
line-by-line interface to the terminal. Options 2, 4
and 6 - no interpretation of characters - are intended
for programs like screen editors. Such programs
normally ask for one character at the time. However,
if the host had fallen behind the Concentrator, the
response is a record containing a number of characters
which the host can process forthwith and catch up
without making any further requests. If the host is
keeping up with the Concentrator, responses will
contain only single characters.

The seventh option, which selects transmission of
buffered keystrokes on control characters, is used by
hosts that strip off control characters in their
terminal driving programs and use them to switch the
terminal stream between tasks or generate end of file
marks and so forth. If it is desired to pass one of the
control characters through as d a t a , a n escape sequence
must be typed on the terminal since typing the
character itself will cause it to be taken as a control
character.

The remarks about control characters illustrate one
of the problems with virtual terminal systems and that
is that the user has to be aware, potentially, of three
levels of terminal handling: the Concentrator, the
terminal driving software of the host and the program
to which input is directed. In general terms, it is
much simpler if the terminal driving code in the host
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relies entirely upon the facilities of the
Concentrator and does not steal extra codes for its
own purposes. Otherwise there will be gratuitous
differences between terminal conventions on d i f ferent
machines and confusion will result.

Output is much simpler than input. The host sends a
complete record of characters to the Concentrator
together with an indication of how the record should be
terminated. The record is then displayed on the
terminal. The present implementation of the Terminal
Concentrator does not have facilities for local
interpretation of control characters such as those for
tabulation on output.

Interactions with the Terminal Concentrator are
fully duplex and it is the responsibility of the host
to deal with any synchronisation that is required. The
Concentrator buf fe r s keystrokes that arrive before an
input line request is received and only interprets
them when a request is available and the options are
known. Escape sequences are used to generate codes
that do not correspond to any key, to switch reflection
off and on locally and to generate end of logical
stream markers .

The user can talk directly to the Terminal
Concentrator by pressing the break key. All further
characters are interpreted by the Concentrator and
commands can be given to switch between connections,
make new connections, disconnect streams and to
transmit byte stream resets to hosts. When a byte
stream reset occurs, the host and the Concentrator may
exchange codes either admitting to being responsible
for the reset or denying responsibility. The reset
will be denied by both ends if it was invoked to
resynchronise after protocol errors. The
Concentrator takes no special action when the host
admits to causing a reset. A reset provoked by the
Concentrator is interpreted by the host as a break
signal to gain the attention of its operating system.

The flow of data between host and Concentrator is
structured as a simple stream of bytes. Ordinary
characters are represented by values in the range 0-
12?. Values in the range 128-255 are used as markers
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for record boundaries and control information passing
across the stream. On input, there is a special
control marker which indicates that the next byte is
not to be interpreted as a control byte, thereby giving
a mechanism to pass any value in the range 0-255 as a
character . It is an omission of the protocol that only
values in the range 0-127 may occur in records for
output .

Terminal connections are made by giving the Terminal
Concentrator the name of the service or machine to
connect to. This name is transformed into a string of
the form 'RATS-X' where 'X' is the name of the service
or machine. ( 'RATS ' is an acronym for Remotely
Activated Terminal Session.) The Concentrator will
look up the string in the Name Server and attempt to
open a byte stream to the address returned by the Name
Server. If the byte stream is established
successfully, virtual terminal protocol transactions
will take place across the stream for as long as the
connection persists. A connection may be abandoned
either by the host closing the byte stream, after a
'FINISH' command for example, or by a command to the
Concentrator issued by the user.

6.7 Printer Server

The Printer Server is connected to both a lineprinter
and a daisy-wheel printer. Byte stream connections
can be made to the server for sending documents to
either device, although only one document is accepted
at a time for each device. It is left to the clients of
the server to do their own spooling of material if they
find the server busy printing for someone else. There
are buttons associated with the printer that can be
pressed by an operator to indicate that the current
document should be repeated after a paper jam or that
it should be abandoned, for example if the output is
nonsensical. In the event of such an action, the byte
stream is reset and a code indicating the reason for
the reset sent back to the client before the stream is
closed down by the Printer Server. It is the
responsibility of the client machine to interpret the
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reason for the reset and repeat the printing of the
document if appropriate.

6.8 Other applications

The presence of a number of uncommitted small machines
attached to the network is extremely useful for
conducting experiments and making low cost temporary
interfaces to the Ring for a variety of equipment.
Some examples are described below.

Terminal Adaptors. A simple gateway for connecting
terminals on Ring Terminal Concentrators to the
British Telecom Packet Switched System (PSS) network
is implemented as a small server connected to a serial
data line from a PSS network node. The server accepts
virtual terminal connections and copies data in both
directions between the Ring and PSS.

A similar technique could be used to provide access
from the Terminal Concentrators to a machine that does
not support the virtual terminal protocol, with a small
server acting as an adaptor to connect terminal lines
from the machine to the Ring. This is primarily
appropriate when software is being developed for new
machines and there is no suitable Ring software or even
no Ring connection immediately to hand.

Hardware Development. During the commissioning of a
version of the Ring implemented on gate array chips and
during the testing of the Ring interfaces for machines
in the Processor Bank small servers have been employed
as programmable testbeds. The machines generated test
patterns of signals for the chips and monitored the
results.

One small server is attached to a PROM blowing
circuit and is used to change the PROMs found in
various Ring interfaces and the PROMs in small servers,
holding the SBOOT control program. The new contents
of the PROM are sent using the single shot protocol.
The server copies the data into the PROM and checks
that the operation has been successful by reading back
the contents.
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In the area of measurement, small servers have been

connected to various sorts of monitors and counters in
order to analyse traffic patterns on the Ring and to
calculate usage statistics.

Digital Voice. In a project to handle real-time
digitised voice over the Ring, small servers interface
telephones to the system and provide a dialling and
connection service for routing calls.

Protocol Development. During the development of the
Ring protocols, small servers have been used as sinks
and sources of data, and as 'mirrors' that bounce back
the data sent to them. For the testing of the byte
stream protocol, a mirror was written that would
occasionally corrupt the data sent to it so that the
error recovery aspects of the protocol, could be
investigated.
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7 .1 Processing servers

This chapter is concerned with aspects of the
Processor Bank in terms of the facilities provided for
the use of processing servers. Central to the concept
of using a remotely located machine as a personal
computer is the need to exercise complete control over
it. In the Cambridge Distributed System this is
achieved by incorporating control functions into the
Ring interfaces for processing servers. The following
sections describe the Ring interface for LSI4
minicomputers, the functions of the Ancilla and the
control facilities provided. During early stages of
the project , the processing servers were all Computer
Automation LSI4 16-bit minicomputers, each with 6UK
words of memory and the Processor Bank comprised nine
of these machines. More recently seven further
processing servers based on the Motorola 68000
microprocessor with 256K bytes of memory1 have been
installed in the Processor Bank. The ensuing
description of the Processor Bank will be given only in
terms of the LSI4 minicomputers as the organisation
and management for both sorts of machine is
essentially identical. However the fact that two
completely different families of computers can coexist
in the Processor Bank demonstrates the success of the
Cambridge Distributed System approach to the organ-
isation of a collection of heterogeneous machines.

[1 ] The standard memory circuit card for the system can
accommodate up to 512K bytes and it is expected that the
machines will be upgraded in the fullness of time.
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In principle, the LSIUs have no peripherals apart
from a Ring interface which will be described fully in
the next section. However to facilitate stand-alone
operation of the machines for maintenance, there is a
serial character I/O board and a floppy disc system
that can be put onto a machine if need be.

The LSI4 has a reasonable and extensive instruction
set. It is an adequate machine for running a single
user operating system and supporting high-level
languages. An important property of the LSI4 is that
it has no memory mapping hardware, limiting the
addressable memory capacity to 6UK words. In a larger
version of the distributed system, machines of the size
of the LSI4 would be amongst the smallest in the
Processor Bank and there would be other more powerful
machines with faster processors and larger memories.

7 « 2 Processor Bank Ring interfaces

The Ring interface for the LSI4 computers has much
more to do than just provide the machines with access
to the Ring, because they are located at some distance
from their users and have to be controlled remotely.
With a personal computer, a user expects to use some
form of control panel to start his machine, stop it, and
bootstrap code into its memory. Bootstrapping is
often done by interacting with a simple control
program that calls down memory images from a local
disc. For a processing server, the Ring interface must
provide a similar degree of control over the machine,
accepting commands from across the Ring. This leads to
integrity problems associated with preventing one user
from taking over control of a machine owned by another.

The Ring interface for a processing server is its
only access to other services; in particular, all files
must be accessed through the File Server because the
processing server cannot have a local filing system in
the way that a personal computer does. In consequence
there is a strong requirement that the access circuit
function of the interface should offer high
performance in terms of data transfer rates. This is
interpreted as the need to implement the packet
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protocol in the interface using direct memory access
( D M A ) to transfer data between the Ring and the memory
of the server without the involvement of the server's
central processor.

There are a number of benefits that come from
connecting machines to a network using powerful
interfaces. Firstly, the program in the interface is
more secure than software put into the machine itself.
There is no risk of the code in the interface being
accidentally overwritten, or of the interface losing
control over the machine. Secondly, the interface
contains a fixed program that cannot be corrupted by
the user of the machine and in consequence the
interface can be trusted by the Processor Bank
management system. This point is of crucial
importance: it is our view that there should be no
restrictions made upon the software that can be loaded
into a processing server so that programmers can
develop their own operating systems and application
programs at will. In other words, processing servers,
when on loan to a user, should be exactly like personal
computers.

It is important that the Ring interface is not too
complicated, otherwise its cost would be unduly high,
especially for smaller machines. The interface to be
described subsequently is comparable in cost and
complexity to a simple disc controller for a modern
minicomputer. To reduce the amount of programming
required for the interfaces, they do the bare minimum
necessary to support remote control and there is a
special server, called the Ancilla (Latin: house-
maid) , devoted to supporting the Ring interfaces and
providing high level operations for other machines to
use. The advantage of this approach is that changes in
the arrangements for controlling processing servers
can, in general, be achieved by modifying the Ancilla
alone, leaving the programs in the interfaces
unaltered, where the number of interfaces will be
large and making a change to all of them would be very
inconvenient.

Another feature of the Ancilla is that it can
conceal low level differences between interfaces for
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different sorts of processing server and present a
uniform, machine independent, set of functions to its
clients.

7.3 Ring interface design

The processing server Ring interface is designed as a
general interface suitable for most 16-bit
minicomputers and is based on the Signetics 8X300
microprocessor. This is a fast bipolar technology
device optimised for use in high speed applications.
It has a simple instruction set which is designed for
shifting and merging eight bit data items. There are
also instructions for testing a combination of bits in
a byte and branching on the result. The clock cycle
time for a single instruction is 250 ns. The program
for the 8X300 is held in 2K bytes of fast ROM and there
are 256 bytes of RAM for use as workspace.

The 8X300 is surrounded by a variety of support
circuits for handling Ring reception, Ring
transmission, DMA read, DMA write and DMA addressing.
Both the Ring logic and the DMA logic is bi-directional
so that transmission and reception may take place
simultaneously. All of the data paths go through the
microprocessor rather than being directly connected.
This is because the operations of computing checksums
and the rules for retransmitting minipackets were
thought to be too complex for implementation in
hardware alone. The address buffers used by the DMA
interface are arranged to be auto-incrementing in
order to speed up memory access times.

To make the interface host independent, so that it
will be suitable for a variety of 16-bit minicomputers,
it is logically and physically split into two parts as
shown in the diagram below. The first part contains
the 8X300 processor and the Ring access circuit; the
second is simply the mechanism needed to operate the
host machine's bus, and to perform basic DMA
operations. The interface between these halves is an
idealised set of DMA signals: address bus, data bus, DMA
request and acknowledge lines. A consequence of this
split in the design is that the program for the 8X300
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is host independent since it works in terms of the
idealised interface.

Ring interface

8X300 System

Host Computer

The processor and Ring interface is fabricated as
three printed circuit cards measuring approximately
7.5 inches square and designed to fit in the same racks
as printed circuit board versions of Ring stations and
repeaters. The first card contains the 8X300
processor and Ring access circuits, a total of about
thirty five chips. The two other cards are the
channels for DMA read and write operations
respectively and each contain about thirty chips.
These two cards are identical, except for a coding
plug, and the overall design admits to the possibility
of a system with just a single channel. The channel
boards provide the idealised DMA interface which has
to be mapped into the LSIM DMA architecture. This is
done by a further printed circuit board, designed to
fit into an LSI4 chassis and holding just over f i f ty
chips. All of the boards are interconnected by ribbon
cables and the host interface board may be some short
distance away from the others.
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The hardware commissioning and software development
for the interface made novel use of a Z80-based small
server which acted as a support processor for the
interface. In a normal interface, the program is held
in fast ROM. For the commissioning system the ROM
access logic was made to address part of the memory of
a small server. Thus new programs could be loaded into
the interface by updating the memory of the small
server. The small server contained a simple loading
and debugging package which could be driven from a
remote machine by sending messages across the Ring.
The remote machine ran a number of utility programs
that interpreted commands from a terminal and
translated them into messages to the small server to
update the memory shared with the Ring interface. This
configuration turned out to be very powerful and
flexible both during the early testing of the hardware
and later during development of the software to run in
the interface.

