
Bigraphs: a model for mobile agents

Robin Milner, September 2008

I How agents are linked and placed independently
II How to build complex systems from simple ones

III Dynamical theory, illustrated for CCS
IV Stochastic dynamics, e.g. for membrane budding
V Foundation for behavioural equivalence

VI Ubiquitous systems: a context for bigraphs

Acknowledging contributions from
James Leifer and Ole Høgh Jensen

1

Lecture I

How agents are linked and placed

independently

2

A fanciful system

Reaction rule:

M

L
K

R

S
M

A
R

S

L
K

A

A

A

3

The bi-structure of bigraphs

e1

e2

e0

a bare bigraph G

its forest

v5

v4v0

v1

v2

v3

v0

v1

v2

v3

v4
v5

e0

e1 e2

v0

v2

v3

v4

v5

v1

its hypergraph

How to build bigraphs? Give them interfaces . . .

4

e1

e2

v1

v0

v4

v5

v3
v5

e1 e2

v0

v2

v3

v4

v5

v1

v4v0

v1

v2

v3

v2

its forest its hypergraph

bare bigraph Ğ

e0 e0

An interface takes the form 〈m, X〉. The origin is ǫ
def
= 〈0, ∅〉.

5

v3
v5v1

e1

e2

v1

v0

v4

v5

v3
v5

e1 e2

v0

v2

v3

v4

v5

v1

v4v0

v1

v2

v3

v2

its hypergraph

its forest its hypergraph

bare bigraph Ğ

v1

v3
v5

e1
e1 v5

v1

v3its hypergraphits forest

bare bigraph F̆

e0 e0

An interface takes the form 〈m, X〉. The origin is ǫ
def
= 〈0, ∅〉.

6

e1

e2

v1
v4

v5

v3
v5

e1 e2

v0

v2

v3

v4

v5

v1

v4v0

v1

v2

v3

v2

v1

v3
v5

e1
e1 v5

v1

v3

ground bigraph F : ǫ→〈3, {x, x′}〉

0 1 2 0 1 2

x x′ x x′

v3
v5v1

0 1
0 1

ground bigraph G : ǫ→〈2, ∅〉

v0

link graph FL : ∅→{x, x′}

place graph GP : 0→2 link graph GL : ∅→∅

place graph FP : 0→3 link graph F L : ∅→{x, x′}

e0
e0

An interface takes the form 〈m, X〉. The origin is ǫ
def
= 〈0, ∅〉.

7

v0

v4

v0

v4

v4v0

v2

v2

its hypergraph

v1

v3
v5

e1
e1 v5

v1

v3

a ground bigraph F : ǫ→〈3, {x, x′}〉

its place graph its link graph

0 1 2 0 1 2

x x′ x x′

v3
v5v1

0 1
0 1

a contextual bigraph H : 〈3, {x, x′}〉→〈2, ∅〉

its place graph its link graph

0 1

2

x x′
0 1 2

v2

x x′

e2

e2

e0 e0

An interface takes the form 〈m, X〉. The origin is ǫ
def
= 〈0, ∅〉.

8

A built environment G

R
R R

A
A

A
A

B

C

x w

C
C

G

Each node has a
control, with arity,
e.g.A has arity 2.

A - an agent
B - a building
C - a computer
R - a room

G = /z Bz.(Roomfullxz | /yAxy |Roomfullxz) ‖ Roomfullxw

where Roomfullxz
def
= R./y (Axy |Cyz) .

The signature K = {A : 2, B : 1 . . .} gives controls with arities.

9

. and a host H for G

A
R

x

C

B

H

A
A

A
A

R
R R

B

CC
C

G

A – an agent

B – a building

C – a computer

R – a room

x

x

w

w

H = id1 | idx | /w Bw.(/yAxy |R./yCyw | idw | id1) .

10

The complete system H ◦ G

A
A

A

R
R

B

y

C

C

RA

B

C

A

R

C

H ◦ G

11

. and after one reaction

A
A

A

R
R

B

y

C

C

RA

B

C

A

R

C

A
A

A

R
R

B

y

C

C

H ◦ G

RA

B

C

A

R

C

12

. and after two reactions

A
A

A

R
R

B

y

C

C

R

B

A

R

C
A

C

A
A

A

R
R

B

y

C

C

H ◦ G

RA

B

C

A

R

C

13

. and after three reactions

A
A

A

R
R

B

y

C

C

R

B

A

R

C
A

C

A
A

A

R
R

B

y

C

C

H ◦ G

RA

B

C

A

R

C

14

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

The anatomy of bigraphs

1

1

y1 y2

M

x1

0

v1

x0

y0

site

node

control

inner name

outer name

port

edge

v0

0

K
K

e0

e1
v2

root (region)

place = root or node or site

point = port or inner name
link = edge or outer name

16

Lecture II

How to build complex systems from

simple ones

17

Elementary bigraphs

y

x1 xn

y/X : X → y

x

(closure)

1 0 0

join : 2→1

1 0 0 1

0

1 : 0→1swap : 2→2

elementary placings:

elementary linkings:

/x : x→ ǫ

K
. . .

x1

discrete ion:

K~x : 1→〈1, {~x}〉

xn

Compound placings and linkings e.g.
coalesce places: merge0

def
= 1 , mergen+1

def
= join ◦ (id1 ⊗ mergen)

substitute names: y1/X1 ⊗ · · · ⊗ yn/Xn

18

Combining and composing

A bigraph interface takes the form I = 〈m, X〉.

