CURRICULUM VITAE
(revised in January 2008)

Name Arthur John Robin Gorell Milner

Date and place of birth 13.1.34, Yealmpton

Family Married with two grown-up children.

Nationality UK

Appointment Emeritus Professor, Computer Science, University of Caigler

Office address The Computer Laboratory, University of Cambridge, J J Thmmavenue, Cambridge
CB3 OFD, UK. Phone: +44 1223 334718.

Home address 24 Lyndewode Road, Cambridge CB1 2HN, UK.

University Degrees and Honours

— Cambridge 1957: B.A. (Maths Part Il Class 1 1956, Moral &aés Part 1l Class 2.1 1958).
— Chalmers University, Gothenburg, 1988: Honorary Dodtora
— University of Stirling 1996: Honorary Doctorate.

— University of Bologna 1997: Honorary Doctorate.

— City University London, 1998: Honorary Doctorate.

— Aarhus University, Denmark, 1999: Honorary Doctorate.

— University of Essex, 2000: Honorary Doctorate.

— University of Edinburgh, 2003: Honorary Doctorate.

— University of Swansea, 2004: Honorary Fellowship.

— University of Glasgow, 2005: Honorary Doctorate.

— University of Paris Sud, 2007: Honorary Doctorate.

Awards and distinctions

— British Computer Society Technical Award, 1987 for “Th@gamming Language ML’, a 12-year
project of which | was team leader.

Royal Society of London, 1988: Fellow.

Academia Europaea, 1988: Founder Member.

British Computer Society, 1988: Distinguished Fellow.

ACM A.M. Turing Award, 1991.

— Royal Society of Edinburgh, 1993: Fellow.

ACM 1994: Fellow.

ITALGAS prize, Turin, 1994,

F.L. Bauer prize, Munich, 1994.

ACM SIGPLAN award for Achievement in Programming Languag001.

UK Computing Research Committee, 2001.

Royal Medal, Royal Society of Edinburgh, 2004

Distinguished Achievements Award, European Associdboiheoretical Computer Science, 2005.
Foreign member, Aca@nie Francaise des Sciences, 2005.

Foreign associate, National Acaedmy of Engineering, LEZDA8.

Career since Graduation

1952-54, Military Service, Royal Engineers (2nd Lieutgha

1959-60, Marylebone Grammar School, London, Mathemagesher.

1960-63, Ferranti Ltd, London, Computer programming &feted work.

1963-68, The City University, London, Lecturer in Math¢iceand Computer Science.

1968-71, University College, Swansea, Glamorgan, S&gsearch Assistant (Computer and Logic
Group).

197173, Stanford University, California, USA, Reseakshociate at Artificial Intelligence Project,
in Computer Science Department. (Math.Theory of Compauiti

1973, Edinburgh University, appointed lecturer in Conep&cience.

1975, Edinburgh University, Senior lecturer.

1979, Edinburgh University, Reader.

1979-80, Aarhus University, Denmark, Guest Professonim@uiter Science (6 months).
1984, Edinburgh University, Professor.

1986-89, Edinburgh University, Director of Laboratory Foundations of Computer Science.
1990-94, Edinburgh University, SERC Senior Researclowell

1995—, University of Cambridge, Professor of Computeese (Head of Department from January
1996 to September 1999).

1999-2001, University of Cambridge, Research Professor.
2001-, University of Cambridge, Emeritus Professor.
2006—2007lle de France, Blaise Pascale Chaire internationale derech

Research interests Mathematical Theory of Computation; in particular:

Formal deductive systems for proofs about mathematiccangbutation, and the methodology of
conducting such proofs with computer assistance.

The design and formal definition of programming languages.

Abstract models of computation, especially of concurietéractive systems; their algebraic and
logical theories and their use in language design, sensaatid system analysis.

Models of mobile informatic processes, from business atoliy.
A strategy for developing pervasive computing under sifierontrol.

Invited lectures These lectures are at conferences, colloquia, advancesesoetc. (One lecture, unless
otherwise indicated).

International Symposium on Theoretical Programming,déibirsk, USSR, 1972.
Conference on Informatics Theory, Pisa, Italy, 1973.