In the light of recent developments in the
microprocessors available commercially it is likely
that it will become much easier to build interfaces of
the sort just described. The development of the 8X300
system was a diff icult project because of the number
of circuits needed to drive the DMA interfaces and
support the processor. Furthermore, the limited
program memory space (2K words) and even smaller
workspace (256 bytes) severely restricted the amount
that can be done by the interface, particularly given
the instruction set of the 8X300 which is not designed
for this type of application. Most of the standard
microprocessors based on MOS technology are too slow
to drive the Ring directly, but a number of them are
well provided with support circuits for handling DMA
transfers . It would also be possible to speed things
up further by using uncommitted logic arrays to
implement circuits for checksum calculation and
minipacket retransmission handling. Taken in
conjunction with the better programming environment
and larger memory space obtained by use of a MOS
microprocessor, these factors could well lead to a
different future design for processing server Ring
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interfaces. In particular an interface could take on
some of the functions provided by the Anc ill a, making
the latter redundant . In the interests of flexibility,
such an interface would only contain a small fixed stub
of code to load the full interface software across the
Ring in a fashion analogous to the operation of the
small servers.

7.4 Loading and debugging

In addition to handling data transfer across the Ring,
the interface has to provide the means by which a
processing server is controlled remotely. There are
two aspects to remote control: how does the interface
distinguish requests directed to itself from the
ordinary data transfers into the processing server,
and how does the interface protect itself from
accepting control commands from the wrong source?

The addressing problem is solved by using one of the
four notionally spare bits in a route minipacket, the
remaining twelve bits being a port number (see Section
3.3). If this bit is set in the route minipacket of an
incoming packet, the contents of the packet are
intercepted by the interface, rather than being copied
into the processing server's memory.

The protection problem is solved by insisting that
initiation of loading or debugging must come from the
Ancilla. However it is not sufficient for the
processing server Ring interface to look up a name like
'ANCILLA1 in the Name Server, because in a heterogenous
Processor Bank there will have to be a different
Ancilla for each type of machine. The name of the
Ancilla cannot be put into the Ring interface program t

because the program is machine independent. Instead,
it is necessary for the Ring interface to go to the
Resource Manager, the server that oversees the
Processor Bank, via the Name Server to find out the
name of its Ancilla. The Resource Manager holds this
information since it has to be able to tell the
appropriate Ancilla to load a processing server when
it is allocated.
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In the present implementation a regrettable
shortcut has been taken because of a lack of space in
the Ring interface memory. The station number of the
Ancilla is held on a coding plug in the interface
itself. In future Ring interfaces, which will have
more program space, the full transaction with the
Resource Manager will be employed.

The Ring interface is set into a special loading
mode by sending it a request packet. The interface
abandons any work it is doing for the processing
server and only accepts further loading commands from
the Ancilla. The loading commands are sent as a series
of individual packets addressed to a command port. The
first data minipacket of each packet selects the
command to be obeyed. The load command has two
arguments: a loading pointer and a count. The load
command packet should be followed by a train of
packets addressed to a data port (different from the
command port) . The contents of these packets will be
copied into the processing server's memory from the
address given by the loading pointer onwards. The
count parameter to the load command tells the
interface how many words to expect. If another
command is sent to the command port before the loading
command has completed, loading is abandoned and the
next command is processed normally. The start command
allows the processing server to begin executing
instructions; however, the interface will not respond
to the processing server until an end command is given
to resume normal operation. There is also a reset
command which sets the interface back to the state it
was in when it first entered the loading mode. The
reset command is not restricted to use during loading
mode only: it can be issued at any time and provides a
convenient way to stop a processing server.

There are three commands for the remote debugging
of processing servers and they are implemented as
individual request packets. Before a remote debugging
program can take control, a set debugger command must
be sent from the Ancilla. This command has one
argument, nominating the station from which future
debugging commands are to be accepted. The Ancilla can
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cancel a debugging session by giving zero as the
argument and the interface will accept no further
commands until another set debugger command is issued
with a non-zero station number as its argument. The
commands for interrogating the processing server are
read word and write word with the obvious
interpretations. These primitives are very simple, but
they are about the most general that can be provided if
the debugging facilities are to be truly machine
independent.

If a remote debugging program requires more
powerful facilities, such as access to the processing
server's registers, or break-pointing, it is necessary
to have a small stub of a debugger resident in the
processing server itself. The remote debugger can
load this stub into the machine using the write word
command and very simple communication between the stub
and the remote program can be achieved by reading and
writing data in the processing server's memory.

7.5 Packet protocol operations

A processing server presents commands for data
transfers to its Ring interface by transmitting the
address of a command vector as a single word transfer
through an I/O port. The interface uses DMA to read
the contents of the command vector, which may be
several words long, and then acts upon the command it
contains. Since the interface can multiplex several
commands in parallel, commands may be satisfied in a
different order to that in which they are submitted.
The interface passes back information about a
completed command by writing back the address of the
corresponding command vector as a data transfer
through an I/O port to the processing server. This
transfer interrupts the processing server which
should read the address of the command vector from the
I/O port in order to discover the reason for the
interrupt.

For transmission, a command vector describes the
transmission of a single packet. The command vector
indicates the destination station and the contents of
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the route minipacket. It also contains a descriptor of
the buf fe r from which the data part of the packet
should be read. The remaining fields of the command
vector are a return code filled in by the interface
when it has finished with the command vector and a
series of option bits for indicating how the command
vector should be interpreted. Transmission command
vectors may be linked into a chain and the interface
will pass down the chain transmitting each packet in
turn. A bit in the options field is used to specify
that an interrupt should be given when the packet
described by the command vector has been transmitted.
Thus a train of packets may be sent off with only a
single interrupt to be generated at the end of the
transfer. When the transfer is either completed or
abandoned in the face of persistent rejection, the
return code field is set to indicate the reason for
finishing.

Reception is more complicated. As before, command
vectors contain a buffer descriptor of where in the
processing server's memory received data should be
placed. A port number field is set up with the port
number associated with the buffer and a station number
field may be set either to select one station or to
allow data to come from any station. There are option
bits and a return code field, together with a count
field which, after a transfer has been completed,
indicates how many words were received into the
buf fe r .

Command vectors specifying the same station and
route combinations may be chained together. The
interface will maintain different chains for each
distinct station and route combination presented to
it, so that several reception requests may be
outstanding at one time. The rules for processing a
chain are as follows: the first packet received is read
into the first buffer on the chain until either the
entire packet has been received, or the buffer is full.
!f the buffer is complete, the chain word is followed
and the next buffer filled likewise. If the chain word
is zero, a 'last command vector in chain' bit in the
options field is inspected. If the bit is set and there
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is still data to come, the complete transfer is
abandoned with an error indication. Normally this case
will only arise if the transmitter has sent more data
than was expected. As every packet is received, the
options field of the command vector being processed at
the time is inspected to see if an 'end of packet'
interrupt should be generated. When a buffer is
filled, the options field of the command vector is
interrogated to see if an 'end of buf fe r ' interrupt
should be generated.

The 'return code' and 'words read' fields in the
returned command vectors are updated so that the
processing server may determine the fate of the
transfer. The rules outlined above allow the host to
set up a chain of command vectors to receive a
succession of packets into a single b u f f e r , or
alternatively to break down a transfer into a series of
buffers . The first feature, that of reading several
packets into one buffer is particularly appropriate
for driving the .File Server protocols (see Chapter
Four) . If a processing server requests to read some
part of a file, the File Server will send the data as a
train of packets in quick succession until the
transfer is complete. The data can be received by
setting up a single command vector for a buf fer as big
as the amount of data expected with the 'end of buffer
interrupt' option selected. The Ring interface will
take in the packets as they arrive and only interrupt
the processing server when the entire transfer is
done. The ability to direct separate parts of a
transfer to different buffers is useful for stripping
of protocol headers from packets in the single shot
and byte stream protocols.

An additional facility provided by the interface is
the ability to cancel outstanding reception transfers.
The command vector for this is very simple and contains,
the address of the command vector to be cancelled. It
is not possible to cancel a command vector that is
currently being executed.

Timeouts on transfers must be done by t*16

processing server using its internal clock.
Transmissions do not have to be timed because they are
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abandoned after a sufficient number of retries have
failed. Timed out reception requests can be stopped by
using the cancel operation.

7.6 The Ancilla

An Ancilla service is responsible for supporting the
Ring interfaces for the processing servers in a
Processor Bank. It provides the users of processing
servers with a high level interface for exercising
control over their machines. There will be a different
Ancilla for each type of machine in the Processor Bank,
because the way in which the processing servers are
controlled at the lowest level is obviously machine
dependent. In the model system, the Processor Bank
consists of LSI4 minicomputers and microcomputer
systems based on the Motorola 68000. There is an
Ancilla service for each variety, provided by one of
the small Z80-based servers of the sort described in
Chapter Five.

The Ancilla accepts requests to load machines only
from the Resource Manager (see Section 8.1). The
Resource Manager will issue a loading request in
response to a command from a user, asking for a machine
to be allocated to him and specifying what is to be
loaded. The source of a loading request is checked to
be the Resource Manager by use of the Name Server
reverse look up operation. The simplest way to
identify what is to be loaded is to give the Ancilla a
File Server PUID and it will copy the contents of the
file into the memory of the processing server. This
basic level of operation is well suited to loading
sensitive programs which it would be dangerous to keep
in a filing system accessible to others. For example,
the File Server garbage collector (see Section M . 4 ) is
invoked via the Resource Manager and the PUID for its
code is only known to the File Server.

For more public files, such as the one for the TRIPOS
operating system, it is less desirable that the file
should be specified by its PUID. This is because
knowledge of a File Server PUID permits any operation
on a file, including overwriting it. Even if the File
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Server were to be augmented with «some sort of access
control over files, for example dif ferent PUIDs
permitting read and write access to files, it would not
be possible to prevent copying of files unless there
was some sort of load-only access status which would
prevent the file being read by anything other than the
Ancilla. Copying is dangerous because any protection
checks made by the loaded system before it runs can be
overwritten in the copy, giving an unprivileged user
excessive powers. Similarly, without load-only
protection, it would be possible to read a loading file
and discover any secret File Server PUIDs or
protection system keys contained within it.

The solution to these problems is to associate
loading files with text names and keep them in a simple
filing system which can apply any necessary access
controls. This filing system can be part of the
Resource Manager, in which case all communication with
the Ancilla will be in terms of File Server PUIDs, or
alternatively, the filing system can be part of the
Ancilla. In the present system, the filing system
resides with the Ancilla and the Resource Manager will
allow loading files to be named by either a PUID or a
text name, for passing directly to the Ancilla. The
Ancilla's filing system makes use of the File Server
for holding the loading files. Files can be created in
the filing system by giving the Ancilla a text name for
the file and passing over its PUID. Thus a loading file
may be generated by running a suitable system
generation program to set up the file in the user's
filing system and subsequently to put it into the
Ancilla's filing system by handing over its PUID,
rather than by making a copy of it.

The present implementation of the Ancilla does not
support a full set of filing system operations: the
number of files is relatively static and corresponds
to the set of standard public systems in everyday use.

The loading files are not simple memory images: a
more compact representation is employed in the
interests of disc space economy in the File Server. A
loading file is laid out as a series of directives
followed by the data to be loaded. The Ancilla scans
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the directives in sequence and maintains a loading
pointer which indicates the next location of memory in
the processing server to be written to, and a reading
pointer which indicates the next word from the data
part of the loading file to be copied into memory.
Data is copied in response to the load directive which
takes the number of words to copy as its argument.
This directive causes both the loading pointer and the
reading pointer to move forwards. Memory may be
cleared by using the clear directive which has as its
first argument the number of words of memory to be set
to a value given by its second argument. This
directive will only move the loading pointer. The
remaining major directives for copying data are
set loading pointer and stop loading. There are other
machine dependent directives concerned with starting
the loaded machine executing instructions. The
Ancilla translates these directives into the low level
operations supported by the processing server Ring
interfaces, copying data from the File Server as need
be.

7.7 TRIPOS for the processing servers

TRIPOS2 is a portable operating system written in BCPL
by a group at the Computer Laboratory led by Dr Martin
Richards. TRIPOS is designed as a system to run on 16-
bit minicomputers without memory mapping and is
therefore well suited to the LSI4 computers in the
Processor Bank. It is a stand-alone, single user
system and expects to have access to a local disc for
its filing system and a directly attached terminal.
TRIPOS has two facets. In one respect it is a real-
time operating system kernel and set of device driving
routines. Its other aspect is that of a personal
computer operating system because a large number of
utility programs such as command language
interpreters, editors, compilers and debuggers have

[2] M. Richards, A.R.Aylward, P. Bond, R.D. Evans and
B.J. Knight. September 1979. 'TRIPOS - a portable
operating system for minicomputers'. Software - Practice
and Experience, 9«
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been produced for it. An intended use of TRIPOS is
that when a project is to be started on a new machine,
one should first bring up the operating system on that
machine and then use the system and its utilities to
develop the application program. The File Server was
developed in this way and retains the structure of the
TRIPOS kernel at the heart of its code. TRIPOS is
thoroughly oriented towards the language BCPL and in
some sense may be thought of as a multi-tasking BCPL
runtime system, although there are compilers and
language libraries for Pascal, Fortran and ALGOL68C.
All of the TRIPOS system itself is written in BCPL with
the exception of the multi-tasking coordinator and
lowest level device driving routines which are written
in assembly code. When TRIPOS is to be moved to a new
machine, the assembly code routines have to be
rewritten and a BCPL code generator for the new
machine is required. To transfer TRIPOS to a new
machine from scratch takes about six man-months.