The origin is the trivial interface ǫ
def
= 〈0, ∅〉.

Combination
Let P : m→n and L : X →Y be a place graph and a link graph
on the same set of nodes.
The bigraph 〈P, L〉 : 〈m, X〉→〈n, Y 〉 has constituents P, L.
For a given bigraph G, denote its constituents by GP and GL.

Composition
For place graphs: place each root i of P : ℓ→m in site i of
Q : m→n, to form Q ◦ P . Similarly for link graphs.
For F : 〈ℓ, X〉→〈m, Y 〉 and G : 〈m, Y 〉→〈n, Z〉, define

G ◦ F
def
= 〈GP ◦ FP, GL ◦ F L〉 .

19

Juxtaposing

For two place graphs Pi : mi →ni (i = 0,1), augment the sites
and roots of P1 by m0 and n0, and juxtapose them to form

P0 ⊗ P1 : m0 + m1→n0 + n1 .

For link graphs Li : Xi →Yi, provided X0#X1 and Y0#Y1,
juxtapose them to form

L0 ⊗ L1 : X0 ⊎ X1→Y0 ⊎ Y1 .

For bigraph faces Ii = 〈mi, Xi〉 with X0#X1, the product is

I0 ⊗ I1
def
= 〈m0 + m1, X0 ⊎ X1〉 .

The product of two bigraphs Gi, with face products defined, is

G0 ⊗ G1
def
= 〈GP

0 ⊗ GP
1, GL

0 ⊗ GL
1〉 .

20

Equations for a monoidal category

f = idǫ⊗f = f⊗idǫ

f⊗(g⊗h) = (f⊗g)⊗h

f hg = f hg

f =f = f

g0

f1

f0

g1

f0 g0

=

g1f1

= (f1 ◦ f0) ⊗ (g1 ◦ g0)

(f1⊗g1) ◦ (f0⊗g0)

These are informal pictures – not bigraphs!

21

Partial monoidal categories

A category is partial monoidal (pm) if it has a product⊗on both
objects and arrows, such that

ON OBJECTS: ON ARROWS:
I⊗(J⊗K) = (I⊗J)⊗K f⊗(g⊗h) = (f⊗g)⊗h
I = ǫ⊗I = I⊗ǫ f = idǫ⊗f = f⊗idǫ

(f1⊗g1) ◦ (f0⊗g0) = (f1◦f0)⊗(g1◦g0)

(The product is partial on objects. If I⊗J exists then so does J⊗I.

For fi : Ii → Ji the product f0⊗f1 : I0⊗I1 → J0⊗J1 exists iff I0⊗I1 and

J0⊗J1 exist.)

Proposition For any signature K, the three categories PG(K),
LG(K) and BG(K) are all partial monoidal.

22

Symmetry equations: ‘swapping’

γI⊗J,K = (γI,K⊗idJ) ◦ (idI⊗γJ,K)

I

I

=

J

J

JI

I J

I

I J

K KJ

KK

=

=

I0 J0

J1 I1 I1J1

J0I0

f g

fg

γI1,J1
◦ (f⊗g) = (g⊗f) ◦ γI0,J0

I ⊗ J

I ⊗ J

γI,J ◦ γJ,I = idI⊗J

swap

swap

swap

swap

swap

swap

swap

These are informal pictures – not bigraphs!

23

Symmetric categories

Swapping
For place graphs, we define γm,n : m+n→n+m that swaps
m with n regions, using swap : 2→2. Then we can show that
f ⊗ g and g ⊗ f are the same ‘up to swapping’.

In general: a pm category is symmetric (spm) if there are swap-
ping arrows γI,J : I⊗J → J⊗I satisfying four equations:

γI,ǫ = idI γI1,J1
◦ (f⊗g) = (g⊗f) ◦ γI0,J0

†

γJ,I ◦ γI,J = idI⊗J γI⊗J,K = (γI,K⊗idJ) ◦ (idI⊗γJ,K)

†where f : I0 → I1 and g : J0 → J1.

Proposition In bigraphs, for any signature K the three pm
categories PG(K), LG(K) and BG(K) are all symmetric.

24

Placings and linkings

A placing φ is a node-free bigraph with no links.
A linking λ is a node-free bigraph with no places.

So a node-free bigraph takes the form φ ⊗ λ.

A bijective placing π is called a permutation (of places).
A bijective substitution α is called a renaming.

Operations primitive in process calculi can be derived for bi-
graphs, using ◦ and ⊗ together with placings and linkings.

ABBREVIATIONS: For G : I →〈m, X〉 write

φG for (φ ⊗ idX) ◦ G (φ a placing on m)
λG for (idm ⊗ λ) ◦ G (λ a linking on X) .

25

Derived operations: product and nesting

We want to juxtapose or to nest two bigraphs that share names.

Parallel product F0 ‖F1
def
= α−1(αF0 ⊗ F1) (α a renaming)

Merge product F0 |F1
def
= merge (F0 ‖F1)

Nesting G.F def
= (G ‖ idX) ◦ F ,

where F : I →〈m, X〉 and G : m→〈n, Y 〉 .