Advanced Course on Foundations of Computer Science, Adaste 1976 (6 lectures).
IBM Symposium on Mathematical Foundations of Computee&®, Amagi, Japan, 1976.

AFCET/SMF Joint Colloquium in Applied Mathematics, PafiS78.

— 7th International Symposium on Foundations of Computeree, Poland, 1978.

— 8th ditto, Czechoslovakia 1979.

— 4th G.I. Conference on Theoretical Computer Science, dacBermany, 1979.

— Inter-Universities Computing Colloquium, Exeter, 1980.

— SRC conference on Theoretical Aspects of Distributed Gdgimg, Loughborough, 1980.

— French Summer School on Petri nets and Parallel Proce<ahglle-sur-mer, May 1980.

— 6th CAAD Colloquium (Trees and Algebra in Programming)nGa, 1981.

— Workshop on Foundations of Software Technology, Bangalodia, December 1981 (6 lectures).

— British Computer Society, Formal Aspects of Computer smeworkshop on the Calculus of Com-
municating Systems, July 1982 (2 day lecture course on thiectof my book).

— IEEE Symposium on Information Theory, Quebec, Septem®&8.1
— IFIP Congress, Paris, Sept 1983 (Chairman of Panel Diggyss

— Royal Society Discussion meeting on “Mathematical Logid Brogramming Languages”, London,
February 1984.

— Massachusetts Institute of Technology, Computer Sci@weg#, Distinguished Lecturer, February
1984.

— University of Chicago, Guest Professor for 1 week, Felyra884, (3 lectures).

— International Summer School on “Control Flow and Data Fl@wncepts of Distributed Program-
ming”, Marktoberdorf, August 1984 (6 lectures).

— SERC Conference on Distributed Computing, Universityudsex, September 1984. Pre-conference
tutorial (3 lectures).

— International Conference on Petri Nets, Finland, Jun&198

— 6th Congress of Informatics and Automatic Control, Mad@dtober 1985.
— Workshop on Design Methodology for Distributed Systent @hSiI,

— Swedish Institute of Computer Science, Kista, Swedenjalgrio86.

— IFIP Congress, Dublin, July 1986.

— International Congress of Mathematicians, Berkeleyjf@aia, August 1986 (invited speaker, but
unable to attend).

— TAPSOFT, Joint Conference on Theory and Practice of SoftW&velopment, Pisa, March 1987.

— London Mathematical Society, Workshop for mathemattian Theoretical Computer Science,
Univerity of Sussex, May 1987.

— Logics in Computer Science, International conferencené&bUniversity, USA, June 1987.
— Computing meeting for Mathematicians, London Mathenaaociety, Sussex, May 1987.
— 4th British Colloquium for Theoretical Computer Sciengdjnburgh, March 1988.

— Combining Compositionality with Concurrency, WorkshdpGMD Bonn, March 1988. “Unique
Decomposition of Processes”.

— Conference on Mathematical Structures for Software Eagging, IMA, at Manchester Polytechnic,
July 1988.

— International Conf. on Parallel Computation, CONPAR 8&nhester, September 1988. 1-day
tutorial: “Formal Methods for Concurrency”.

— International Conference on Fifth Generation Computiggt&ns, Japan, December 1988. “Inter-
preting one concurrent calculus in another”.

TAPSOFT, Brighton, April 1991. “Movement among Processes

UK Association for Logic Programming Conference, Edigtyr1991. “Ther-calculus: a model
for moving objects”.

Colloquium for 65th birthday of Carl Adam Petri, Univ of Haorg, 1991. “Automata, Algebra and
Concurrency”.

International Summer School on “Logic and Algebra of Sfieafion”, Marktoberdorf, July 1991 (4
lectures).

VMD '91 Conference, 21-25 October, 1991. “Thealculus: a model for moving objects”.

1991 Turing Award Lecture: ACM National Conference, Kan&ity, USA, February 1992.“Ele-
ments of interaction”.

JFIT Technical Conference, Keele University, 1993. “Apgtion of theory, or theory from applica-
tions?”.