Communication between processes or tasks in TRIPOS
is in terms of messages. Message passing is done by
switching pointers, rather than by copying, and in
consequence the system is highly efficient. Each task
has a single message or work queue and messages sent
to a task are appended to the end of the queue. The
system has a message sending primitive called 'qpkt'
and a message receiving primitive called 'taskwait'
which will block a task until there is a message
available for it. Other primitives allow tasks to be
halted and released, and the relative priority of tasks
to be changed.

The filing system is implemented as a task running
under the aegis of the kernel. It has a simple
hierarchical directory structure with very elementary
protection facilities. There is no notion of a user in
the filing system: it is assumed that each user will
have his own personal disc. The filing system is
designed to be resilient against accidental corruption
and easy to reconstruct if a disaster does occur.
There are operations for loading programs down from
the disc into memory so that they may be executed and
for word or block level access to data files.
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A standard part of the TRIPOS system is a debugging
task which is invoked whenever there is a fatal error.
This debugging program has the usual set of operations
for inspecting registers and memory. Additionally,
there are commands to control tasks and produce
procedure call traces and tables of variables.

It was evident that TRIPOS would make a useful
personal computer operating system for machines in the
Processor Bank; however, a number of changes had to be
made to the system where the Processor Bank model of a
personal computer was inappropriate to the TRIPOS
view. The most significant differences are that a
processing server has no local discs and no directly
attached terminal.

There is a single TRIPOS filing system held on the
File Server shared by all of the versions of the system
running in the Processor Bank. This required a
complete rewrite of the TRIPOS filing system so that it
could be mapped onto the files and indices provided by
the File Server. As an interim measure, a very simple
TRIPOS filing system was written which used the File
Server as a remote virtual disc. For each machine in
the Processor Bank, a file was set up to be the virtual
disc for that machine's filing system. The filing
system of one machine was deemed to be the master copy
and this master machine was left running TRIPOS all of
the time. The TRIPOS operating system allows two
instances of the filing system on different devices to
be online simultaneously. When a user acquired a
processing server, the master filing system would be
available in read-only mode to all processing servers,
but could only be written into by the machine in charge
of it. Thus, apart from the master, all other machines
wrote into their own filing system rather than the
master one. At the end of a session it was necessary
to copy any important files back to the master filing
system using a standard inter-filing system transfer
program. This very rudimentary system was an
illustration of how the File Server can be used in a
low-level manner . The alterations needed in the
TRIPOS system to make use of the File Server, instead
of a local d i sc ,were straightforward.
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However, the implementation of a shared filing
system to replace the interim one was a considerable
task because of the synchronisation required in order
to prevent updates being lost if two users accessed
the same directory simultaneously. The necessary
interlocking was obtained by use of the File Server
facilities for supporting exclusive access to files.
The way in which the TRIPOS filing system is organised
is described in Section 4.5.

It was expected that moving the filing system onto
the File Server might have lead to a reduction in the
amount of code in the TRIPOS operating system, but this
was not the case. The code required to map filing
system operations into File Server transactions
together with the extra work to be done to maintain
interlocks and deal with clashes outweighs that
required to deal with space allocation and disc driving
in a stand-alone TRIPOS. However, one side ef fec t of
the use of the File Server is that the likelihood of
data being corrupted by accident is greatly reduced
and a less redundant , more efficient file
representation can be used.

Since all machines running TRIPOS share the same
filing system it is necessary to introduce the notion
of a user so that there should be some degree of
protection. When a TRIPOS system is loaded into a
processing server, it first of all asks the user to
identify himself using the standard Ring authen-
tication machinery. If the user cannot prove his
identity by quoting the correct password, the TRIPOS
system will not allow him access to the filing system.
If the check is successful, the user is allowed to
continue and the system will make his home directory
the current one. The way in which TRIPOS uses the Ring
authentication system will be described more fully in
Chapter Nine. This code too represents a further
overhead beyond the requirements of an ordinary TRIPOS
system.

Remote terminal access required the writing of a
byte stream protocol package to support the virtual
terminal protocol. The line editing functions of the
stand-alone terminal TRIPOS system are done by the
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Terminal Concentrator, although the internal TRIPOS
terminal handler intercepts certain control codes that
are used to switch input between tasks and signal
interrupts.

The remaining respect in which TRIPOS required
change was to deal with the way in which the Resource
Manager connects terminals to loaded systems and
controls time limits on sessions. TRIPOS is required
to poll the Resource Manager at regular intervals or
the processing server will be assumed to have crashed
and it will be reclaimed (see Section 8.1). When a user
quits from a TRIPOS session, the system will send a
message to the Resource Manager to indicate that the
processing server is no longer in use.

All of these changes were made in such a way that
compatibility with the stand-alone TRIPOS system was
preserved to the maximum extent. Only programs such
as disc repairing utilities that relied on existence of
a local disc and those programs that used the local
terminal directly, rather than through the terminal
handler, were lost. A consequence of the modifications
is that the TRIPOS system now contains code to
implement most of the Ring protocols and invoke many
standard services so that it is very easy to bring up a
new application under the TRIPOS system. The main
penalty has been the increase in the size of the
system. Another point is that much more of the system,
in particular the Ring driving code, must remain intact
after a software crash for the debugging program to
work. However, the next chapter will show how the
Processor Bank management system can be used to
support remote debugging, thereby reducing the need
for a substantial debugging program in the server
itself.

7.8 The TRIPOS Filing Machine

An alternative approach to the provision of filing
system facilities has been developed with the dual
goals of avoiding some of the space penalties
mentioned above, and of reducing the load imposed on
the File Server by a number of processing servers
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running TRIPOS simultaneously. While this scheme is
still at the experimental stage, it is worth describing
here as an example of the use of processing servers and
the File Server.

A particular processing server is dedicated to
supporting the TRIPOS filing system and is known as the
TRIPOS Filing Machine. This machine is loaded using
the normal Processor Bank mechanisms and remains
allocated continuously thereafter. It contains the
only copy of the full TRIPOS filing system programs.
In ordinary user's TRIPOS systems, the filing system
code is replaced by a series of stubs which translate
calls on the filing system into single shot protocol
transactions with the Filing Machine. These include
calls to open and close files as well as reading and
writing data. The effect of this is to reduce by about
one third the amount of memory taken up by the TRIPOS
operating system in each user's machine. With eight or
nine user machines running TRIPOS, the observed
performance using the Filing Machine is superior to
that obtained by their direct use of the File Server.

There are three main aspects of the Filing Machine.
First there are the protocols used between the Filing
Machine and its clients. They are made adequately
reliable by a combination of idempotent definition of
function and serial identification of successive
calls. Where the response to a call is of a known and
small size, the Filing Machine remembers the response
until another call is received belonging to the same
series. Thus, i f a call is repeated the response can be
re-issued directly. In cases where the response is not
of a small predictable size, the operation involved is
designed to be repeatable.

A client may have several series of calls in
progress at one time and all requests are labelled with
the series to which they belong. Writing to the File
Server is done asynchronously - the Filing Machine's
reply to a write request indicates that the material to
be written is in the Filing Machine's memory, not that
it has reached the File Server. Two variants of
writing are supported, analogous to the single shot and
full write of the File Server. The only significant
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difference is in an additional response to requests
for writing large amounts of data. The Filing Machine
may reply "Write already done" in addition to the
normal "Go ahead on port P". This will occur when a
client is attempting to repeat a write that has already
been done; presumably because the final response went
astray.

The second aspect of the Filing Machine is its
relationship to the File Server. It is a perfectly
ord ina ry client of the File Server, but it arranges to
lessen the load imposed on the File Server in several
ways. First it reads material in larger sized units
than an ordinary TRIPOS would. This causes more useful
data to be moved with the File Server's overheads only
being incurred once. Secondly, the Filing Machine
maintains a cache of recently accessed material, which
has the effect of avoiding File Server reference
completely for many of the system files in common use.
Thirdly, the Filing Machine handles locking itself; the
File Server's locking facilities are only used for
protecting certain operations on directories so that
the Filing Machine can coexist peacefully with the
standard TRIPOS system.

Finally, in order to reduce the use made of the File
Server to hunt through a hierarchical directory
structure, the Filing Machine caches an abstract of
those parts of the directory hierarchy it has had
occasion to visit. The abstract is only a summary of
the information in the directories and takes up less
space than would be necessary to cache the directory
blocks. Thus , when following a multi-level file title,
it is usually unnecessary to read material from the
File Server to verify the intermediate directories.

The success of the Filing Machine illustrates the
value of not having to minimise the amount of
communication that occurs over a high-speed network.
The cost of sending some data around the Ring more than
once is completely outweighed by the benefits of
larger scale File Server operations and a caching
system that knows what it is caching and why.



Processor Bank
Management

8. 1 The Resource Manager: functional description

The Resource Hanager is the service that is resp-
onsible for controlling the allocation of processing
servers from the Processor Bank. There are m a n y
issues of management associated with the allocation of
computing resources; for example, should a certain
class of users have priority at particular times of the
day? Who can use which machines and so forth? These
problems are common to both conventional time-sharing
systems and the Processor Bank. The Resource Manager
provides an effective range of management mechanisms
capable of supporting whatever policies are used to
settle questions of priority and privilege.

The Resource Manager has to maintain an allocation
table recording which machines are allocated and for
how long. Against the entry for each machine is a list
of attributes describing the machine. The attributes
are used to decide how best to satisfy the needs of a
particular user. Attributes divide into two classes:
generic machine types such as «LSI4' and sub-
attributes such as 'LSI4/10' - a slow processor - and
'LSI4/30' - a fast processor. The request made by a
client for an allocation includes the attributes
required of the allocated machine, the identity of the
software to be loaded and a total allocation time
limit. The Resource Manager consults its tables of
users' privileges to see if the client is entitled to
make such a request and if so, goes on to see if a
suitable machine can be found. There is scope for
endless ingenuity in the allocation strategy so that

114
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machines with scarce attributes will only be given
away if no other machine will do. At present the
following simple algorithm is employed: initially the
tables are searched to see if there is a free machine
with exactly the attributes required by the client and,
if so, it is allocated. Otherwise, a second scan is
conducted to find the machine with the least, or least
valuable superfluous attributes. This is done by
assigning a numerical weight to each attribute and
choosing the machine with the least weight. The
purpose of the algorithm is to cherish machines with
valuable attributes since they are likely to be a
scarce resource.

The Resource Manager instructs the Ancilla
corresponding to an allocated machine to load a memory
image into it. The loading file may be specified
either as a File Server PUID or as a text name to be
looked up in the Ancilla's filing system (see Section
7.6). When a client presents the Resource Manager with
a loading request, the name of the memory image is
passed over as a text string and the Resource Manager
in turn hands the string on to the Ancilla.

There is an alternative form of loading request for
accessing certain commonly used systems, for example
the TRIPOS operating system. In this case the client
passes over a string such as 'TRIPOS' which is
recognised by the Resource Manager. For each system
known to it, the Resource Manager has a table of
configurations where each configuration specifies a
loading file and set of attributes. When presented
with a request for one of the built-in systems, the
Resource Manager searches its allocation tables,
trying each configuration of the system in turn, until
one is found for which there is a suitable machine
free. Thus suppose, as an example, that the Processor
Bank contains machines of types 'A1 and 'B', both of
which support the TRIPOS portable operating system.
If a client just asks for 'TRIPOS', a version running on
either an A machine or a B machine will do, but the
loading files obviously differ in each case. In the
configuration table for TRIPOS there will be two
entries: one against the 'A1 attribute giving the name
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of the loading file for A machines and another with a
different name for B machines. In addition to giving
the name of the system, the client may specify a series
of attributes which are merged with those in the
configuration tables. Thus asking for 'TRIPOS' with
the attribute 'BIGMEMORY' will obtain a version of
TRIPOS in any machine with the big memory attribute,
whereas asking with the attribute 'LSI4' would limit
the machine to being one of the LSIH family.

The Resource Manager is responsible for ensuring
that one user may not interfere with machines
belonging to another, that is to say it is concerned
with issues of authentication. The current
implementation of the Resource Manager has very
rudimentary protection facilities in that it restricts
control over a machine to the machine on behalf of
which the allocation was made. In the case of
allocations made via the Session Hanager - the term-
inal user interface to the Resource Manager - control
commands are only accepted from the terminal at which
the original allocation request was made. Future
versions of the Resource Manager will make use of the
Ring user authentication system to be described in
Chapter Nine. This will mean that control commands can
be given from any terminal or machine, provided that
the authority to give the command is demonstrated.