K

L
MMK

L

L

parallel product

K

L
MK

L
M

zyxzyy

yx y z x y z

merge product
x

nesting
x y zy x zy

K K

L

26

Interfaces for derived products and nesting

Define derived products on interfaces Ii = 〈mi, Xi〉 as follows:

Parallel product I0 ‖ I1
def
= 〈m0+m1, X0 ∪ X1〉

Merge product I0 | I1
def
= 〈1, X0 ∪ X1〉 .

Then for Fi : Ii → Ji we find

F0 ‖F1 : I0 ⊗ I1→ J0 ‖ J1
F0 |F1 : I0 ⊗ I1→ J0 | J1 .

Also for F : I →〈m, X〉 and G : m→〈n, Y 〉 we find

G.F : I →〈n, X ∪ Y 〉 .

Thus all these operators allow their operands to share names.

27

Place sorting, bigraphical category

A place sorting Σ = {Θ,K,Φ} has

Sorts Θ
Signature K = {K1:(k1, θ1), K2:(k2, θ2), . . .}

Formation rule Φ .

Each control Ki is a kind of node, with ki ports, and sort θi ∈ Θ.
Sorts are thus ascribed to nodes, and also to interface places.
Using these, the formation rule Φ limits the admissible bigraphs.
(Link sorting is defined similarly.)

This yields the bigraphical category BG(Σ) .

28

Place sorting for the built environment

C – a computer
R – a room

A – an agent
B – a building

x0

R

y

x1

C

B

H

A

A

A
A

R R

C

x0 x1

C

G

A

B

C

R

Sorts Θ: {a, b, c, r, âc, âr}
Signature K: {A : a, B : b, C : c, R : r}

Formation Φ: allowed place-graphs —

CHILD

PARENT SORTS

a-node, c-node none
b-node a, r, âr

r-node a, c, âc

θ-root (θ ∈ {a, b, c, r}) θ
âr-root a, r, âr

âc-root a, c, âc

29

Finite CCS

SYNTAX:

µ ::= x
∣∣∣ x

P ::= A
∣∣∣ νxP

∣∣∣ P |P processes

A ::= 0

∣∣∣ µ.P
∣∣∣ A+A alternations

A handshake on x can occur iff one process can do x and an-
other do x.

STRUCTURAL CONGRUENCE:
(1) P ≡α Q implies P ≡ Q, and A ≡α B implies A ≡ B;
(2) ‘ | ’ and ‘+’ are associative and commutative under ≡,

and A + 0 ≡ A;
(3) νxνyP ≡ νyνxP ;
(4) νxP ≡ P and νx (P |Q) ≡ P | νxQ for any x not free in P ;
(5) νx (A+µ.P) ≡ A + µ.νxP for any x not free in A or µ.

30

CCS in bigraphs

Sorts: Θccs = {pr, ch}

Signature: Kccs = {alt : (pr,0), get : (ch,1), send : (ch,1)}

Formation rule Φccs: nest the nodes with sorts alternating.

The CCS choice (x.(x.nil) + y.nil) becomes the bigraph

alt.(getx.alt.sendx. ⋄ | gety.⋄), where ⋄
def
= alt.1 .

x y

= ⋄

alt

alt

get
get

send

31

Translating CCS into BGccs

The translation map PX[·] from processes to ǫ→〈1:pr, X〉 is
defined for all processes P with free names in X. Similarly
AX[·] for alternations.

AX[0] = X |1
PX[νxP] = /y Py⊎X[{y/x}P] AX[x.P] = sendx.PX[P]

PX[P |Q] = PX[P] | PX[Q] AX[x.P] = getx.PX[P]
PX[A] = alt.AX[A] . AX[A+B] = AX[A] | AX[B] .

Theorem
(1) The translations are surjective.
(2) P ≡ Q iff PX[P] = PX[Q], and

A ≡ B iff AX[A] = AX[B].

32

Lecture III

Dynamical theory, illustrated for CCS

33

Reaction in CCS

SYNTAX:

µ ::= x
∣∣∣ x

P ::= A
∣∣∣ νxP

∣∣∣ P |P processes

A ::= 0

∣∣∣ µ.P
∣∣∣ A+A alternations

REACTION: (x.P + A) | (x.Q + B) −→ P | Q with three rules:

P −→ P ′

P | Q −→ P ′ | Q

P −→ P ′

νxP −→ νxP ′

P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

So, reaction can occur anywhere except within a choice.
How do we match these reactions in bigraphs?

34

Bigraphical reactive system

Where may reactions occur in a bigraph?

To determine this, a basic signature is enriched to a dynamic
signature, declaring each control to be either active or passive.
A context D is active if no site lies within a passive node.

A BRS BG(Σ,R) has ground reaction rules, each of the form

R = (r, r′)

with redex r : ǫ→I and reactum r′ : ǫ→I.

The following reactions are generated by R, where D is active:

D ◦ r ◮R D ◦ r′ .

35

Parametric reaction rules

The rules in a BRS BG(Σ,R) are usually parametric, each gen-
erating a family of ground rules.

A parametric rule takes the form

R = (R, R′, η)

with redex R : m→I, reactum R′ : m′→I, and instance map
η : m′→m.