International Summer School on “Proof and Computationdriktioberdorf, July 1993 (5 lectures).

Conference on Foundations of Computing Theory, Szegealgaty, August 1993. “An action struc-
ture for the synchronous-calculus”.

Conference on Math. Foundations of Computer Science, skgdddoland, August 1993. “Action
calculi, or syntactic action structures”.

Computer Science Logic, University College Swansea, $&98. “Higher-order action structures”.
TAPSOFT, Edinburgh University, 1994.

13th World Computer Congress, IFIP 1994, “Computing israttion”.

The Geary Lecture, City University (London), May 1996. f@outing is interaction”.

ACM Federated Computing Research Conference, Philaideldlay 1996. Keynote lecture: “Com-
puting is interaction”

11th Annual IEEE Symposium on Logic in Computer Sciencet phthe Federated Logic Con-
ference, Rutgers University, New Jersey, July 1996. Plebacture for the Federated Conference:
“Calculi for Interaction”.

IEE International Workshop on Discrete Event Systems (\#S]) Edinburgh, September 1996.
Keynote lecture: “Pi Calculus and its Applications”.

The J Barkley Rosser Memorial Lecture, University of Wissio, Madison, Wisconsin, April 1997.
International Conference on Automata, Languages and&moging (ICALP), Bologna, July 1997.
Conference on Theory and Applications in Computer Sci§R&ES), Japan, September 1997.

Conference on Mathematical Foundations of Programmimga&écs, Hoboken, New York, April
2000: “Labelled transitions for graphical reactive syssém

The Saul Gorn Memorial Lecture, University of Pennsyleamlay 2001: “How to model mobile
computing”.

22nd International Conf. on Applications and Theory ofrRetts, Conference on Petri Nets, New-
castle, UK, June 2001: “The flux of interaction”.

12th International Conference on Concurrency Theory (COR 2001), Aalborg, Denmark, August
2001: “Bigraphical reactive systems”.

British Conference on Theoretical Computer Science,t®rig\pril 2002: “Bigraphical reactive
systems”.

SIGPLAN 2002 Conference on Programming Language Desidimplementation (PLDI), Berlin,
June 2002: “Languages, models and the global machine”.

First International Conference on Graph Transformatiarcelona, October 2002: “Bigraphs as a
model for mobile interaction”.

Summer School on Petri Nets, Eicitst Germany, September 2003: Advanced course (3 lectures)
on “Bigraphs and mobile processes”.

European Joint Conference on Theory and Practice of Sdt{&IAPS), Barcelona, April 2004:
“The global ubiquitous computer”.

World Computer Congress, Toulouse, August 2004: “A sdieritorizon for computing”.

Conference on Category Theory in Computer Science, Cagemh August 2004: “Structural math-
ematics for mobile computation”.

— Sixth International Conference on Ubiquitous Computidgttingham, September 2004: “Science
for global ubiquitous computing”.

— Conference on Converging Sciences, Trento, December 286i#ntific foundation for global com-
puting”.

— European Science Foundation ‘forward look’ meeting ondNacience and Information Technology,
April 2005: “Anarchical computing”.

— Institut National de Recherche en Informatique et Autaquet (INRIA), conference to celebrate the

40th anniversary of the Laboratory, December 2007: “Uliaqis Computing: Shall we understand
it?".

Examining

External, undergraduate: 1995-97 University of Warwick
Internal, undergraduate: 1996 University of Cambridge

External, PhD: 1974 Warwick (Hitchcock), Essex (Seddof)5.Oxford (Milne); 1977 London (Miya-
hara), Oxford (Chris Jones), Paris (Greussay); 1979 PRerY); 1980 Aarhus (K. Jensen); 1981
Oxford (Cliff Jones); 1983 Oxford (Brookes); 1987 St Andee(livesey); 1991 Imperial College
(Thomsen); 1991 Sussex (Aceto); 1993 Geneva (Dami); 199®tial College (Gay); 2003 Paris
(Fournet); 2006 Paris (Hym); 2006 Paris (Krivine).

