
What’s in a name?
(in honour of Roger Needham)

Robin Milner

January 2003

In the late eighties Roger Needham wrote a paper called ‘Naming’, which is now a
chapter in a leading text on distributed systems.1 The paper highlights some subtleties
of naming, and points out how these can either illuminate or confuse system design.
Around the same time colleagues and I worked out the π-calculus2, a calculus for
mobile systems intended for modelling and analysis. Names are the most prominent
feature in the π-calculus, and in this essay I explain in simple terms how it deploys
them.

Some things about names are so buried in our linguistic habits that we hardly ever
talk about them. Roger talked about one of them: the difference between pure and
impure names. To paraphrase him, a pure name is nothing but an identifier or pointer;
you can follow the pointer, but otherwise you can only test it for equality with another
one. A name is impure to the extent that you can do other things with it. You can
resolve it into parts, or you can take advantage of your knowledge about the thing that it
designates; an email address like Robin.Milner@cl.cam.ac.uk illustrates both
of these.

We also habitually assume that a name designates something with persistent iden-
tity. This assumption works well for us in sequential programming: a pointer desig-
nates a storage cell, and a procedure identifier designates a piece of code. It doesn’t
work reliably in distributed systems. Consider a call-centre; on each call you get some-
one different. Consider an e-mail message to Robin.Milner@cl.cam.ac.uk;
it may go to me, or to an agent to which I (on holiday) have delegated the power to
respond.

The π-calculus is built upon the idea that the respondent to (or referent of) a name
exists no more persistently than a caller of the name. In other words, the notions of
calling and responding are more basic than the notions of caller and respondent; every
activity contains calls and responses, but to have a persistent respondent to x – one that
responds similarly to every call on x – is a design choice that may be sensible but is
not forced.

What follows is a taxonomy of the small range of things you can do with names in
the π-calculus. At the end I speculate on whether these are enough.

Using and mentioning names The logician W.V.Quine discussed the distinction be-
tween the use and mention of names. In natural language, a name is used when some-
thing is intended of the referent, mentioned when intended of the name itself; further, a
use can be imperative (an invocation), or indicative (an assertion). In the π-calculus we

1Distributed Systems (second edition), ed. Sape Mullender, Addison-Wesley (1993)
2A calculus of mobile processes, R.Milner, J.Parrow, and D.Walker; Information and Computation 100

(1) 1992, pp1–77.

1

only have imperative use, and what it intends is an act. But we distinguish between a
call act and a response act, even though one cannot occur without the other. The reason
to distinguish them is that, in describing any agent, we define its potential behaviour:
what calls/responses it can make, provided that its environment makes homonymous
responses/calls. Here is a call on x, mentioning y:

x〈y〉.P

which could be pronounced ‘x, here is y; now I’ll do P ’. Superficially it is like ‘John,
here is Stephen’; actually, it corresponds to ‘John, here is (the name) “Stephen” ’. It is
just a message with address x and content y; we can call this quoting y.

Here is a response on x, mentioning z:

x(z).Q

which could be pronounced ‘x, thanks for z; now I’ll do Q with it’. We can see how
calls and responses are dual. Following the mathematical convention of ‘co-’ for a
dual, we can say that the response is co-quoting z, because z acts as a place-holder in
Q for a name quoted by a call.

In fact the only rule of action in the π-calculus is that, when a call may concur with
a homonymous response, as in

x〈y〉.P | x(z).Q ,

then they are fused together; thereafter P andQ happen concurrently, with y occupying
the place in Q held by z.

It is better to think of ‘response on x’ rather than ‘respondent designated by x’,
because there need be no agent identifiable as respondent. The power to respond on
a name can be delegated or duplicated (consider the call-centre), just as the power to
call on a name can be so. For example, in the above rule of action, if Q happens to
contain a response on the place-holder z, then the call that quoted y has delegated to Q
the power to respond on y.

Creating names So far we have only talked about use and mention. But where do
all the names come from? How can we represent the very specific mechanisms (e.g.
time-stamps) that allow a system to create names which it can safely assume to differ
from all other names?

The π-calculus does this by fiat. It has a name-creator new that is assumed to
create a globally distinct name. In some eyes this is cheating; in other eyes it isolates
the implementer’s problem of creating new names in practice from the analyst’s task
of explaining how a system works assuming generated names are unique. Here is an
example of unique name creation:

(new z P) | Q ;

it creates z local to P . Whatever P does, this name remains different from any name
occurring in Q –or in the wider environment– even if such a name is textually identical
with z, and even if P mentions its new z to Q.

2

We can illustrate new with a simple example: simulating a function call. The π-
calculus has no built in notion of call-and-return, but if a process calls on x quoting
y, then it can simultaneously create a private channel res and pack it up with y in
the call; thereafter it can respond on res to receive the result that comes back. This
call-and-return action is defined by:

new res (x〈y, res〉 | res(z).Q) .