A parameter is a discrete∗ bigraph d = d0 ⊗ · · · ⊗ dm−1 with

names not in I. Its instance is d′
def
= dη(0) ‖ · · · ‖ dη(m′−1). This

generates the ground reaction rule

(r, r′) = (R.d, R′.d′) .

∗discrete: all links open and distinct.

36

Reaction in CCS bigraphs

BGccs, the BRS for CCS, has a single parametric reaction rule:

x

alt alt
x

alt.(sendx | id) | alt.(getx | id) x | id | id

getsend

The back-pointing arrows show the instance map.

Theorem
Translation of CCS into bigraphs strongly preserves reaction:
P −→ P ′ iff PX[P] ◮PX[P ′].

37

Behavioural equivalence

The big challenge of process calculi: Find a nice behavioural
equivalence ≍, or preorder � such that

P ≍ Q means in all contexts P and Q behave the same;
P � Q means in all contexts P can do everything that Q can do.

Thus, these relations must be congruential; P ≍ Q must imply
C[P] ≍ C[Q] for any context C.

We can’t define ≍ to mean ‘having same reactions’. For:
– nil and x.nil have exactly the same reactions in CCS;
– but in the context ·· |x.nil, we find x.nil can react but nil cannot.

For this reason, labelled transitions were defined for CCS.
38

Labelled transitions in CCS

SYNTAX:

µ ::= x
∣∣∣ x

∣∣∣ τ

P ::= A
∣∣∣ νxP

∣∣∣ P |P processes

A ::= 0

∣∣∣ µ.P
∣∣∣ A+A alternations

TRANSITION: µ.P + A
µ

−→ P , with four rules:

P
µ

−→ P ′

P | Q
µ

−→ P ′ | Q

P
µ

−→ P ′

νxP
µ

−→ νxP ′
if µ /∈ {x, x}

P
x

−→ P ′ Q
x

−→ Q′

P | Q
τ

−→ P ′ | Q′

P
µ

−→ P ′

Q
µ

−→ Q′
if P ≡ Q and P ′ ≡ Q′

Now, how to define behavioural equivalence using transitions?

39

Bisimulation for CCS

A simulation is a binary relation S between processes such that:
if PSQ and P ℓ

◮ P ′ then there exists
Q′ such that Q ℓ

◮ Q′ and P ′SQ′.

A bisimulation is a symmetric simulation. Then bisimilarity , de-
noted by ∼, is the largest bisimulation.

Theorem: Bisimulation is a congruence, i.e. P ∼ Q implies
C[P] ∼ C[Q] for every context C.

Similar congruence theorems have been proved for other pro-
cess calculi and other equivalences and pre-orders.
Can we prove such a result uniformly in bigraphs?

40

Aims for a general behavioural theory for BRSs

• To derive labelled transition systems from reaction rules.

• The label L in a transition g L
◮ g′ should represent how an

environment should contribute to the transition.

• This must illuminate behavioural equivalences and preorders
based upon transitions.

41

Contexts as transition labels

• A transition a L
◮ a′ should imply the reaction L ◦ a ◮ a′.

• So reactions and transitions have similar diagrams, for some
active D and ground reaction rule (r, r′):

a
a′

r r′

transition a L
◮ a′

L

r′

g′
g

r

reaction g ◮ g′

COMPARE!

D D

• But we must impose some constraint on the bound (L, D)

for (a, r), to prevent it becoming enormous!
• L must contain only that part of r that is not in a. Such a
bound, and the resulting transition, will be called minimal.

42

What’s a minimal bound? (1)

a D

y

r

Lalt alt

alt alt

x x′

?

?

Make L minimal
so that L ◦ a = D ◦ r

send

send

get

send getsend

43

What’s a minimal bound?-(1)

alt

alt

alt

a D

y

r

alt

alt alt

x x′

y

L

x x′

y

y

get

get

getsend

send

send getSHARE send

44

What’s a minimal bound?-(2)

alt

a D

y

r

alt

alt alt

x x′

L y

y

y

x′x

getsend

send

send get
SHARE

send

45

Behavioural congruence

Theorem In any safe† BRS, the bisimulation equivalence ∼

for the system of minimal transitions is a congruence; that is, if
a ∼ b then C ◦ a ∼ C ◦ b, for any context C.

• The same holds for other equivalences and pre-orders.

• It holds also in a much wider class of reactive systems, pro-
vided that minimality can be defined.

• For CCS, how does derived bisimilarity relate to that for orig-
inal CCS, where the labels are raw, not contextual?

† The property ‘safe’ refers to sorting. Σccs is safe.

46

Raw transitions for CCS

The table characterizes the three components in any raw CCS
transition s

µ
−→ s′ :

s µ s′ condition

1 νZ((x.p + ··) | q) x νZ(p | q) x /∈ Z

2 νZ((x.p + ··) | q) x νZ(p | q)) x /∈ Z

3 νZ((x.p0 + ··) | (x.p1 + ··) | q) τ νZ(p0 | p1 | q)

Denote by ∼ccs the bisimilarity for these raw transitions. It is
preserved by all CCS contexts.