Internal, PhD: (at Stanford) 1971-72 J.M. Cadiou, J. Vaillie, L. Morris.
(at Edinburgh) 1973-83 J. Moore, M. Gordon, R. Topor, G. [@WVinskel, L. Cardelli, G. Brebner;
1984 Hanne Riis Fleming; 1985 R. de Nicola; 1989 E. Moggi;1188n Yong; 1991 J. Bradfield, H.
Huttel.
(at Cambridge) 1995 I. Stark; 1996 A. Kennedy, F. Davey, MsilN2000 P. Wojciechowski.

PhD Research Students

1975-1983 R. Aubin, A. Cohn, G. Milne, A. Mycroft, M. Sandens 1984 L.Damas; 1985 B. Mon-
ahan, K. Larsen; 1986 K. Mitchell; 1988 K.V.S. Prasad, M.t&pfl989 F. Moller; 1990 D. Berry,
C. Tofts; 1993 D. Sangiorgi; 1995 P.E. Sewell; 1996 D.N. Buri\. Mifsud; 2001 J. Leifer; 2006
O.-H. Jensen.

Conference programme committees

— Program Proving and Improving, Arc-et-Senans, 1975.

— 3rd International Colloquium on Automata, Languages arajfmming, Edinburgh, July 1976
(organizing member).

— IFIP Working Conference on Formal Description of PrograngrConcepts, St. Andrews, Canada,
August 1977.

— International Conference on Mathematical Studies ofrmfdion Processing, Kyoto, Japan, August
1978.

— T7th International Symposium on Mathematical Foundatafrf@omputer Science, Poland, 1978.

(co-chairman) Conference on Semantics of Concurrent Qtatipn, Evian-les-Bains, France, July
1979.

— 2nd International Symposium on Automated Deduction, E&ah980.

— T7th International Colloquium on Automata, Languages amgiRmming, Amsterdam, 1980.
— 8th Ditto, Israel, 1981.

— 9th Ditto, Denmark, 1982.

— International Colloquium on Formalization of Programgn@oncepts, Peniscola, Spain, 1981.
— International Conference on Very Large Scale Integratiatinburgh, 1981.

— 2nd International Symposium on Programming, Toulouseil Ap84.

— 4th International Conference on Automated Deductiory, 1984.

— European Symposium on Programming, Saarbrucken, Ma@. 19

— 7th European Workshop on Application and Theory of PettsN®xford, July 1986.

— IFIP TC2 (Theory of Computation) Conference, August 1986.

— TAPSOFT, Pisa, March 1987.

— Conference on Functional Programming and Computer Azchite, 1991.

— CONCUR, April 2000.

Public service

— Past council member of the European Association for Coengttience Theory.

— Past editor for Journal Theoretical Computer Sciencegpotieditor for Research Notes in Theoret-
ical Computer Science (a monograph series), the Journ&lsrafal Aspects of Computer Science,
Mathematical Structures in Computer Science, Formal Migttod System Design, and the Computer
Journal.

— 1981-84: Member of the SERC Distributed Computing panel.

— 1990-93: Founding chairman of the UK Distinguished DisdEms Scheme in computer science,
sponsored by the Conference of Professors of Computer &caerd the British Computer Society.
| designed the scheme; it runs now almost unchanged.

— 1988-89: Member of Mathematical Sciences Subcommitteelsity Grants Commission.

— 1988-91: Member of Information Technology Advisory Bo&AB).

— 1989: Member of research assessment panel for ComputarcgciUniversities’ Funding Council.
— 1990: Member of teaching assessment panel for Computen&giUniversities’ Funding Council.

— 1991: Coordinated submission from leading UK computeargists to SERC Review of Information
Technology; “Computer Science: the Core IT Research Digeh

— 1992: Member of research assessment (RAE) panel for CemBatence, Universities’ Funding
Council.

— 1993- : Editorial board, Royal Society of Edinburgh JouafidMathematics.
— 1993: External assessor for undergraduate courses in@engcience, at Imperial College London.

— 1996: Chairman of research assessment (RAE) panel for @emBcience, joint Higher Education
Funding Councils.