When a machine is allocated on behalf of another
machine, rather than a user at a terminal, the
allocated machine will quite often need to get in
contact with the client machine. The machine may also
wish to know how much time it has been given. Both of
these needs are catered for by a Resource Manager
information function. When an allocation request is
m a d e , a few bytes of data may be deposited with the
Resource Manager. When the allocated machine calls
the information function, these data bytes are
included in the reply, together with details of the
•amount of time left in the allocation period. The most
common use of the data bytes is to hold an address by
which the allocated machine can get in contact with the
owning machine.
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The use of the information function should be
contrasted with an alternative scheme whereby the data
would be loaded into the memory of the allocated
machine at some conventional position when the machine
was started up. However, to provide the data that way
is against the principle that processing servers are
to be considered as personal computers without any
restriction. Furthermore, there are problems with
loading programs written outside the project (such as
manufacturer's test programs) if certain areas of
memory are prohibited to user code.

There are three ways in which an allocation can be
terminated. One is by simply running out of time.
Alternatively, an allocated machine may send a message
to the Resource Manager to indicate that it has
finished and the machine can be reclaimed. A similar
function can be exercised by the owner of a machine
instructing the Resource Manager to cancel the
allocation. In all of these cases, the Resource
Manager will arrange for the Ancilla to stop the
processing server from executing. This is
particularly important if the machine is, for example,
regularly polling the File Server to maintain an
interlock. Clearly this activity should be suppressed
when the machine is no longer in use, otherwise
supposedly idle machines will tie down system
resources unnecessarily.

The Resource Manager provides an operation which
allows a processing server to be reloaded, provided
that the allocation period has not expired. This
operation is normally used to run a fresh version of an
operating system in the same machine if the system is
accidentally corrupted or broken.

This reloading operation is only useful if there is
a person present to observe the system crash. However,
if an allocation is made on behalf of another machine,
or if a user leaves his machine running unattended a
crash would not be noticed and there is a potential for
the machine remaining unproductive until the time
allocation expires. To deal with this the concept of a
short timer was introduced. When a machine is
allocated, the client has to specify a short time
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interval, in addition to the total duration of the
session. The Resource Manager expects the allocated
machine to send a message at regular intervals to
reset a time-out counter which is initially set to the
short time interval. If the allocated machine fails to
reset the counter in time, the Resource Manager will
consider the machine to have crashed and reclaims it.
For programs that are known to run for f ixed , short
periods the interval can be set larger than the total
allocation period so that the program need not be
concerned with the short timer.

In practical implementations, machines reset the
short timer more frequently than is strictly
necessary. This means that if a message is
occasionally lost because of communication failures,
or if the message is delayed because of congestion in
either the processing server or the Resource Manager,
no harm will be done. In consequence, the machine does
not have to go to great lengths to get every message
through, nor is the Resource Manager obliged to ensure
that the reply gets back every time. This is another
typical example of a tradeoff between lightweight
protocols and (by implication) simple programs against
greater use of communications bandwidth.

The Resource Manager provides some simple functions
to support maintenance of processing servers. A
suitably privileged user can cause a machine to be
withdrawn from the Processor Bank, after the current
owner has done with it. This command is used to
prevent machines due for repair or maintenance from
being allocated. There is a corresponding function to
put a machine back into service after it has been
withdrawn. The privileged user can ask the Resource
Manager to load programs into a withdrawn machine so
that test programs may be run. The Resource Manager
will pass the request on to the Ancilla in the usual
way.

8.2 The Resource Manager: implementation

The Resource Manager runs on a Z80-based small server.
Requests are sent to it in the form of single shot
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protocol requests. The following functions are
provided:

Information. This is the function used by a processing
server to find out why it has been allocated and for
how long. Exercising this function has the side effect
of resetting the short timer to a value given in the
request.

The reply gives information about the total
allocation time left, the Ring station number of the
machine owning the processing server and the data left
with the Resource Manager by that machine (see the
command function below). In addition there is
information given about any outstanding terminal
connection waiting with the Session Manager (see
Section 8.4).

The owner of a processing server may reset the short
timer rather than the server itself. This is so that a
remote debugging program can reset the timer if it has
stopped a processing server from executing
instructions. The name of the machine for which
information is sought is passed over as a string. A
null machine name is interpreted as meaning the calling
machine itself.

Finish. This command is used by a processing server to
return itself voluntarily to the pool of free machines
before the overall time limit has expired.

.Command. This function is used to transmit commands to
the Resource Manager. Commands are represented as
textual strings. An allocation command (SYSNAME or
SYSDESC below) is accompanied by six bytes of data
which will be remembered by the Resource Manager and
passed over when the information function is exercised
in the way described above. Examples of possible
commands are as follows:

SYSNAME name time-limit MCATTR attributes

This command causes a configuration of the named
system, suitable for running on a machine with the
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requested attributes to be allocated and loaded,
and to remain allocated for the time limit. The
initial setting of the short timer is implicit
because it is held in the table of configurations.

SYSDESC file time-limit initial-time-limit
MCATTR attributes

This command is used to load particular files in
the Ancilla's filing system. The limit and
attributes are treated in the same way as for the
SYSNAME command. The initial time limit specifies
the period within which the allocated machine must
reset the short timer for the first time. If the
program does not use the timer, this limit may be
set to exceed the time limit.

SYSNAME name time-limit MCNAME machine

SYSDESC file time-limit initial-time-limit
MCNAME machine

These commands are used to reload an allocated
machine. They are only available to the owner of
the machine in question. The effect of the
command is similar to the earlier examples of
SYSNAME and SYSDESC commands.

RELEASE machine

The named machine, which must be owned by the
client making the request, is returned to the pool
of free machines. If a machine name is not given,
all of the machines owned by the client are
released.

WITHDRAW machine
DEPOSIT machine

These commands are intended for use by engineers
when repairing machines in the Processor Bank.
The WITHDRAW command takes a machine out of
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service and the DEPOSIT command replaces it. It is
possible for engineers to use SYSNAME and SYSDESC
commands to load test programs into withdrawn
processing servers.

It is important that the Resource Manager should
preserve the table of machine allocations, even if the
software crashes. This is done by regularly copying
the contents of the allocation table out to the File
Server so that an up-to-date record will be kept in
stable storage. Whenever the Resource Manager is
reloaded, it reads down the table from the File Server
so that any current allocations will persist. As well
as the dynamic information about processing server
allocations, the tables of machines and attributes are
also kept on the File Server. This is so that a program
can be run on a convenient machine in order to update
this table when new machines are added to the
Processor Bank or when a machine's attributes are to be
modified.

8.3 The Resource Manager: extensions

An important feature of the way the Processor Bank is
used in the Cambridge Distributed Computing System is
that the client has complete and exclusive control
over his machine for as long as he has booked it. There
is no sharing of machines and if a user claims a
machine for many hours and leaves it essentially idle
the system takes no action. This is because, in our
view, processing servers should be treated as personal
computers once they have been allocated to a client.
Clearly there should be rules to prevent valuable
machines being retained for long periods and also to
stop one user monopolising many machines simul-
taneously.

There is one respect in which the allocation of a
machine for a continuous period is not reasonable.
There are some computations which can be speeded up by
spreading them over a number of machines so that the
work is shared out. A classical example would be a
Program tracing some sort of decision tree where
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parallel branches of the tree may be pursued
independently. Many such programs have the property
that they can extended to a considerable degree of
concurrency, yet at the same time, provided that one
coordinating machine keeps running, the computation
can recover from the loss of any other machine. It
could be imagined that the user wanting to run such a
program would ask for an allocation of machines until
they are needed by someone else. At times when the
Processor Bank is under-utilised, the computation will
absorb many machines and as demand for processing
servers by other clients builds up, the distributed
computation will retreat back into a smaller set of
machines. There is no reason why such a facility
should not be provided by the Resource Manager,
although to do so would increase the complexity of the
allocation control policies because of the need to
deal equitably with several such programs running at
once.

Another feature which could be provided would be to
arrange that, when an allocation period comes to an
end, it is possible to try and renegotiate an extension
to the time allowed on the machine. However, if this
was relied upon to cause a sufficient turnover of
machines to keep up with the demand for machines, it
would be indicative of overloading in the Processor
Bank and the need for more processing servers to be
made available.

The Resource Manager is the obvious point at which
to provide debugging facilities for processing
servers. It was explained in Section 7.7 how the
stand-alone TRIPOS system has a debugger that can be
called down from disc into a crashed machine to conduct
a post mortem examination. A similar function can be
provided through the Resource Manager using the
commands for reloading machines.

An alternative approach to debugging is to run a
processing server under the control of a remote
debugging program. The remote debugger can be
provided in one of two ways: either as a program to be
run in another processing server by the client, or as a
standard shared service to which the client can
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connect a terminal. In the present system, a very
simple remote debugger to be run on another processing
server is available, but the extensions to the Resource
Manager required to support it fully have yet to be
written. The owner of the machine to be debugged will
have to instruct the Resource Manager to enable the
debugging machine to take control. This information
will be passed on to the Ancilla which, in turn, will
make the Ring interface of the machine accept
debugging commands from the debugger. When the
machine is returned to the Processor Bank, the
Resource Manager will instruct the Ancilla to cancel
the debugging session.

The short timer mechanism can be used to provide an
automatic dumping service for processing servers that
are left running unattended. If an allocated machine
fails to honour the timer, the Resource Manager could
be made to instruct the Ancilla to make a copy of the
contents of the machine's memory and put it in the
Ancilla's filing system from which it could be -removed
later on and inspected. This service might also be of
use for a machine which is under the control of a
person because, unlike the previous suggestion of
loading a debugging program on top of a crashed
machine, it would be possible to dump memory and then
have the entire machine available for a debugging
program that worked on the dumped memory image.

8.4 The Session Manager

The job of the Session Manager is to provide a
mechanism for connecting remote terminals to systems
loaded by the Resource Manager and also to provide
users at remote terminals with a simple interface to
the Resource Manager. For a user with a personal
computer, rather than just a terminal, the Session
Manager is redundant because all of its operations can
be carried out by his own machine. Terminals are
connected to the Session Manager using the virtual
terminal protocol (see Section 6.6). Lines of input
are converted to strings and sent to the Resource
Manager as messages in the single shot protocol. The
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Session Manager interprets the reply from the Resource
Manager and displays an appropriate message upon the
terminal. The Session Manager has some commands of its
own, in addition to those passed to the Resource
Manager. For example, the LIST command produces a
table summarising the status of the machines in the
Processor Bank, whether they are allocated or not, how
long for and their owners. This information is derived
from a series of calls to the Resource Manager to
inspect its internal tables.

When a machine is allocated through the Session
Manager, the terminal byte stream is made available to
the newly allocated machine so the stream which was
opened to the Session Manager then becomes the stream
connecting the user's terminal to the program running
in the allocated machine. This is arranged as follows:
when the Session Manager makes up an allocation
command for transmission to the Resource Manager, it
includes the name'of a connection service which can be
looked up in the Name Server and will turn out to be a
route back to the Session Manager. For a machine
allocated through the Session Manager, the information
function provided by the Resource Manager will yield
the name of the connection service and also indicate
that there is a terminal stream pending connection.
The processing server will then open a byte stream to
the connection service. This event is recognised by
the Session Manager which then uses the byte stream
protocol replug operation1 to merge this new byte
stream from the processing server with the one from
the user's terminal.

It should be noted that this terminal connection
scheme has to use the byte stream re piug operation
because the Terminal C o n c e n t r a t o r s o n l y support

[1 ] The replug operation requires two byte streams to be open
to a single machine. The effect is that the machines at
the other ends of each of the byte streams are told of each
other's addresses and instructed to use the other's
address from then on. This leaves the two end machines in
direct communication and at the same time disconnects the
middle machine from both byte streams.
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forwards connection from a virtual terminal to a host.
The protocol does not allow a host to open a connection
to a terminal. It would be possible to modify the
protocol so that terminal connections were made by
sending a request to the host which then opens a stream
to the Terminal Concentrator. This would complicate
the protocol however, and is unnecessary for
organising connection to other computers, such as the
University Computing Service where forwards
connection is entirely adequate.

The Session Manager is not a privileged service; any
user can write a command program that talks to the
Resource Manager directly, using the single shot
protocol. In the first implementation of the Resource
Manager and Session Manager, they both ran in the same
machine, communicating through an internal interface.
More recently, the two have been split to free more
memory space for the Resource Manager's use. The
interface between them is public and in consequence
users with personal computers can organise terminal
connection to a processing server without the
assistance of the Session Manager.