47

Derived transitions for CCS

The table characterizes the transitions g L
◮ g′ derived for CCS

in bigraphs (with a little fine-tuning).

g L g′ condition

1 /Z(alt.(sendx.a · ·) | b) id | alt.(getx.⋄) /Z(a | b) x /∈ Z

2 /Z(alt.(getx.a · ·) | b) id | alt.(sendx.⋄) /Z(a | b) x /∈ Z

3
/Z(alt.(sendx.a0 · ·)

| alt.(getx.a1 · ·) | b) id /Z(a0 | a1 | b)

4
/Z(alt.(sendx.a0 · ·)

| alt.(gety.a1 · ·) | b)
y/x

/Z y/x
(a0 | a1 | b)

x 6= y;
x, y /∈ Z

Corollary Bisimilarity for these transitions is a congruence;
i.e. if g ∼ g′ then C ◦ g ∼ C ◦ g′, for any bigraph context C.
Theorem Omitting case 4 , this bisimilarity agrees exactly with
the original CCS bisimilarity ∼ccs.

48

Lecture IV

Stochastic dynamics, e.g. for membrane

budding

Joint work with Jean Krivine and Angelo Troina

49

Rated rules and reactions

A rated reaction rule has form R = (R, R′, η, ρ), with rate ρ > 0.
How likely is a reaction g ◮R g′? Define

rateR[g, g′]
def
= ρ · µR[g, g′]

where µR[g, g′] is the number of distinct ground rules (r, r′) of
R with (C ◦ r, C ◦ r′) = (g, g′) for some active C.

REMARK: When the redex R is solid, r determines C and r′.

If R is a set of rules, define rateR[g, g′]
def
=

∑
R∈R rateR[g, g′].

Proposition g ◮R g′ iff rateR[g, g′] > 0.

50

Membrane budding

Budding

(Mem)brane

Initial state

Particles

Coat proteins

Fission

51

A membrane-bud system

gate

brane

particle

gate

bud

bud

coat

Sorting Σ = (Θ,K,Φ):
Sorts Θ = {b, c, p, g, b̂c, p̂g}.
Signature K =

{brane : (b,0), bud : (b,1), coat : (c,1),

particle : (p,0), gate : (g,1)}

Formation rule Φ:

PARENT CHILD SORTS

b-node p, g, p̂g

c-node, p-node, g-node none
θ-root (θ ∈ {b, c, p, g}) θ

b̂c-root b, c, b̂c

p̂g-root p, g, p̂g

52

Reaction rules for budding

bud formation coating

bud fissionparticle migration

brane

coat

gate
bud

brane
gate bud bud

coat
coat

coat

coat

bud

gate

coat

gate

gate

particleparticle

n

coat

budcoat

n
gate

gate

gate

53

A simulation of budding, using PRISM

0.08

0.04

0.12

5 10 25 30 4015 20 35

pr
ob

ab
ili

ty

particles contained in the bud

2

1 1

1

2

1COATING

RATES:

PARTICLE MIGRATION

As the rate of particle migration increases, relative to the coating
rate, the expected number of particles in a bud increases.

This number has a normal distribution of constant width.
54

A reaction: how many ways can it happen? . . .

First identify the A-nodes

B
A

B

A

A

g

g′

55

A reaction: how many ways can it happen? . . .

First identify the A-nodes

B
A

B

A

A

g

g′

56

A reaction: how many ways can it happen? . . .

How many ways with rule R?

AB B
r′

B
A

B

A

A

g

g′

r

rule R

57

A reaction: how many ways can it happen? . . .

How many ways with rule R? . . . ONE WAY . . .

AB B
r′

B
A

B

A

A

g

g′

r

rule R

58

A reaction: how many ways can it happen? . . .

How many ways with rule R? . . . and ANOTHER WAY!

AB B
r′

B
A

B

A

A

g

g′

r

rule R

59

A reaction: how many ways can it happen? . . .

How many ways with rule R? . . . OR n WAYS. . .

A

A

A

A

AB B
r′

B

g

g′

r

B
rule R

if g has n A-nodes!

60

A reaction: how many ways can it happen? . . .

How many ways with rule S?

B B
s s′

B

B

A

A

g

g′

A

A

A
Arule S

61

A reaction: how many ways can it happen? . . .

How many ways with rule S? . . . ONLY ONE WAY!

B
s s′

B

B

A

A

g′
AB

A

A

g

A rule S

62

A reaction: how many ways can it happen? . . .

How many ways with rule S? . . . OR n(n−1)/2 WAYS. . .

B
s s′

B

B

g′
AB

A

A

g A

A

A

A

rule S

if g has n A-nodes!

63

Computing transition rates

Let R be an rated reaction rule with rate ρ > 0. How likely is a
transition a L

◮R a′? Define

rateR[a, L, a′]
def
= ρ · µR[a, L, a′]

where µR[g, g′] is the number of distinct ground rules (r, r′) of
R such that there is a minimal bound (L, D) for (a, r), with D

active, such that D ◦ r′ = g′.

If R is a rule-set, µR[a, L, a′] is defined by summation over R.

Thus transition rates need not be defined independently from
reaction rates.

64

Weighting communications in a process calculus

We assign rates only to reaction rules, and derive rates for re-
actions and transitions. In a process calculus, each participant
in a communication can modify its rate as follows:

In CCS, a participant is (µ1.P1 + · · · + µn.Pn). To multiply the
rate of a single summand µ.P by k, replace it by k×µ.P .

This language-extension is easy to derive: in CCS, in place of
k×µ.P we can write simply

k︷ ︸︸ ︷
µ.P + · · · + µ.P .