— 1996: External Assessor for Danish National Researchdrdion, on establishment of PhD schools.

— 1997: Chairman of External Review Panel on future plangiierinformatics Planning Unit, Edin-
burgh University.

— 2001-2: Chair of Sectional Committee 1 of the Royal Societgponsible for elections in mathe-
matics and computer science.

— 2002- : UK Computing Research Committee (founding member)
— 2002- : Foresight Panel, IT University of Copenhagen.

Teaching activity | first taught computation, in the form of formal languages automata theory, at
City University in 1963—-68.

On arriving in Edinburgh in 1973, | took a leading part in lgiimg theoretical content into the teaching
of Computer Science. At that time it was almost completelseaib from Computer Science syllabuses,
both in Edinburgh and elsewhere. Since | was the first permastaff member with mainly theoretical
interests to be appointed in the department, it fell to mertappse appropriate theoretical courses. By
1990 about a third of the full-time teaching staff, and a ligbroportion of the research staff, had active
theoretic interests. The undergraduate course in Edihlisrgow one of the broadest, both theoretically
and otherwise, in the country.

In October 1977, with R.M. Burstall, | initiated a postgratieicourse computing theory for first year
PhD students, with the aims of (i) attracting qualified mathgécians into computing research — and even-
tually teaching at all levels — in UK, and (ii) allowing graates in computing, who have kept up their
mathematics, to integrate the two with some purpose. Soraefigix new PhD students took part each
year, including many from abroad and many mathematiciahg eékperiment worked; Edinburgh’s con-
tribution to academic Computer Science through these PhBugites is now well recognised both in UK
and abroad. Some, such as Luca Cardelli and Mark Jerrumoparéternationally renowned.

| continually tried to make the theoretical and practicak#us of the undergraduate syllabus more
relevant to one another. Although | taught mostly theoegtiopics, | ran the general first-year Computer
Science course for two years, 1982—-1984, and tried to iateil@n appreciation of rigour. Later | started
two new honours courses which bridge the theory/practige gommunication and Concurrency, and
Language Semantics and Implementation.

Indirectly, the design of the programming language Stashdiélr (which | led) has had a considerable
effect on teaching, since it is taught to undergraduatesotighout the world — often, for example at
Cambridge, as the first language. My textbook “Communicatiad Concurrency” is also taught at a
higher level.

In April-May 1993 | convened a working party on the degredsrefl by the Informatics Planning Unit
at Edinburgh, which comprises the Computer Science Degatinthe Artificial Intelligence Department
and the Centre for Cognitive Science. The remit of the Waylparty was to examine all taught degrees
offered, and identify ways to develop and to integrate them.

On arrival in Cambridge in January 1995 | resumed teachingr five years | taught a course in
Communicating Automata and the Pi Calculus, based uporargsdy myself and colleagues. | also
lectured on Designing and Defining a Programming Languaasedupon my experience with Standard
ML, and gave single introductory or perspective lecturesmynrole as Head of Department.

Research activity My research in Computer Science has been always to do witidftions. The seeds
were sown during my period at City University in 1963-1968)iler there, | formed a deep interest in
automata theory, programming languages, artificial iigtefice and the relationship of logic with compu-
tation. | did not publish anything significant then, but thésterests have remained with me ever since.
My original contribution began when | took a research poSwansea in 1968; there | became concerned
with rigorous methods for analysing computer programs.

This concern became more specific at Stanford in 1971, whexgdn to ask how the error-prone busi-
ness of program verification could be made more robust withpeder assistance. This —and the influence
of Dana Scott— led me to develop LCF, a Logic for Computabledtions, in which propositions about
algorithms, programming languages and computing systeml de precisely formulated; a computer
program based upon this logic allowed one to interact withrttachine in conducting proofs. This line
of research still continues; it has become more markedly thadeof expressing proddtrategies, both
complete and partial, in a structured way. With this modexgfression it becomes easier to transfer the
tedium of proof —and even some of its clever parts— to the cderpbut still retain the vital element of
human participation.