8.5 Examples of use

File Server garbage collector. The File Server's
asynchronous garbage collector, designed to run on a
processing server in parallel with normal operation of
the File Server, is described in Section 4.4. When a
garbage collection is required, the File Server sends a
single shot request to the Resource Manager with a
SYSDESC command specifying the File Server PUID of the
memory image of the garbage collector. At the end of
its run, the garbage collector signals to the Resource
Manager that the machine can be freed. It should be
noted that the garbage collector program is named by
its PUID, rather than by a file title in the Ancilla's
filing system. This is because the garbage collector
is a highly privileged program and it is kept out of
any, ordinary user accessible, filing systems in the
interests of File Server integrity.
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Pointing Machine Server. The Pointing Machine Server
(see Section 6.7) requires a processing server to run
the program that scans a wiring schedule and issues
commands to the pointing machine . When a new operator
logs onto the terminal connected to the Pointing
Machine Server, it sends off a request containing a
SYSDESC command. In this case the memory image is
specified by an Ancilla filing system name because the
software is less privileged and it is more convenient
for it to be accessed by name so that new versions can
be installed without having to update the program in
the Pointing Machine Server.

TRIPOS. To obtain this system the user at a terminal
engages in a dialogue as follows (user responses are
shown in bold type):

Monitor> this is the prompt produced by
the control program in the
Terminal Concentrator.

Monitor>C SM the user attempts to open a
terminal connection to the
Session Manager.

*** 1 allocated the Terminal Concentrator
acknowledges the C command and
opens a byte stream.

SM> this is the prompt from the
command line interpreter in the
Session Manager.

SM>SYSNAME TRIPOS 60 MCATTR LSIU
the user requests that a machine
with at least the attribute 'LSI4'
be allocated to run a
configuration of the TRIPOS
operating system for up to sixty
minutes .

Alpha allocated the Resource Manager has found
and loaded a suitable machine
(called Alpha) .

*** 1 RESET this is the Terminal Concentrator
reporting the byte stream replug
operation.
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TRIPOS starting
User: this is the TRIPOS operating

system prompt inviting the user
to login.

If the user wants to run a system of his own that has
not been built into the Resource Manager, he will use a
SYSDESC command instead of a SYSNAME command.

As an optimisation, the Session Manager provides a
number of services that connect directly to particular
systems without the user typing further commands. For
example, if the user had said "C TRIPOS" rather than
"C SM", the Terminal Concentrator would connect to the
Session Manager, but with a different function code.
This Session Manager service obeys an implicit
"SYSNAME TRIPOS" command and if a suitable machine is
free, the allocation and terminal connection are made
as before.

The user may leave TRIPOS in a number of ways: if he
obeys the FINISH command in the operating system or
disconnects his terminal byte stream, the TRIPOS
system will send a message to the Resource Manager to
indicate that the machine is free. Alternatively, the
user can open another terminal stream to the Session
Manager and use the RELEASE command.



Protection and
Authorisation

9.1 Protection in local area networks

Protection in local area networks is concerned with
controlling access to services in accordance with
policies decided externally. Services are called upon
by message using the network, and it is for the code
providing a particular service to implement policies
about access. There must be information associated
with the message on the basis of which decisions about
protection may be made. This information may include,
but not exclusively, the address of the machine from
which the request is made and the identity of the
principal1 making the request. It is accordingly
important to have methods of authentication of
principals which shall be readily accessible and
usable without great overhead by services in general.

In deciding whether or not a particular request
should be honoured, there are various alternatives.
Either the server itself may keep records of who is
authorised to do what, or it may expect to be given
some sign of authority which may be checked with an
external agency. What is inevitable is that the onus
is on the server to take the necessary decision. This
is a consequence of the open nature of the system, in
which there is no constraint at all placed on the use
made of the Ring by the various machines attached to
it. One could imagine a very different system in which
messages were controlled at source; a machine would

[13 A principal is the term used to describe a name that may
appear in an access control list. Usually a principal
will stand for a particular user or program.
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not be permitted to send a message requesting a
service unless this was certified to be a proper
action. Control in such a system would lie in the
communication interfaces of the computers connected,
which would form part of the protection envelope of
the system as a whole. In a system like the present
one, it is for servers to defend themselves against
abuse by refusing to act except on the basis of proper
requests.

Since the bona fides of a request must usually be
determined by external reference, there is a subtle
distinction between the implementation of protection
in distributed and in centralised systems. Protection
in centralised systems may be enforced much more
strongly. For example, a call on a procedure to check
credentials may simply not return if the credentials
are bad. In a distributed system, all that can be done
is to give advice on the prudence or otherwise of
proceeding with the requested work.

In the development of the Cambridge Distributed
Computing System the emphasis has been on devising a
general mechanism for the expression of permission and
authenticity. If the work is successful then we should
see the same mechanism being used for checking
purposes all over the system, because it should appear
to be the most convenient way of doing the job (rather
than as the result of an administrative f iat) .

Whenever approaches to protection are discussed, it
is necessary to be clear about the ground rules being
applied. No attempt has been made to cater for
interference with the Ring itself, by wiretapping or
otherwise. If one were concerned about such
interference, it would be necessary to make extensive
use of encryption, for example in the manner proposed
by Needham and Schroeder2. As a special case of this,
we assume that machines on the Ring are properly
authenticated by address: nobody maliciously alters
the coding plugs in the stations.

[2] R.M. Needham & M.D. Schroeder. December 1978. 993-9.
'Security and Authentication in Large Networks of
Computers'. New York; Communications of the Association
for Computing Machinery, 21(12).
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We also assume that another particular type of
protection hazard is not important. It is possible to
deny service of a particular type to others by
bombarding the machine that provides the service in
question with unsatisfiable requests. Although the
service protects itself from abuse of the real
resources it manages by checking authorisation, it may
happen that so many of the machine cycles are taken up
in rejecting bad enquiries that there is nothing left
to handle good ones. This may apparent ly only be dealt
with by the provision, at a very low level, of a
rejection list, such that transmissions from a station,
say A, to a station E that has A on its rejection list
will be rendered abortive before any of jJ's cycles have
been used. There is no such provision in the present
system.

We are however concerned with transience of
authorisation, and with the possibility of revocation
of authority. The general approach taken depends upon
the use of identifiers drawn from a very sparsely
occupied space, these identifiers being passed for use
as capabilities. To make use of a capability it is
necessary to check it against a registry in which it
will, if valid, be found. There is an important
contrast here with the generally analogous use of
capabilities in internal protection of computer
memories. In the latter case it is possible to protect
the capabilities themselves by hardware, keeping them
physically separate from data and preventing any data
operations from being performed on them. It is thus
possible to interpret capabilities directly, without
checking them for validity. In a distributed system
there is no analogue of this state of affai rs .

The use of capabilities should be distinguished
carefully from the use of passwords and other secrets
for authenticat ion. Capabilities are issued as a
result of authentication with the intention that they
will pass from hand to hand for use as required. This
is quite di f ferent from the treatment of passwords
which are passed around as little as possible. Even
so, care should be taken not to reveal capabilities
unwisely.
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9.2 The Active Name Table

The protection system used in the Cambridge
Distributed Computing System is based upon the use of
capabilities known as keys. Keys may be offered as
proof of identity or privilege when requesting a
service. The allocation of keys lies in the hands of
the Active Naae Server. This server maintains a
table, called the Active Marae Table ( A N T ) of all
current keys and can tell a service whether or not a
key offered by a client is valid. Thus keys are purely
transitory in nature; for example the key identifying a
user is only kept in existence for as long as the user
remains logged in. Every time the user leaves the
system his key is destroyed and when he returns to the
system subsequently he must identify himself once
more, by use of a password, in order to be issued with a
key for use in the new session.

When a key is passed by a client to a server, the
service will want to know who the key is for in most
cases. To this purpose, a system wide naming scheme
has been set up. Every protected entity (only users
will be considered in the present discussion) is given
a name which is an all time unique identifier drawn
from a sparsely occupied space. There are various
naming services on the Ring which will translate
mnemonic names, such as user identifiers, into the
corresponding name and vice versa. Names are public
knowledge and do not indicate any aspect of privilege
that they describe. Thus when protection is required,
a name has to be accompanied by a suitable key. The
operations supported by the Active Name Server are
best described by considering the contents of the
active name table as various operations take place.
The table may be thought of as four columns, with a
typical entry shown below:

1 2 3 4
MVW A CL B
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The significance of the columns is as follows3:

1 a name, in this case the user MVW
2 an access key A
3 the authority which created the access key
for the user (Computer Laboratory)

4 a control key B

Suppose the user MVW wants to call a service requires
proof of his identity and association with the
Computer Laboratory. He has to supply the service
with his name, MVW, and the access key A. The service
may then approach the Active Name Server to enquire if
there is an entry in the table with the values
<MVW, A, CL> in its first three columns. In this
example there is and the service is assured that the
request has been sent either by MVW's computer, or one
he has authorised to act on his behalf by telling it
his access key.

There may be entries in the table for other users
belonging to the same authority as MVW, and users
belonging to other authorities. The table below has
been augmented by another member of the Computer
Laboratory called GSM and a student user called JR:

MVW A CL B
GSM P CL Q
JR X STU Y

If the student, JR, attempts to use the service that is
only available to members of the Computer Laboratory,
the Active Name Server will report that there-is not an
entry in the table with the values <JR, X, CL> in the
first three columns.

The purpose of the control key is to protect the
entries in the table from unauthorised change. Any

[3] In the interests of clarity of presentation, different
terms are used here to describe the protection system than
those coined by its author. His terms for those used in
the text are as follows: active name - active object; name
- PUID; access key - TUID; control key - TPUID; authority
- authentity.
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request to alter, or remove an entry in the table must
be accompanied by the control key. Thus, for example,
if the user GSM wishes to remove his entry from the
table he will instruct the Active Name Server to delete
the entry with <GSM, CL, Q> in the first, third and
fourth columns. Since the right to remove an entry
from the table lies with the holder of the control key
it is not possible for a machine that has been passed
the access key alone to delete the corresponding
entry. By using the control key to destroy entries in
the table, it is possible to revoke a privilege that
has been passed on.

Some users can act under a number of authorities and
in consequence there may be a number of entries in the
table for the same name. In the following example, the
user MVW appears as a member of the Computer
Laboratory and also with the powers of a professor:

MVW A CL B
MVW C PRF D

The two entries have distinct access keys, A and C.
Thus when MVW calls any service he must decide which
key is the correct one to pass. Sometimes this is
inconvenient, particularly if there is a service which
is only available to professors in the Computer
Laboratory when both keys are required. The Active
Name Server allows a single name and access key to
appear several times over in the table thus:

MVW A CL B
MVW A PRF E

Each entry has a different control key so that MVW may
selectively remove either of the two entries. When he
calls the restricted service, he will pass over the
Pair <MVW, A> and the service will ask the Active Name
Server to report if it can find entries matching both
<MVW, A, CL> and <MVW, A, PRF> in the table.

It is also possible to have the same key against
different names. Thus it could be arranged that all
visitors to the Computer Laboratory are issued with
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the same access key every time they log in, as in the
ANT entries shown below:

WDS K VIS U
JGM K VIS V

Clearly this would only be sensible if both WDS and JGM
have identical powers, i.e. those of a visitor. Any
service accepting a request from a visitor should be
aware that the name that accompanies the access key is
not guaranteed to be correct, although the service is
safe to assume the request has come from a visitor.
Thus for example, any charges for the service should be
made against a general visitor's account, but the name
can be used to direct printed output because there is
no advantage in WDS pretending to be JGM in this
respect. From the point of view of protection, JGM and
WDS are pseudonyms.

The values in column three of the table indicate the
authority conveyed by the rest of the entry and are
set up when the entry is created. The authority is a
name .much as MVW is the name of a user. When an entry
in the table is to be created, the Active Name Server
must be told the name for placing in column one and the
name of the authority for placing in column three. The
access and control keys are invented by the server and
returned as the result of the operation. When an ent ry
is made, the server must check that the agent
responsible is entitled to use the authority.
Authorities are recognised by the presence of a
distinguished name 'AUT' in column three of their
entries in the table. Thus in the example below S is an
access key for use of the authority CL:

CL S AUT T

The entry for MVW as a member of the Computer
Laboratory would have been made by a service knowing
the access key S. This service would have required him
to prove his identity by quoting a password or by some
other form of external validation. The request made by
this service to the Active Name Server had the
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arguments ( S , C L , M V W ) . First, the key S had to be
checked by looking for an entry in the table with
<CL, S, AUT> in the first three columns, and then the
entry for MVW was made in the form below:

MVW A CL B

The keys A and B were given back to the service making
the entry. Obviously the access key, A, has to be given
to MVW in order to be useful, but it is a matter of
choice whether MVW is given B as well so that he may
remove himself from the table.

The ability to create new authorities may be
controlled by knowledge of the access key G from the
following table entry:

AUT G AUT H

In the previous illustrations, all of the examples
have been framed in terms of human users. The
operations of the ANT are much more general: they can
be employed by programs to identify themselves and to
protect a wide range of resources and privileges. In
Chapter Five, the need to control who may alter the
bootstrap files for small servers was discussed and in
Chapter Eight, on Processor Bank management , the
privilege of remote control over a processing server
was introduced. Both of these are examples of the sort
of protection which can be achieved through use of the
ANT.