The rate increases, just because we have replaced a single
summand by a population of k identical summands.

Of course, it wouldn’t be implemented that way!

65

Lecture V

Foundation for behavioural equivalence

66

Classes of reactive system

We seek behavioural congruence for reactive systems that can
control where reactions can happen.
Wide reactive systems have just enough notion of place.

WRS −−wide reactive system

RS −− reactive system

BRS −−bigraphical reactive system

RSs
WRSs

BRSs

π-calculus
Petri nets

CCS
CSP

Ambients

67

What is a discrete process?

• This is fundamental question for informatics: compare the
question “What is a computable function? ”.
• But we have to consider much more than the classical no-
tion of computation: non-determinism, non-sequentiality, local-
ity,

• Bold attempted answer: An equivalence class of systems
indistinguishable by observation .

• Bisimilarity serves this purpose uniformly for BRSs . . .
. . . and for an even broader class of reactive systems.
• It depends on the humble idea of tagging !

68

Why is the tagging of components useful??

Tagging of subexpressions is used for many purposes in the λ-
calculus. The same holds in processes generally:

• Tagging has helped us to count the number of distinct ways
a reaction g ◮ g′ can occur.
• Tagging can keep track of agents through their reactions;
this leads to understanding causality in bigraphs.
• With tagging, we’ll define minimal labelled transitions, and
thus recover the behaviour of process calculi within bigraphs.

For this purpose, we’ll call bigraph concrete if it is tagged.

69

Support, and concrete bigraphs

In BG(Σ):
A

BB

A A

A

In `BG(Σ):

w u
A A

B

u
A

B

v v w A

v
A

u
A

B

v

The concrete bigraphs `BG(Σ)

are like the abstract ones
BG(Σ), except:

• every node and edge has a
distinct tag;

• in composition and product
the tags must be disjoint.

The set of tags for G is its support, written |G|.

70

S-categories, in general

Assume an infinite set S of support tags. Then an s-category
is just like an spm category, except

• Each arrow f has a finite support set |f | ⊂ S.
• For g ◦ f or f ⊗ g to be defined, we require |f | ∩ |g| = ∅.
• If defined, |g ◦ f | = |f | ⊎ |g| and |f ⊗ g| = |f | ⊎ |g|.
• The identities idI and symmetries γI,J have empty support.
• All the spm equations hold when both sides are defined.

An spm category is just an s-category with empty support sets!

71

General reactive system

A general reactive system (`C,`R) consists of an s-category `C
and a set `R of ground reaction rules, each of the form

R = (r, r′)

with redex r : ǫ→I and reactum r′ : ǫ→I. This generates reac-
tions D ◦ r ◮ D ◦ r′ whenever D has inner face I.
But we have lost what it means for a context D to be active !

An s-category lets us assemble things ver-
tically (◦) and horizontally (⊗). Suppose
r : ǫ→ I, with g : ǫ→ J and D : I ⊗ J →K;
does D permit a reaction r ◮ r′ ?

r g

D

I J

K

D ◦ (r ⊗ g)

72

Wide reactive system (WRS)

A wide reactive system has a Width functor and an Activity map.

Width of an interface: Width(I) is a finite ordinal m = {0, . . . , m−1}.
Width of an arrow: Width(f : I→J) maps Width(I) to Width(J).
Conditions: Width(g ◦ f) = Width(g) ◦ Width(f),

Activity of an arrow:
Act(f : I→J) is a subset of Width(I);
if i ∈ Act(f) we say “f is active at i”.

Conditions: i ∈ Act(g ◦ f) if and only if
i ∈ Act(f) and Width(f)(i) ∈ Act(g),

g

f

73

Localised behaviour in a WRS

A location of an interface I is a subset of its places Width(I).
Denote locations by ı̃, ̃.

A reaction or transition happens due to a ground rule (r, r′) in an
active context D.† We index it with ̃ = Width(D)(Width(I)),
a location of Width(J), as follows:

a

r r′

L

r′

g′
g

r
D D

g ◮̃ g′wide reaction
I

J
a′

J

I

a L
◮̃ a′wide transition

†To be precise, the reaction rules and the reaction and transition relations

are required to be closed under support equivalence ≏.

74

How a context helps a reaction

A transition may happen when an agent a and a redex r both
occur, perhaps overlapping, within some larger system g. Part
of the redex may lie in a. How do we determine the other part?

a

r

F

E
g = E ◦ a = F ◦ r

D

GL

We must find the ‘minimal’ triple (L, D, G), as shown, making
the diagram commute. Then L is the part of r not in a; it will be
the label of a transition a L

◮ı̃ a′.

This minimal construction is called a relative pushout.
It’s a purely static phenomenon. Does it exist?

75

Relative pushouts (RPOs) in an s-category

A cospan ~g : ~I →K bounds a span ~f : H → ~I if g0 ◦ f0 = g1 ◦ f1.

A bound for ~f relative to ~g

is a triple (~h, h) such that ~h
bounds ~f and h ◦ hi = gi . f0 f1

g1

h0

g0

h1

h
k0

k

j

g0 g1

f1f0

h0 h1

k1

h

(~h, h) is a relative pushout for ~f relative to ~g if, for any relative
bound (~k, k), there is a unique arrow j for which j ◦ hi = ki and
k ◦ j = h.
An s-category has RPOs if every span ~f , given any bound, has
an RPO relative to that bound.