First at Stanford, then at Edinburgh, later at Cambridgenély Gotheburg and Paris, proof systems
using many of these ideas have bridged the gap to practipiitapon. For example, Michael Gordon at
Cambridge has used many of the ideas and some of the softnaieHOL system, a mechanized higher-
order logic in which he and his team have had considerableessdn verification of hardware systems;
this has led to a new industrial methodology in computergiesAlso Robert Constable and his Cornell
group have successfully applied their NuPRL system, dempastly from LCF but directed to constructive
proof, to large problems, some previously posed but unddlvenathematics.

A spin-off from the LCF work is a general-purpose programgnisnguage called ML, which stands
for “Meta-Language” (since it was the language for drivihg L CF proof system). This language is now
taught to undergraduates around the world, and has beeniugpedducing the first computer-checked
verifications of hardware systems in UK, at RSRE Malvern antNMOS. ML embodies many ideas
already known to the Artificial Intelligence community in7®@and earlier; its main and crucial innovation
is a new rigorous but flexible type discipline. Indeed, thjsat discipline was almogbrced into existence
by the demand for complete rigour in machine-assisted pyodhe one hand, and the need for flexibility
in performing these heavy proofs on the other hand. Deshisespecialized motivation, its benefit to
programming appears to be very general.

The ML language was adopted by the Alvey programme; it alsa tin@ Technical Award of the
British Computer Society in 1987. In 1989 it evolved into riétard ML, with parametric modules for
programming-in-the-large and a published fully formal setic definition. | led this evolution, which
involved a team of designers and critics around the worlééone years. Seven years later, with the other
main designers, | reviewed the language and published aiedpgformal Definition that incorporates
several improvements arising from the first seven yearseeg&pce with the language. The ML type
discipline, if it had been adopted commercially even twoadkss after it was defined, could have prevented
the furious and hugely expensive uncertainty surroundimey¥2K problem; the problem was not that
things went wrong, but that everyone feared that they wonttire-one could predict that they wouldn't!

The main strand of my work is the attempt to understand ioterg concurrent processes from a math-
ematical viewpoint. This also began at Stanford, in 1972rdasingly since then | have felt that concurrent
processes need a new kind of theory, that existing attempisadequate, and that to construct it presents
one of the main challenges in Computer Science. A mark ofesscwill be when designers of concurrent
systems begin to use a coherent bodygaicepts and mathematics, not just a variety of formalisms. My
1980 book “A Calculus of Communicating Systems” (CCS) ainmethis direction, and gained consider-
able recognition. CCS presented many conceptual probleragprecise form, and solved some of them.
The theory, considerably extended and also streamlined,regorted in a new book “Communication
and Concurrency” in 1989. CCS has been applied widely indtrguand was used in the foundation of
LOTOS, a communications description language which is &dt&ndard. These applications —besides
justifying the effort— are very useful in feeding back reirdement or criticism of the theory.

A weakness of CCS and all of its rivals was that it could not elaabbility — the ability of processes
to change their interconnections dynamically. This wasambversight in CCS; | just could not see how
to do it properly. But it the late 1980s, with colleagues battarhus and at Edinburgh, | developed it
into the w-calculus, which not only caters for arbitrary reconfigigatwithin systems, but also —unlike
CCS— admits a general treatment of data, subsumes funtpiomgramming, and even provides many of
the primitive ideas for object-oriented programming. e a candidate for a fundamental calculus of
concurrent computation. Much recent research of my grolgdatburgh in the early 1990s was devoted
to developing it for this purpose. A significant step was tovglhat it naturally subsumes thecalculus
(the canonical functional calculus). Recently (2002) thealculus has been widely adopted as a model
underlying software for business processes.

Mobile computing systems —whether they move in virtual orgpbgl space— are increasingly impor-
tant. From 1991 to 1995, on an EPSRC Senior Research Felfpaskdinburgh, | was concerned with
a mathematicaframework for mobile calculi such as the-calculus. The point is this: to establish the
status of a calculus it is not enough just to apply it to thid Hrat, nor just a matter of seeing whether its
mathematics works out properly, though these are necetessy More difficult is the question of whether
it, or some rival calculus, can claim to be canonical. To caraandidates ones needs a framework; this
led me to inventaction calculi, leading in 2001 tdigraphical reactive systems. A general study of this
kind always runs the risk of bland vacuity, but present pesgrseems to justify the broader attack. For

example, with students | have recently found that the dyndh@ory of a wide range of calculi, including
ther-calculus, can be recovered uniformly in the bigraphicafework.