9. 3 Implementation

The Active Name Server is currently a Z80-based small
server and has room for over 500 entries in its table
which is sufficient for the model system, but would
need to be extended in a larger system. The ANT is
kept entirely in memory so that access to it will be
fast. To guard against failures in either the service
software or the server hardware, the table is auto-
matically copied out to the File Server so that entries
will not be lost. The File Server PUID for the back up
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table is secret and only exists in the code of the
Active Name Server, so that the information will remain
secure.

All of the functions of the Active Name Server are
implemented in terms of the single shot protocol.
Entries in the ANT have an associated timeout which
specifies how long the entry is to remain in the table.
Thus, if breakdowns in communication cause spurious
entries to be left in the table, they will decay
continuously and eventually expire. The Active Name
Server provides an operation which may be used to
reset the timeout for a particular entry, provided
that the call is accompanied by the control key for the
entry. The Active Name Server uses the CLOCK service
provided by the Logger in order to observe the
passage of time and decide when to remove entries from
the ANT.

Names and keys take the form of 64-bit values with
48 of the bits being chosen at random so that as
capabilities they are difficult to forge. In addition,
there is a field within them which indicates an ANT
serial number. The serial number can be used to
distinguish between keys issued by different Active
Name Servers as might be the case if several of them
are provided so that a larger table can be maintained.
A server in receipt of a key can extract the field
holding ANT serial number and use this to select the
appropriate Active Name Server at which to check the
key. Names and keys are made using a generally
available service called 'NEWPUID' (names are also
known as Permanent Unique Identifiers) that runs on
the same machine as the Active Name Server. The
NEWPUID service returns a 54 bit unique identifier
comprising a 48 bit random number and an eight bit
serial number identifying the random number generator
used. In this case the serial number allows multiple
versions of the NEWPUID service to run simultaneously
without the risk of two of them generating exactly the
same unique identifier.

When an ANT is set up, there is the problem of making
the keys for the various authorities and distributing
them. The Active Name Server recognises one machine
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with the name 'SOAP' (Source Of All Privilege) which is
allowed to create entries in the ANT without offering
an access key for an authority. This machine is
thereby the root of all protection on the ring since it
is responsible for generating the access keys required
by the several authorities. SOAP has a table defining
who may claim the right to exercise a particular
authority. The table has three fields: the name of the
client, an authority by which the client must be
authenticated and the authority the client is entitled
to control. A typical entry in the table is shown below

GSM USR PRF

This en t ry indicates that a client presenting an
access key for the name GSM with the authority USR can
be issued with access and control keys for the
authority with the name PRF.

Summary of Active Name Server functions

verify [access key, name, authority] -> boolean
This is the verification function for an access
key. The authority parameter is only the name of
the authority. Thus authority can be checked by
anyone.

check [access key, control key, name, authority]
-> boolean

This function is similar to the verify operation
with the addition of a check on the validity of
the control key argument.

get key [name, authority, access key, timeout]
-> access key, control key

This is the operation to generate a new entry in
the table. The access key parameter must be an
access key for the authority against which the
new entry is to be made. The timeout parameter
specifies in seconds how long the entry may
remain in the ANT if it is not explicitly removed
earlier.
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enhance [access key, control key name, authority,
authority access key, timeout]

—> control key
This is the operation to make a further entry for
an access key (the first parameter) in the ANT.
There must be an entry present in the ANT for the
name given by the third parameter with access and
control keys given by the first and second
parameters respectively. The f if th parameter
must be an access key for the authority against
which the new entry is to be made. The timeout
parameter specifies how long the entry may remain
in the ANT if it is not explicitly removed
earlier.

refresh [access key, control key, name,
authority, timeout]

This operation is used to reset the timeout
associated with an entry in the ANT. If the
timeout parameter is zero, the entry will be
deleted from the table forthwith.

9.4 User authentication

One of the problems in a network offering several user
orientated services is the frequency with which a user
must reauthenticate himself as each different service
is used. Using the Active Name Server it is possible to
arrange that a user need only authenticate himself
once to a central authentication service and obtain an
access key which can be presented thereafter at every
service. Thus, when negotiating with a service, a user
can pass over his name and an authenticating access
key so that the service will be assured of the
authenticity of the client.

On the Ring there is a service called ' U S E R A U T H '
which provides a user authentication facility. All
operations are in terms of textual passwords of up to
eight characters and are implemented using the single
shot protocol. The simplest operation checks the
correctness of a password for a given user name. To
obtain an access key, the authenticate function is
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used. It takes the user's name, password and an initial
timeout as arguments . If the password is correct, an
access key will be created for the user name against
the authenti ty 'ring user' and returned. The remaining
operation supported by the user authentication
service is one to change a password. This function
requires the user's name and previous password to be
quoted, and, together with the new one, to be put into
the server's tables.

The user authentication system is used by the
TRIPOS operating system when it is loaded into a
processing server. Once the user's terminal stream is
connected to the server (as described in Chapter
Eight) the TRIPOS system asks the user for his user
identifier (normally his initials). There is a table
relating textual user identifiers to authentication
system names. The system next prompts the user for his
password. It is sent, together with the user's name, to
the user authentication service for verification.
Provided that the service is satisfied that the
password is correct, an access key and control key will
be returned to TRIPOS. The TRIPOS system will
remember this information, together with the user's
name and the authority under which he was logged on,
and this data is referred to as the user's UID set.
Once the TRIPOS system has accepted a user's identity,
it will permit him to use the filing system, making his
home directory current. The operating system will
refresh the UID set at regular intervals so that it
remains in the ANT. When the user finishes with
TRIPOS, it deletes the entry in the ANT corresponding
to the UID set. The advantages of using the Ring
authentication system for TRIPOS are that it is not
necessary for TRIPOS to keep a password file in its
relatively insecure filing system and also that it is
possible to open authenticated byte streams for file
transfer and virtual terminal connection (see Section
9.5) without requoting passwords.

The basic user authentication system is extended to
deal with the control of user's privileges, such as the
ability to use certain machines, run restricted
programs or consume valuable resources by introducing
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a service known as the Privilege Manager. Privileges
are represented by entries in the ANT containing an
authority called 'privilege1. The Privilege Manager
expects the user to supply an access key for himself
and an indication of the privilege by giving its name.
If the Privilege Manager's tables show that the user is
allowed the privilege, the Privilege Manager tells the
Active Name Server to make a new entry in the ANT of
the form

PRI X 'privilege' Y

Thus X is an access key for the privilege called 'PRI'.
The client may ask that the access key X be a brand new
key if it is desired to treat the privilege as an
independent object. Alternatively, X may be an already
existing access key if it is wanted to associate a set
of privileges with the same key. In the present
system, the ability to update the tables in SOAP, the
User Authentication Server and the Privilege Manager,
are all represented in terms of privileges. When, for
example, the tables in SOAP are to be changed, SOAP is
not concerned with who is making the alteration, but
just that they are a holder of the appropriate
privilege.

There are programs within the TRIPOS operating
system for maintaining a collection of UID sets in
existence so that a user may retain several privileges
simultaneously. There are commands to edit the
contents of the collection and to select which
privileges are to be used when protected services are
invoked.

It is proposed in the future to arrange that the
Processor Bank management system described in Chapter
Eight will take advantage of the user authentication
mechanisms to control the privileges of being able to
load and remotely debug processing servers. The
present system does not do so because the Active Name
Server was not fully developed at the time that the
Resource Manager was implemented. When a machine is
allocated, an entry will be made in the ANT particular
to the allocation. Any subsequent request to the
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Resource Manager to reload the machine, or so forth,
will only be allowed if the access key from the ANT
entry can be quoted. Thus, the loading and debugging
operations provided by the Processor Bank management
system can be treated as privileges within the
protection system. A consequence of this is that the
Resource Manager will be less of a privileged service
and there can be a number of independent Resource
Managers implementing different control policies for
dif ferent parts of the Processor Bank. Each Resource
Manager will only be able to load those machines for
which it had a suitable access keys. Allocation
periods would be enforced by virtue of the timeouts on
ANT entries which would render the access keys for a
machine useless once the allocation period had
expired.

9.5 Authenticated byte streams

When a byte stream is opened, a name and access key
pair may be optionally included in the open packet to
authenticate the source of the byte stream. The most
common use of authenticated byte streams is for file
transfer using a protocol based on byte streams. A
program called 'TAKEFILE' reads files from remote
filing systems. If TAKEFILE is able to open a byte
stream that can be verified as coming from an
authenticated user of the machine containing the
files, the latter will interpret the name of the file to
transfer as being within that user's principal
directory on the remote machine, otherwise a public
directory will be used. Thus, a user's files may not be
read remotely unless they are publicly accessible,
other than by opening an authenticated byte stream.
There is an analogous program called 'GIVEFILE' that
can be used to copy a file to a remote filing system and
it too makes use of authenticated byte streams in the
same way.

Authenticated byte streams may also be used to open
virtual terminal connections. If the host machine can
verify the access key passed in the open block, there
is no need for it to ask the user to give his password
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and authenticate himself. The host will have to
translate the authentication system name (a 64-bit
number) into the corresponding user identifier. This
can be done by lookup in a table local to the host or
alternatively by invoking a service called 'PS.MAP'.
This service has a table of users and their various
names on d i f ferent systems. PS.MAP will translate a
name in one name domain to its equivalent in another.

It would thus be appropriate for the terminal
concentrator to conduct an initial user authentication
negotiation with the user when he first uses a terminal
and thereafter open authenticated byte streams as he
connects terminal streams to machines so that he need
not authenticate himself again. When the user leaves
the terminal he should use a command to the
concentrator in order to cancel the UID set it has been
recording.



Review

This book has been concerned with the design and
implementation of an experimental distributed
computing system which is now in everyday use by
members of the Computer Laboratory at Cambridge. In
common with all experimental systems, work is con-
tinuing to make extensions, to improve it and to
increase performance. The system has grown sub-
stantially over a period of time, with more than f i f ty
devices attached to the Ring including more than
fifteen machines in the Processor Bank. In this
respect the experiment has grown beyond a small-scale
trial into a practical system serving a large and
demanding user community. The fact that the system
has sustained this growth gives us confidence in the
approach adopted at Cambridge and confirms the
rectitude of many of the design decisions made during
the course of the project. It would be hard to over
emphasise how important practical experience is in the
construction of large software systems. We hope that
the description of the work at Cambridge will benefit
others and stimulate the building of further systems
in the exciting and innovative area of distributed
computing.

Central to the Cambridge Distributed Computing
System is the Processor Bank sustaining a collection
of machines of various types. We have observed that
users are quite selective in detail in their choice of
machines. Frequently, the motivation is a reflection
of the availability of particular software systems on
the dif ferent machines and, of course, the performance
of each type of machine at different sorts of
computing has an effect . Without the centralised
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management of computing resources imposed by the
Processor Bank model, the necessary flexibility to
enable users to switch from one machine to another
would not exist.

An important side-effect of the use of diverse
machines has been the increase in the production of
portable software so that programs can be supported on
different machines. To a considerable degree this has
followed from a conscious decision to use high-level
languages wherever possible, and some effort has been
taken to make the commonly used languages available
over a wide spectrum of different computers. The
considerable use of servers on the Ring to provide
operating system services has enhanced the uniformity
between systems. For example, nearly all machines use
the Printer Server for the production of hardcopy
output. As a general principle, all of the interfaces
within the system have been exposed from the lowest
level up. The entire collection of servers can be said
to comprise an 'open' distributed system in the sense
that users and operating systems can decide which
facilities are useful to them and which are not. As an
example, consider the Printer Server. Its interface is
very low-level; it accepts a single byte stream at a
time, representing a document as an ASCII character
stream. If it is busy printing when a byte stream
connection is attempted, the server simply refuses it;
there is no attempt at spooling. For TRIPOS systems
this imposes no difficulty; the user creates a task
which runs the listing program and this task loops
until it can gain access to the printer. Machines like
CAP have spooling systems for output and here it is a
simple matter for the despooling machinery to poll for
use of the printer whenever there is output to print
off. If, on the other hand, the interface to the
Printer Server had been through a Ring-wide spooling
system it is possible that CAP may not be able to blend
its view of despooling with that of the central
service. This remark does not reject a central
spooling service - which would be of value to TRIPOS -
but says that the low level interface to the printer
itself should be public.
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The services that go to make up the distributed
operating system mainly run on small servers. These
machines are inexpensive to make and have turned out
to be very reliable in practice. Their failure rate is
comparable to that of Ring stations and repeaters, and
this can be directly attributed to the simplicity of
their design. From the point of view of programming
services, the provision of an individual machine in
which software can be written without fear of
interference with or from other programs using the
same machine is an important factor. The small servers
are a cost-effective approach by means of which to
implement basic services in a distributed fashion.
Hand in hand with the servers themselves go the Boot
Server and the arrangements for loading, dumping and
restarting servers. For much of the time the system
runs without the attention of an operator, although
failures and errors are reported so that in the event
of difficulties an operator can deduce what is going on
and take appropriate steps. This is a very important
point because a distributed system, unlike a single
machine, cannot be easily stopped to give the operator
time to sort it out. In a distributed environment,
errors frequently show up as congestion at a
particular point leading to degraded performance
rather than a total collapse.