76

Idem pushouts (IPOs), and properties

~h is an IPO for ~f if (~h, id) is an RPO for ~f relative to ~h.
Essential for deriving transitions!

Properties: (assuming RPOs exist)

• Any RPO for ~f relative to ~g is unique up to isomorphism.

• If (~h, h) is an RPO for ~f to ~g, then ~h is an IPO for ~f .

• If ~h is an IPO for ~f , then any triple (~h, h) is an RPO.

• if the two squares are IPOs, so is the rectangle;
• if the rectangle and the left square are IPOs,

then so is the right square.
f2

h0 h1

g1

f0 f1
g0

77

A RPO example in link graphs (1)

Consider a simple link graph G:

u

v′
2

v1 v′
1

e0

e2

e3

e1

v0

v2

G

We shall exhibit a span ~A, having a bounding cospan ~D such
that G = D0 ◦ A0 = D1 ◦ A1.

Then we find an RPO (~B, B) for ~A relative to ~D.

78

A RPO example in link graphs (1)

ONE DECOMPOSITION . . .

x0 y0 z0

e0

e3

e2

D0

A0

e0

e2

e3

G = D0 ◦ A0

v0

u

v2

v1 v′
1

v′
2

e1

v1

u

v′
1

e1

v0

v2 v′
2

79

A RPO example in link graphs(2)

ONE DECOMPOSITION . . .

y1 z1y′
1x0 y0 z0

e0

e3

e1
e2

x1

D0 D1

A1A0

A0 A1

D1D0

G = D0 ◦ A0 = D1 ◦ A1

v0

v2 v′
2

v1 v′
1

v0

u

v2 v′
2

v1 v′
1

u

e0 e1

e2

e3

v0

u

v1 v′
1

v2 v′
2

e0

e2

e1

e3

. . . AND ANOTHER

80

A RPO example in link graphs (3)

A0 A1

D1D0

y1 z1y′
1x0 y0 z0

e3

e2

x1

D0 D1

A1A0

DECAPITATE !

G = D0 ◦ A0 = D1 ◦ A1

e0 e0

e2

e3

u

v2 v′
2

v2 v′
2

u

u

v2 v′
2

e0

e2

e1

e3

v0 v1 v′
1

v1 v′
1

v0

v0

v1 v′
1

e1

e1

81

A RPO example in link graphs: completed

A0 A1

D1D0
B

B1B0

y1 z1y′
1x0 y0 z0

e0

e2

x1

A1A0

w0 w1 w2

e1
e3

B

B1B0

G = D0 ◦ A0 = D1 ◦ A1

w2w1w0

w2w1w0

u

v1

v0

v2 v′
2

v′
1 v0

v0

v2 v2v′
2 v′

2

u

v1 v1v′
1 v′

1

e0

e2

e0

e2

e1

e3

Di = B ◦ Bi

B0 ◦ A0 = B1 ◦ A1

82

Minimal transitions and bisimilarity

In a WRS with RPOs, a minimal transition a L
◮̃ a′ is one which

• The agents a, a′ are ground arrows;
• The underlying commuting diagram is an IPO.

A bisimulation is a symmetric relation S such that, whenever
aSb and a L

◮̃ a′ with L ◦ b defined, there exists a transition

b L
◮̃ b′ such that a′Sb′.

Agents a and b are bisimilar, written a ∼ b, if there exists a
bisimulation S with aSb.

83

Congruence for minimal transitions

Theorem: In a WRS with RPOs and minimal transitions, bisim-
ilarity is a congruence: if a0∼a1 then C◦a0∼C◦a1 .

(d)(b)(a) (c)

r0

L

M

E

E0

M

r0

L

M

r1

D1a1

E

a1

L

r1

D1D0a0

E0
C

E1
C

C◦a0

Proof (outline): Establish the bisimulation
S

def
= {(C◦a0, C◦a1) | a0∼a1, C a context } .

1. Let (a) underlie a transition C◦a0
M

◮̃ b′0. Take an RPO.

2. The lower square of (b) underlies a transition a0
L

◮ı̃ a′0 .
3. Then by ∼, (c) underlies a1

L
◮ı̃ a′1, with a′0 ∼ a′1 .

4. By cut-and-paste, (d) underlies a transition C◦a1
M

◮̃ b′1. �

84

How to apply the congruence theorem

The theorem does no apply to an abstract BRS C=BG(Σ,R),
because abstract BRSs lack RPOs!

But it applies indirectly. In outline:

1. From C, create a concrete BRS `C= `BG(Σ,`R), taking `R to
be all preimages of R under the support quotient functor.

2. Taking minimal transitions, define bisimilarity in `C and prove
it a congruence by the theorem.

3. Then, applying the forgetful functor, this yields a transition
system and a congruent bisimilarity in C.

This is what we exhibited for CCS, and the same can be done
for Petri nets, mobile ambients and CSP.

85

Lecture VI

Ubiquitous systems: a context for

bigraphs

86

Bigraphs in context: a broad view

Informatic Models form a tower.

Ubiquitous Computing demands a tower whose higher mod-
els embody sophisticated concepts: trust, reflectivity,

Bigraphs provide a rigorous basis for the tower, on which to
program, simulate and analyse behaviour expressed at higher
levels.