Applications of these models are broadening. Through thek wbcolleagues at the Weizmann Insti-
tute (Israel) and Microsoft (Cambridge), we begin to modeldgical processes; biologists are actively
exploring computational models. At the University of Treittaly) a large centre for this work has been
recently established with funding from Bill Gates. Colladtion with the IT University at Copenhagen will
lead to the practical specification and implementation afisat environments, an essential part of ubig-
uitous computing. Finally, companies are employing theseats for business processes (transactions,
mergers, contracts, ...), and the Worldwide Web committeséking to use them to establish standards.

| continue to do detailed technical research on the kinds athematical model that can underpin
ubiquitous computation, discussed below. In this line,082Cambridge University Press will publish my
book The Space and Motion of Communicating Agents

Organisation of research From 1974, continuously until the end of the century, | haddesal govern-
ment grants for research projects. In 1986, when the Alvegdbbrate was initiated, my colleagues and |
were concerned that the drive for industrial exploitatibresearch —worthy in itself— might starve basic
research in favour of short-term projects. This balancedoastantly to be fought for. At that time we
were able to attract sufficient funds from both SERC and theADirectorate to found the Laboratory
for Foundations of Computer Science (LFCS) at EdinburghC&expanded later to some 70 members. It
remains firmly committed to foundational research —since @uer Science badly needs it, and only Uni-
versities look like supplying it— but it also has interactiwith industrial applications. | was the founding
Director of LFCS. It became known worldwide as a leader ofagsh in theories of computing.

Reinforced by my experience with theoretical research, lcammitted to the idea that Computer
Science will be a science as fundamental as Physics, andhwittsame power to change and be changed
by mathematics. For a while it was just the study of what gaesnca computer, and if that were all
then such a claim would be too bold. But distributed comgytcommunications, “parallelism” and many
interactive applications have not only broadened thatysttitey have shown us how to lift it to a higher
plane. As mentioned above, biological processes are aldelfad. Itis better now to talk of “Informatics”
than of “Computer Science”, since we are dealing with thesusidnding of systems of all kinds —not just
man-made— through the concept of information flow. The algors and machines with which Computer
Science began some four decades ago are just a small paigt ofubh larger story.

A motivation for my coming to Cambridge in 1995 was to work nadarger group of practical re-
searchers, in order to find out which abstract models are ralestant to the design of real systems. This
has been a great help in research. On the one hand | am gneetiyraged that theories of mobile processes
are highly relevant to the modern interactive computinglésoon the other hand, | learn from practical
colleagues what issues are most important to them, andtésssshe work.

A most recent involvement has been as joint leader, withR.Moare, of a UK movement to establish
long-term research goals in computing, including iderdtiitn of Grand Challenge projects. A particular
Grand Challenge we have posed is entitlébiquitous Computing: Experience, Design and Scigfitce
recognises that to understand the informatic systems @fttbiecentury will entail a close-knit collaboration
among researchers at three levels: the interface betwaeartaiand ubiquitous systems, the establishment
of design principles for ubiquitous systems (which willeftserve us without explicitly communicating
with us), and the creation of an underlying analytical tlyefor such systems. | am deeply involved in
the theoretical component; in particular, we aim to enswithin two decades, that the design of every
large software system should be expressed not in an adhgcapnming language but in the terms of a
scientific informatic model —or rather a hierarchy of model#at treat man-made and naturally occurring
systems equally. | argue that this need is more pressingeem given the ubiquitous and life-pervading
nature of modern computing. If we do not attain scientificensthnding (which, after all, underpins every
engineering disciplinexcept software!) the complex and adaptive nature of ubiquitodisvswe will lead
to its stagnation, or even to disaster. If we do attain itntthee opportunities are unlimited.