Much of the uniformity of the system comes from the
pervasiveness of the use of the Name Server throughout
the system. It is built in at the lowest level and
imposes a global pattern on the names of services and
by extension to the names of programs to drive those
services. For example, on all of the machines in the
system, the file transfer program is called "GIVEFILE".
In addition to static names, for example those of
machines such as ALPHA and standard services such as
DAT, we have observed the emergence of so-called
'dynamic' names where a name maps not onto the service
directly but to an intermediary that causes the
required service to be spawned when it is needed. One
example of this is the way in which the name 'RATS-
TRIPOS' is mapped onto the Session Manager so that when
a user connects a terminal to 'TRIPOS' a processing
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server is allocated to him. This idea can be gen-
eralised and a host of dynamic service names built into
the Resource Manager tables as required. In fact the
present scheme does not deal with dynamic services
perfectly, because a client will be aware of the
dif ference in protocol when connecting via the
Resource Manager and Session Manager as opposed to
connecting directly to a static service. A topic of
current research is to improve this by arranging that
an intermediary can forward a connection request to a
dynamically allocated server. The Resource Manager
can be made responsible for control of the name of a
dynamic service so that it can intercept connections
to unavailable services, yet at the same time not have
to handle connections to services that have been set
up. Since the naming of dynamic services will be in the
hands of the Resource Manager, the service names can
be equated with the names of the corresponding loading
files in the Ancilla's filing system, thereby avoiding
the problems of control over names inherent in the
present 'add name1 and 'delete name' Name Server
functions. The existence of a tidy mechanism for
running dynamic services would also have the advantage
of making it easier for operating systems to organise
distributed computations in a coherent and uniform
manner, so that user programs may reap the benefits of
distributed computation.

One constraint on the utility of the Processor Bank
is the time it takes to allocate and load a processing
server. At present, this process takes a number of
seconds and is comparable to the time taken to get
logged in to many time-sharing systems. If the user
intends to use the allocated machine for many minutes
the overhead is not appreciable, but it does rule out
the possibility of allocating a processing server for
very short-term services such as finding out if
someone has sent you mail over the network. There is
scope for reducing the overall loading time by pre-
loading free machines with popular systems and
hierarchical loading so that, for example, machines
could be pre-loaded with the TRIPOS operating system
and only the application package called down on top of
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the operating system in response to a user's request.
In the context of the grand design of the system
rather than the model implementation the problem would
not be so noticeable, since very simple operations
would be the province of the user's small personal
computer built into his terminal and processing
servers would be used entirely for more intensive
activities.

In the Cambridge Distributed System, by way of
contrast with other systems, all permanent memory is
concentrated in the File Server and individual
machines do not have private, local discs. From the
point of view of sharing data and this has enormous
benefi ts . For example, all TRIPOS users, whatever
variety of processing server they happen to use and
whichever machine they happen to be allocated at any
one time all coexist within the same filing system.
The fact that the TRIPOS and CAP filing systems, which
are quite d i f fe ren t in philosophy, are both supported
testifies to the success of the universal file server
model. It is also relevant to note the use made of the
File Server by several of the small servers to back up
their data structures in permanent memory, so that it
is preserved in the event of the server being
restarted or moved. This mode of use depends greatly
upon the simplicity of the protocol for transferring
data and the use of unique identifier 6M-bit strings to
name material without recourse to complex directory
structures. Given the sharing of data between
machines, the presence of at least rudimentary
interlocking has proved essential. A facility of the
File Server that is not used heavily is that of the
special file; in most systems, special files are used
only to hold the data structures of filing system
directories and it can be questioned whether or not a
simpler mechanism could be devised.

Since the File Server occupies such a central
position in the system, its performance is paramount.
From experience with the TRIPOS Filing Machine, it can
be suggested that to obtain the best from the File
Server it should be used as a wholesaler of data rather
than delivering data in penny packets, Certainly the
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File Server should be implemented on a processor with
sufficient power to support the loads made upon it,
otherwise it will become a bottleneck. In particular,
it must be able to accept requests even while it is
engaged in a data transfer otherwise the impact of
many machines pounding away trying to be heard will be
adverse.

An innovative feature of the system is that
authentication and protection mechanisms have been
built in from the lowest level. It has been remarked
that in a distributed system the protection mechanisms
can only offer advice on the veracity and timeliness of
a request from a client. Perhaps the most noticeable
aspect of incorporating authentication into even the
most basic protocols is that the user has only to
identify himself once and thereafter software can pass
around the necessary unique identifiers without any
further user involvement. Thus, for example, when
transferring files between filing systems the user
does not have to quote his user identifier or password
since this information is implicit in the unique
identifiers passed in the course of setting up the
transfer.

In the area of protocols, considerable advantage
has been taken of the performance of the Cambridge
Ring. All of the protocols are very simple and rely on
the two facts that the Ring is inherently reliable and
that the time taken to transmit data between machines
is minimal compared to the time it takes the machines
to process the data. As a particular example, the
single shot protocol is very close to many message
based inter-process communication systems and it has
proved straightforward in practice to add Ring
protocol software to existing operating systems.
There has also been some speculation that very similar
primitives to those of the Ring protocols can be used
within a single machine for inter-process
communication and that this could be extended to
facilitate multi-machine computations using a uniform
communication system.

A respect in which limitations can be perceived is
that of processing server ring interfaces. As
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described earlier in the book, these are based on 8X300
microprocessor systems and provide packet protocol
handling and remote control. This leaves higher level
protocols, in particular the byte stream protocol
which forms the foundation of the virtual terminal
protocol in the hands of the processing server. It has
been observed that using screen-based software
driving unintelligent terminals imposes a heavy load
on the processing server, especially when single
character working is involved. There are a number of
remedies to this deficiency. One is to build more
intelligence into Terminal Concentrators and design a
screen-based protocol in order to reduce the traffic
between host and terminal. This also accords with the
wider view of the system in which each user's terminal
would include some local processing power and could
support a higher level protocol. Recent changes in the
availability of hardware make it possible to construct
Ring interfaces of adequate performance using less
restrictive machines than the 8X300 with more memory
space so that byte stream handling could be
incorporated into the interface, reducing the load on
the processing server. This would also have an
advantage when new types of machine are incorporated
into the Processor Bank since less software would have
to be written before the machine could communicate
with other services.

To conclude, it has been our aim to describe the
present state of the Cambridge Distributed System as
an example of the application of local area network
technology. In this new area of development it is too
early to arrive at an objective statement about the
best way to employ such technology to its greatest
effect . The situation could be compared to that in the
early days of time-sharing, whereas now in the light of
experience obtained by the building of many different
systems the field is well understood. It is our hope
that others will feel encouraged to build practical
systems and put them to the test and that they may
benefit from our experience recorded here.



Appendix: Byte Stream
Protocol
Specification

M.A. Johnson^

1 Introduction

This document describes the byte stream protocol in
use on the Cambridge Ring. The byte stream protocol is
built on top of the packet protocol [Annex A]. It
provides a pair of synchronised byte streams, and
corrects all errors detected by the packet protocol.
It is assumed that undetected errors will be
suff ic ient ly rare to be ignored, but there are
facilities for resetting to a standard state if
otherwise unrecoverable errors do happen. Acknowl-
edgements are used to ensure data integrity, but there
is no 'negative acknowledge' . It is intended that all
erroneous packets be ignored, and that the timeout
mechanisms of the byte stream protocol should repeat
unacknowledged packets.

The acknowledgements also provide flow control, in
order to ensure that a transmitter does not send more
data than the recipient has committed himself to
accepting. In order that the timeout mechanisms
should not lead to futile communication during periods
when there is no data to send or nowhere to put it.it
is possible for either the transmitter or the
recipient to stop the traff ic (and assume
responsibility for restarting it).

[1] This appendix is based upon a docunent called "Ring Byte
Stream Protocol Specification" written by M.A. Johnson of
the Computer Laboratory, university of Cambridge.
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2 Scope

The main part of this document describes the byte
stream protocol without reference to the setting up of
connections. (The protocol generally used for initial
connection is described in Annex B.) Additional
restrictions, such as the maximum size of packet to be
used, may also be agreed in advance, but any such
agreement is not part of the definit ion of the byte
stream protocol.

Subsets of this protocol could be regarded as a
'block stream protocol' or a 'packet stream protocol'.
However, the only interface an implementation is
obliged to provide is at the byte stream level. Any
other interface is liable to cause confusion and is to
be discouraged.

3 Commands

Each packet consists of:

1 A command referring to reception of data,
2 A command referr ing to transmission of data,
3 The data itself,

or alternatively consists of:

4 A control command referring to the transaction as
a whole.

In order that repetitions of packets can be
identified as such, commands are given sequence
numbers. In this document, the sequence numbers are
represented as subscripts on command names.

There are two possible commands for transmission.
DATAn indicates that the packet contains data.
NODATAn is sent instead when there is no data
immediately available to send; it is used to prevent
the recipient from timing out. A NODATAn will be
followed by a DATAn when data eventually becomes
available.
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Similarly, there are two commands for reception.
RDYn indicates that packets with sequence number less
than n have been successfully received, and that the
recipient is now ready to receive packet n. NOTRDYn is
sent when it is required to acknowledge the receipt of
packets with sequence number less than n but the
recipient is not yet ready for another packet. A RDYn

should be issued later when the recipient is able to
receive the data.

The DATA and RDY commands are called essential
elements of the protocol. They must be acknowledged
within a certain time interval: otherwise they should
be retransmitted. The sender of an essential element
is responsible for retransmitting after a timeout.
The NODATA and NOTRDY commands are called non-
essential elements of the protocol. They act only as
acknowledgements, and are not themselves acknowledged.
The issuer of a non-essential element is responsible
for issuing the corresponding essential element some
time later (after an interval which will typically be
longer than the timeout interval) .

There is also a null command, which may be used when
there is no requirement to send any particular
command.

There are two control commands, which refer to the
pair of byte streams taken together. The first is
RESET, which is performed on request from higher level
software, and may be generated from within the byte
stream protocol under serious error conditions. If a
RESET is generated internally, it must be reported to
the user of the byte stream. A RESET command must be
sent in both directions in order to ensure
resynchronisation. When a RESET is sent, all received
data should be ignored until a RESET is received in
reply. If no RESET is received within a timeout
interval, then it should be sent again. If an
unexpected RESET is received, then a RESET should be
sent in reply. After a RESET, the initial state (to be
defined in detail later) should be entered, and the
normal transactions resumed. It will usually be the
case that one party has initiated the RESET and will
deal with all the timeouts, but the symmetry of RESET
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ensures that it does not matter if both ends initiate
RESETS simultaneously.

Any data awaiting transmission when a RESET occurs
should be discarded, as should any data which has been
received but not yet submitted to the user of the byte
stream. The completion of a RESET must be notified to
the user of the stream in such a manner that
synchronisation can be recovered.

The second control command is CLOSE, which again is
normally performed on request, but which may be
internally generated under error conditions. It
requests that the transaction be terminated
immediately. The response to a CLOSE is a CLOSE.
CLOSE may be repeated if not acknowledged within a
timeout interval, but it must be borne in mind that the
other process may have terminated itself and thus be
unavailable to reply.

4 State transition diagram

The actions necessary to implement the protocol are
expressed in a state transition diagram. The RESET and
CLOSE functions are ignored, since they override
everything else. Transmission and reception are
symmetrical, and a single state transition diagram is
presented for both on the following page. In a two way
conversation, there will be four incarnations of the
state table active at once. Some notes on the table
follow:

There are three states.

E: An essential element (DATAn or RDYn has been
sent). An acknowledgement (RDYn+-| or DATAn

respectively) is expected within the timeout
interval.

N: A non-essential element (NODATAn or NOTRDY n) has
been sent. No response is required, although a
retransmission may be required.

I: Idle state. A non-essential element (NOTRDYn +- |
or NODATAn) has been received. Nothing further
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need be sent until the corresponding essential
element (RDY n + i or DATAn) is received. However,
it is legal to repeat the previous essential
element. If the previous essential element was
DATA, then the data itself need not be included in
the packet. (For the motivation behind this rule,
see the 'Idle handshake' section.)

There are five events.

E r ep An essential element which is a repetition of an
earlier essential element. Since the original
reception will have incremented the local
sequence number , this will be RDYn or DATA n _- j .

E e xp An essential element with the expected sequence
number , i.e. RDYn+-| or DATAn .

N e x p A non-essential element with the expected
sequence number, i.e. NOTRDYn+-| or NODATAn .

Timeout
(waiting for response to essential element)

Buffer ready
(i.e. room for more data or more data to send)

Each box of the diagram gives the action to be taken
("-" means "do nothing") and, at the bottom, the state
to be entered next. Valid state transitions are shown
in the diagram below. Proceeding along the arrows
marked " + " cause the local copy of the sequence number
(n) to be incremented.

Initially, and after a RESET, the receivers should
in state N with sequence number 0, and the
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transmitters should be in state I with sequence number
-1. As soon as a receiver has buffer space for the
first packet (Buffer ready event) , it will send RDYg
and go to state E. The transmitter regards this as
event Eexp, increments its sequence number to 0, and
transmits either DATAg or NODATAg.