(A multiple quotation, such as 〈y, res〉, can easily be coded in the π-calculus.) The cre-
ation of res ensures its distinction from every other return-address. This little sequence
is very commonly used, so we shall abbreviate it to

x〈y〉 ⇒ (z).Q .

Matching names So far we have seen only one way to mention a name: quoting it in
a call (or co-quoting in a response). Surprisingly, with a few control mechanisms this
is enough to model all computation! Nonetheless, it does not give the direct facility
to ‘test a name for equality with another name’. So there is a second way to mention
names: matching. With (only) these two kinds of mention, the π-calculus can much
more directly model the handling of names in real systems.3

Matching in the π-calculus can done by the construction

[x = y]P /Q

meaning ‘if x and y are the same name then do P , else do Q’. (It matches names, not
their referents, because referents need not exist.)

In the context of π-calculus we can illustrate how directory lookup can be handled,
following closely how Roger Needham illustrates it. A hierarchical directory – say
the one containing the graduate students at Wolfson College, Cambridge – typically
has a composite name like Wolfson/Grads. It is not a unique designator; there
will be a directory with this name at Oxford too, because both Oxford and Cambridge
have a Wolfson College. However, usable systems will ensure that each directory and
subdirectory will also have a unique directory identifier (DI) which is a pure name.

If I know the DI of Cambridge University, I can access the University’s main di-
rectory and then use a composite name like Wolfson/Grads –or extensions of it–
to get to all its subdirectories, even if I don’t have their DIs. For example, suppose I
want to get hold of (the DI of) Smith-J at Wolfson College Cambridge. If the DI of
the Cambridge University directory is #312, then I can get to where I want (without
knowing any other DIs) by a composite call as follows:

#312 〈Wolfson, Grads,Smith-J〉 ⇒ (di).Q.

This call-and-return will cause the required DI to occupy the place held in Q by di.
To make this happen, the directory itself can be defined with matching like this:

3In applied languages built upon the π-calculus, there can of course be impure names like 23 which
designate known entities, operations on them like + and ×, and variables or place-holders a, b, c . . . for
them. With appropriate type discipline, this doesn’t impair the rigorous handling of pure names.

3

! #312 (college, group, person).

[college = Trinity] #427 〈group, person〉
/ [college = Wolfson] #203 〈group, person〉
/ . . . / . . .

where #427 and #203 are the DIs of Trinity and Wolfson. Thus a matching occurs
at each level. Notice that there is only one kind of pure name. We chose to write
college , Trinity and #427 differently because we treat them differently; for example,
we never use the first two, but only mention them.

Finally, you may have noticed the new operator ‘!’ in the above code for a directory.
It is a replicator; it gives persistent identity to the respondent that it qualifies, making
it a re-usable resource. So in this case the pure name #312 does designate a persistent
agent: the Cambridge University Directory.

What else is in a name? We have illustrated use (call, response), mention (quote,
co-quote, match) and creation of names. That is all the π-calculus can do with them.
Are there other things it might do?

I have not said anything so far about computer security, which has in fact been a
main application of process calculi that use names. Another influential paper by Roger
Needham and his co-authors4 has inspired much of the recent logical work on security,
authentication and associated topics, and under this heading come many approaches
using process calculi that use names whose scope may be controlled (for example by
new in the π-calculus). A leading example is the spi calculus of Abadi and Gordon5

which is largely based upon the π-calculus, but uses extra features for encryption and
decryption.

These extra features allow the spi calculus to represent security protocols very di-
rectly, and have led to powerful analytical studies. But there is a theoretical question
that hasn’t been fully answered as far as I know: in what rigorous sense do they extend
ther expressive power of the π-calculus? It would be illuminating to prove that the
extra features can, or that they cannot, be mimicked in the π-calculus in some exact
sense.

More generally, if we suspect that the π-calculus can’t do something that can be
done with pure names, then where could we look for the weakness? A more pow-
erful form of use of names might have something to do with synchronisation. The
π-calculus only ever synchronises a pair of actions, one call and one response. What
about synchronising two (or more) calls with a single response? The calls could be on
two distinct names x1 and x2, and the response on both of these names simultaneously.
So our rule of action would be strengthened to synchronise these three actions:

x1〈y1〉.P1 | x2〈y2〉.P2 | x1x2(z1z2).Q

4Burrows, M., Abadi, M. and Needham, R., A logic of authentication. Proc. Royal Society of London A,
426:233–271, 1989.

5Abadi, M. and Gordon, A.G., A calculus for cryptographic protocols: The spi calculus. Information and
Compuitation 148:1–70, 1999.

4

– causing y1 and y2 simultaneously to occupy the places held in Q by z1 and z2, and
then P1, P2 and Q to proceed concurrently. Can this be mimicked in the π-calculus?
What exact meaning would ‘mimicked’ have here?

Such theoretical questions may seem arcane. They certainly should not distract us
from applying process calculi to security (or to anything else). But they have their own
charm, and the better we can answer them, the more confident we can be of finding
good primitives for expressing and analysing mobile communication.

5