87

An informatic model with behaviour and layers

Entities in a model explain, or are realised by,
entities in the physical world—as in natural science.

valuation as sets & predicates

action on memory, i/oPROGRAMS

COMPUTERS

voltage, bitmaps, switching

action on memory, i/o

keyboard & screen events

ENTITIES behaviour

realised by

88

An informatic model with behaviour and layers

Entities and behaviour in a model explain, or are realised by,
entities in the physical world—as in natural science.

valuation as sets & predicates

action on memory, i/oPROGRAMS

COMPUTERS keyboard & screen events

ENTITIES

realised by

BEHAVIOUR

89

Layered informatic models with behaviour

Entities and behaviour in a model explain, or are realised by,
entities in the physical world or in a lower model.

LOGICAL FORMULAE valuation as sets & predicates

specify

interpret in

action on memory, i/oPROGRAMS

ASSEMBLY CODE

HARDWARE DESIGN

COMPUTERS

implement by

realised by
voltage, bitmaps, switching

action on memory, i/o

keyboard & screen events

ENTITIES BEHAVIOUR

90

Combining models

Real systems combine interacting parts; we must also combine
partial models. Thus, combine models of the electro-mechanical
and informatic parts of an aircraft:

EMBEDDED
SOFTWARE

PHYSICAL
AIRCRAFT COMPUTERS

EMBEDDED

DESIGN
ELECTRO-MECH

realised by realised by

91

Combining models

Real systems combine interacting parts; we must also combine
partial models. Also, combine models of artifactual and natural
systems:

MODEL
METEO- EMBEDDED

SOFTWARE

PHYSICAL
AIRCRAFT COMPUTERS

EMBEDDED

DESIGN
ELECTRO-MECH

WEATHER

realised byexplains realised by

92

Combining models

For a program, we may combine different explanatory models.
INRIA did this for the Airbus using abstract interpretation , fol-
lowing successful analysis of the failure of the Ariane-5 rocket:

MODEL
METEO- EMBEDDED

SOFTWARE

PHYSICAL
AIRCRAFT COMPUTERS

EMBEDDED

DESIGN
ELECTRO-MECH

A-I-1

explains

WEATHER

realised by

A-I-2

explains realised by

explains

93

Models and their tower

A model consists of some entities, and their behaviour.

EXAMPLE: flowcharts, and how to execute them.

A tower of models is built by explanation and combination :

Model A explains model B if
A abstracts from or specifies B, or if
B implements or realises A.

EXAMPLE: a specification logic specifies programs.

Model C combines models A and B if
its entities and behaviours combine those of A and B.

EXAMPLE: combine distributed programs with a net-
work model.

94

How do we validate an explanation?

Natural science:
Explanation of reality by a model can only be supported by ob-
servation. Complete validation impossible (Karl Popper).

Informatics at lowest level:
Similar (e,g. realisation of circuit diagrams by a computer).

Informatics at higher levels:
Higher levels abound in the model tower. Can aspire to com-
plete validation between precise models.

PROPOSITION: Informatics is a science just to the extent
that it aspires to complete validation.

95

Scientific status of the Tower of Models

• Useful models, and validations, may well be informal

• Different models suit different people, including non-experts

• Many instances of models and validations exist

• Can we derive languages from models , not vice-versa?

96

Two visions of Ubiquitous Computing

Populations of computing entities will be a significant part of our
environment, performing tasks that support us, and we shall be
largely unaware of them. (after Mark Weiser, 1994)

In the next five to ten years the computer will be erased
from our consciousness. We will simply not talk about it
any longer, we will not read about it, apart from experts
of course.

(my emphasis) Joseph Weizenbaum (2001)

. and my vision:

Ubiquitous computing will empower us , if we understand it!

97

Qualities of a ubiquitous computing system

(UCS)

What is new about a UCS?

• It will continually make decisions hitherto made by us

• It will be vast , maybe 100 times today’s systems

• It must continually adapt , on-line, to new requirements

• Individual UCSs will interact with one another

Can traditional software engineering cope?

98

Concepts for Ubicomp

Each ubicomp domain , hence each model , will involve several
concepts. Here are a few:

locality

security authenticity

compilation

intentions

reflectivity

specification
beliefs
encapsulation

delegation

provenance obligations

data-protection

continuous time role
policy

authorisation

verification
connectivity

simulationcontinuous space
mobility

failure

self-management

negotiation
trust

stochastics

99

Managing the conceptual overload

locality

authenticity

intentions specification
beliefs

provenance

verification

locality
data-protection

obligations

failure role

self-management

B

trust

continuous space
encapsulation simulationauthorisation

continuous time

security

reflectivity
policycompilation

delegation

mobilitymobility

stochasticsstochastics connectivitynegotiation connectivity

• Using bigraphs , Define the Ubiquitous Abstract Machine
(UAM) in terms of locality, connectivity, mobility, stochastics.

• Build a model tower above UAM, layering the concepts.

100

What’s the point of a Grand Challenge in

informatics?

To make applications that startle the world?
(e.g. beating a grandmaster at chess)

OR

To organise the principles for an engineering science?

The first alone may (or may not) spin off science

The two together will embed computing
in our scientific culture

....oooo0000OOOO0000oooo....
101