Some boxes in the transition table are marked
'protocol error'. These states should not occur if
both ends are implemented correctly and the packet
protocol does not give undetected errors. Any other
unexpected or uninterpretable packet is also a
protocol error. The reaction to a protocol error may
be implementation dependent - the erroneous packet may
be ignored, or a RESET or CLOSE may be attempted.

5 Idle handshake

As described so far , the protocol does not include an
idle handshake. Thus a failure at one end of a
connection during an idle period will not be noticed at
the other end until it restarts the t raff ic . For many
applications this is undesirable.

A small modification to the state transition table
enables this problem to be solved at little cost. In
state 'I', a timer can be set, and if it expires, the
previous essential element should be repeated. This
puts the sender back into 'E' state, and the standard
protocol mechanisms continue the transaction - which
will usually terminate with an Nexp event and a
consequent return to 'I' state. Note that the
'previous essential element' might have been 'DATA'.
Since this data has already been acknowledged, it is
defined to be legal to repeat the DATA command without
including the actual data.

Note that an implementor provides the idle
handshake for his own benefit. It is for this reason
that it is an optional feature of the protocol.

6 Representation

This section defines the bit patterns used to
represent the commands described above. A packet
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contains between 1 and 1024 'data minipackets' (i.e.
not counting header, route and checksum). These are
numbered from 0 upwards, in the order in which they are
sent and referred to as 'words' below. Bits in a word
are numbered from dO (least significant) to d15 (most
significant).

The layout of a packet is either:

word 0: command referring to reception of data
word 1: command referring to transmission of data

res t :da ta , i f any

or:

word 0: control command
rest: undefined

The general layout of command words is:

d15-d12: command identifier
d11-d8: sequence number modulo 16

d?-dO: command dependent information

except that control commands have no sequence number
and the sequence number field is used as an extension
to the command identifier.

Assignments of command identifiers are:

00000000 null command
0011 RDY
0101.... NOTRDY
1010 DATA
1100.... NODATA
01100011 RESET
011001 10 CLOSE

where '....' represents the sequence number.

Note that RDY and NOTRDY may only appear in word 0, and
DATA and NODATA may only appear in word 1. (This is
intended to aid implementation on simple machines.)
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If word 1 contains a DATA command, then the packet
contains between 0 and 2044 bytes of data. Data starts
in word 2 (if present) and goes on until the end of the
packet; the more significant byte of each word is the
earlier in the byte stream. Four flag bits are def ined
in the d?-dO field of the DATA command:

dO: if 1, indicates that the packet contains an odd
number of data bytes, and that the less
significant byte of the last word should be
ignored.

d1: if 1, indicates a request to force transmission of
current ly buffered data.

d2: if 1, indicates that the byte stream should be
closed when the data has been delivered to its
eventual destination.

d3: if 1, indicates that the data is control
information. This is reserved for future use - in
current implementations, such data should be
discarded. Bits d1 and d2, if set, should however
be acted upon normally.

Note that it is legal to send zero bytes of data (and
this is not the same as N O D A T A ) . This may be useful if
the 'force transmission1 or 'close request' is set.

Undefined command dependent information should be
kept zero, in order to allow for future expansion.

7 Timeouts

The choice of timeout values will depend on various
factors, such as the speed at which machines are able
to respond to commands and the required throughput
under error conditions. Since the error rate is
expected to be low, the latter is not a major factor. A
typical timeout value would be one or two seconds. The
value of the 'idle handshake' timeout will normally be
very much larger - a value of about a minute being
typical.

The number of retries to allow before taking more
drastic action (RESET, CLOSE or simply abandoning the
whole connection) is best determined by experience.



Appendix 159

8 Implementation notes

The protocol is designed in such a manner that simple
machines can have two fixed buf fe rs , one for
transmission and one for reception. On receiving a
packet into the reception b u f f e r , the commands it
contains may be processed independently, and the
appropriate parts of the transmission buf fe r updated.
During this operation, it will be decided whether or
not the updated packet should be transmitted or not.
This technique may lead to some unnecessary repetition
of non-essential elements, but this is defined to be
harmless.

If an implementation is subject to real time delays
in responding to commands, such that the other party
may timeout even when a packet has not been lost, the
protocol can lock into a stable state in which every
packet is sent twice (or more) and acknowledged a
similar number of times. Data is still transferred
correctly, but the throughput is reduced. It remains
to be seen whether this will turn out to be a problem in
practice. Implementations which engage in multiple
buffer ing of input requests will be particularly
susceptible to this problem, and may require
algorithms to detect and correct this state.

Typical implementations of the byte stream protocol
in operating systems run at higher priority than the
processes which are supplying or consuming the data.
This can lead to NODATAn and DATAn frequently being
sent in quick succession (similarly NOTRDYn , R D Y n ) . If
the other end of the connection has only one reception
b u f f e r , it is quite likely that the latter command will
be lost. This leads to frequent pauses in the
communication while timeouts expire.

A simple solution to this is to refrain from sending
the non-essential element on the transition from 'E1

state to 'N' state. (Since the protocol gives
protection against the loss of any particular packet,
this is guaranteed to be safe.) If a new buffer becomes
available in the near future, the next essential
element will be transmitted. If on the other hand, the
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pause in the flow is genuine, the other end of the
connection will time out, and the non-essential
element will be 'repeated' - in fact it is being sent
for the first time.

Implementors should bear in mind that it is
desirable for a byte stream to be able to survive ring
failures of several seconds durat ion, such as are
caused by a monitor station 'full reset'. It may be
advantageous to ignore all transmission errors, and
rely totally on the timeout mechanisms.

Annex A: Packet protocol

This section is a revised copy of the document
originally issued as a Systems Research Group project
note, by R.D.H. Walker.

A packet commences with a header minipacket of the
form shown below:

A B C

d15 d12 d11 d10 d9 dO

Field A is the binary pattern 1001.
Field B is the type of the packet:

=0: long packet with checksum
= 1: long packet with checksum zero
=2: single minipacket carrying data C
=3: reserved for future use

A long packet consists of:

header minipacket as described above
route minipacket
C+1 data minipackets
checksum minipacket

A route minipacket consists of a 'port number' in the
bottom 12 bits, the packet being notionally directed to
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that port at the destination station. The remaining 4
bits are reserved and should be kept zero.

The C+1 data minipackets conform to the protocol
(e.g. byte stream protocol) that is currently agreed to
be in use at the port identified in the route
minipacket.

The checksum minipacket for type 0 packets consists
of a 16-bit end-around carry checksum over the entire
packet from the header minipacket up to, and including,
the last data minipacket. In type 1 packets, the
notional checksum is sent as zero, and checked to be
zero.

The intended method of operation for reception is as
follows:

1 While a station is totally unable to receive
anything, it keeps its select register zero.

2 When a station is potentially capable of receiving
input. i t sets its select register to 255.

3 It then listens for a valid header minipacket,
ignoring anything which is not a valid header.

4 When a valid header has been found, if the station
wishes to receive from the station from which the
header came, then the receiving station sets its
select register to that source, thus rejecting
input from any other source.

5 The receiving station must operate either a per-
packet timeout or a per-minipacket timeout (or
both) in order to recover from a packet being sent
shorter than the header minipacket suggested. The
timeouts commence with the reception of the header
minipacket. If the timeouts expire at any time
henceforth, the input thus far accumulated is
ignored, and the station is reset to state 2 above,
ignoring the incoming packet.

6 The next minipacket after the header is the route
minipacket. If interpretation of this minipac'ket
leads the receiver to believe that it cannot
receive the remainder of the packet (e.g. specified
port not active) then it may reset itself to state 2
above, ignoring the incoming packet.

7 On reaching the end of the packet, the checksum
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minipacket is received and checked. If, for type 1
packets, the checksum is incorrect, or for type 2
packets, it is non-zero, then the entire packet may
be ignored as if it had never been received.

8 After reception of a packet, the selection register
may be restored to 255 if more input is possible,
otherwise zero.

9 As an alternative to resetting immediately to state
2 if a partially received packet is to be rejected,
the selection register may be set to zero for a
short time in an attempt to cause the transmitter
to stop sending. The selection may either be for a
fixed time, or until the station hardware indicates
that a packet has been rejected 'unselected'. If
the latter strategy is used, a timeout would also be
required.

For transmission:

1 When transmitting the first minipacket (header) of
a packet, due allowance must be made for the
possibility of the receiving station being busy or
unselected owing to it being in the process of
receiving a packet from another source. Attempts
to transmit the header should be maintained for at
least as long as the longest possible packet can
take at that reception station. Any other ring
error can be regarded as fatal.

2 Having successfully transmitted the first two
packets (header and route) , allowance may have to
be made for certain reception stations to perform
certain set up operations for the packet, during
which time the station will reject as "busy".

3 After that, the number of busy rejects that may be
expected per minipacket should be very low, as the
receiver is supposed to be concentrating on one
source only. Any other ring error ( e.g. unselected)
is fatal. It will be necessary for a transmitting
station to have a timeout or repeat count on a per-
minipacket or a per-packet basis, in order to
recover from a reception station crashing in the
middle of a packet. A timeout is also necessary to
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recover from certain ring errors (such as power
o f f ) which result in a minipacket never returning
to its sender.

Annex B: Initial connection

This section describes the protocol normally used to
establish a BSP connection. It is not part of the
specification of BSP itself for two reasons - it does
not preclude the setting up of streams by other means ,
and it may legitimately be used for opening
connections using protocols other than BSP.

Initial connection consists of sending a single
packet in each direction. These packets are called the
OPEN and OPENACK packets. In the following
description the originator of the connection, which
sends the OPEN, is called P, and the sender of the
OPENACK is called Q.

An OPEN packet .is directed to a ring service
address. This is usually obtained by looking up a text
name in the Name Server, and consists of a triple:

- a station number (8 bits)
- a port number (12 bits)
- a function number (16 bits)

An OPEN packet is directed to the station and port
given in the ring service address, and has the
following format:

word 0: m.s. byte - the bit pattern 01101010
l.s. byte - reserved, should be kept zero

word 1: port number to be used for reply, Pp.
word 2: the function number part of the ring service

address
word 3: the number of BSP parameter words, N

4 to N+3: BSP parameters, see below
N+4 on: fur ther parameters

The OPENACK packet is directed to the station from
which the OPEN came, and the port number specified in
the OPEN. It has the following format:
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word 0: ra.s. byte - the bit pattern 01100101
l.s. byte - reserved, should be kept zero

word 1: port number for connection, PQ.
word 2: return code - zero iff successful
word 3: the number of BSP parameter words, N

4 to N+3: BSP parameters, see below
N+4 on: further parameters

The byte stream is set up if and only if the return
code is zero. It uses port Pp from Q to P and PQ from P
to Q.

The following BSP parameters are defined in the OPEN
packet:

word 4: largest packet that P is prepared to
receive, Rp. The defaul t , if this parameter
is not present, is 1024.

word 5: largest packet that P will send, Sp. The
default is 1024.

The following BSP parameters are defined in the
OPENACK:

word 4: the maximum packet size to be used from P to
Q. This is the smaller of the largest packet
that Q is prepared to receive, RQ, and Sp
from the OPEN.

word 5t the maximum packet size to be used from Q to
P. This is the smaller to the largest packet
that Q will send, SQ, and Rp from the OPEN.

The 'packet sizes' mentioned above are expressed in
ring minipackets. They refer to the number of packet
protocol data minipackets (i.e. they include byte
stream protocol packets but exclude the basic packet
header , checksum and route minipackets) .

The 'further parameters' area of the OPEN and
OPENACK packets may be used for application dependent
information. This feature should be used with
discretion - it is often more appropriate to send such
information down the byte stream itself.
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If an OPEN times out and is repeated, it is
recommended that P should change its port numbers , to
ensure that the correct reply is acted upon.

Annex C: Replug

REPLUG is a facility to enable a machine to open a byte
stream between two other machines. It is designed as
an extension to the basic protocol and may not be found
in all implementations.

The machine that wishes to create the connection
must have byte streams open to both of the other
machines concerned. It issues a REPLUG command to
both of them, and expects a CLOSE in reply. The two
byte streams are reset to their initial state as
defined in the BSP specification, and are then able to
communicate with each other.

In the following description, the initiator of the
REPLUG is called R, and the other two machines are
called P and Q. R is responsible for computing
suitable packet sizes for the connection between P and
Q, based on the maximum packet sizes previously agreed
between P and R, and between Q and R. The maximum
packet size for each station may be decreased, but not
increased.

The REPLUG command sent to P has the following
format:

word 0: m.s. byte - the bit pattern 01101001
l.s. byte - reserved, should be kept zero

word 1: m.s. byte - zero
l.s. byte - station number of Q

word 2: port number for packets to Q
word 3: maximum packet size to be used from Q to P
word 4: maximum packet size to be used from P to Q

A complementary packet is sent to Q.

The acknowledgement to a REPLUG is a CLOSE. If the
CLOSE is not received within a timeout interval, the
REPLUG may be retried in the usual manner.
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