
PHYSICAL REVIEW E 85, 026107 (2012)

Temporal node centrality in complex networks
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Many networks are dynamic in that their topology changes rapidly—on the same time scale as the
communications of interest between network nodes. Examples are the human contact networks involved in
the transmission of disease, ad hoc radio networks between moving vehicles, and the transactions between
principals in a market. While we have good models of static networks, so far these have been lacking for the
dynamic case. In this paper we present a simple but powerful model, the time-ordered graph, which reduces a
dynamic network to a static network with directed flows. This enables us to extend network properties such as
vertex degree, closeness, and betweenness centrality metrics in a very natural way to the dynamic case. We then
demonstrate how our model applies to a number of interesting edge cases, such as where the network connectivity
depends on a small number of highly mobile vertices or edges, and show that our centrality definition allows us to
track the evolution of connectivity. Finally we apply our model and techniques to two real-world dynamic graphs
of human contact networks and then discuss the implication of temporal centrality metrics in the real world.
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I. INTRODUCTION

Many important phenomena depend on networks, from
the spread of disease in a population through systems of
metabolic processes to explicit networks such as the internet
and the worldwide web. Recent advances in the theory
of networks have provided us with the mathematical and
computational tools to understand them better [1]. Often the
topology of a network has distinctive features, such as vertex
order distribution, clustering, and characteristic path length,
which can be explained in terms of its evolution and which
in turn explain some aspects of its behavior. For example,
networks that grow by preferential attachment may acquire a
power-law distribution of vertex order which in turn makes
them robust against random node failure—yet vulnerable to
attacks targeted on high-degree nodes [2]. Insights like this can
inform activities from public health to counterterrorism [3].

So most analyses and models have assumed that networks
are static, typically represented in graph form as a number
of nodes connected by edges. However, in real life many
networks are dynamic. New nodes are added to the graph,
some existing ones are removed, and edges come and go
too. While researchers have studied these mechanisms as a
means of explaining graph topology, the effects of dynamic
topology have generally been ignored when considering how
topology affects connectivity. Yet there are important networks
whose topology changes rapidly, and its dynamic aspects have
a significant effect on connectivity:

(a) In epidemiology, some possibly infective contacts
between individuals are long term (friends, family) but many
are fleeting (people in the street or the market place). Their
relative importance may vary. In medieval times, infectious
disease may have been largely transmitted by a small number
of merchants traveling between markets in otherwise largely
isolated towns, while in a modern urban society the super-
spreading node may be a school. When faced with an epidemic,
it is important to know whether you should impose travel
restrictions or close schools.

(b) There is interest in ad hoc radio networks set up between
moving vehicles to transmit information about congestion

and to provide emergency communications. Here, oncoming
vehicles offer a shorter interaction time, but more rapid
information dissemination, than vehicles going in the same
direction.

(c) In military communications systems, nodes that act as
local exchanges or that provide long-distance backhaul may
become conspicuous because of the volumes of traffic they
handle, even if the opponent cannot decrypt and understand
it, so they may be targeted. So nodes may take turns; a new
exchange may be selected frequently and at random.

Thus far, the models and analytical tools used to char-
acterize dynamic network behavior have been somewhat
limited. It is common to look at static snapshots of the
network independently, or to average their characteristics [4];
for example, some researchers estimate a node’s topological
importance using the average value of its centrality over all
static snapshots. Such analyses, however, are limited since
they neglect temporal paths that cross over multiple snapshots
that individually contain only partial paths. Tang et al. [5]
proposed a method to identify important nodes using temporal
versions of conventional centrality metrics (e.g., closeness and
betweenness).

In this paper we extend their work to a more general and
more realistic model. We present the time-ordered graph,
which reduces a dynamic network to a static network with
directed flows. This enables us not only to use the algorithms
developed for static graphs, but also to define better metrics for
dynamic graphs. We propose temporal centrality metrics based
on the time-ordered graph and demonstrate their robustness
and usefulness by applying them to a number of interesting
edge and human contact networks, respectively.

II. RELATED WORK

Traditional network analysis uses static networks, or mod-
els that aggregate node interaction during a time interval. Such
models break down when the network topology changes fast
enough. For example, aggregate models can underestimate
path length since they ignore the time delays needed to
construct paths.
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A number of papers in recent years have tried to overcome
such limitations. Kempe et al. [6] proposed a model of
temporal networks as static graphs where every edge is labeled
with the time the interaction took place. Ferreira [7] also
views a dynamic network as a sequence of static graphs and
seeks to tackle the fundamental network problems such as
routing metrics, connectivity, and spanning trees for dynamic
networks. Kostakos [8] independently presented the concept
of temporal graphs and set out to compute the shortest path
between nodes in an evolving network. Tang et al. [9] tried
to develop a more general model by introducing a variable
representing the speed at which a message travels. Most
recently, Tang et al. [5] proposed temporal centrality metrics
based on temporal paths in order to measure the importance
of a node in a dynamic network. They investigated time-aware
central node identification methods with several real data sets
but the performance of the proposed metrics may be lower in
practice since they assume a priori knowledge of each node’s
future contacts. For example, Tang et al. [10] proposed an
application based on the assumption that global knowledge of
all past and future contacts is available.

Its focus is to design a simple and general model that gives
a concise and general formulation of the temporal properties
of every dynamic network. Our central idea is to model a
dynamic network as a time-ordered digraph which pastes
together its temporal snapshots with directed edges that link
each node to its successor in time. This transforms any dynamic
network into a larger but more easily analyzable static one.
The transformation enables us to find accurate and robust
generalizations of existing static network concepts.

III. MODEL

In this study, we assume that the time during which a
network is observed is finite, from the start time tstart until
the end time tend. Without loss of generality, we set tstart =
0 and tend = T . A dynamic network GD

0,T = (V,E0,T ) on a
time interval [0,T ] consists of a set of vertices V and a set
of temporal edges E0,T where a temporal edge (u,v)i,j ∈ E0,T

exists between vertices u and v on a time interval [i,j ] such that
i � T and j � 0. In the dynamic network the set of vertices
V is always the same while the set of existing edges can be
changed over time.

Most characterizations of dynamic networks discretize time
by converting temporal information into a sequence of n

network “snapshots.” We use w to denote the time duration
of each snapshot (or time window size), T/n, expressed in
some time unit (e.g., seconds or hours). In other words, a
dynamic network can be represented as a series of static graphs
G1, G2, . . . , Gn. The notation Gt (1 � t � n) represents the
aggregate graph which consists of a set of vertices V and a
set of edges Et where an edge (u,v) ∈ Et exists only if a
temporal edge (u,v)i,j ∈ E0,T exists between vertices u and v

on a time interval [i,j ] such that i � wt and j > w(t − 1). In
other words, Gt is the t th temporal snapshot of the dynamic
network GD

0,T during the t th time window. For simplicity, we
here assume that w = 1.

For clarity, we introduce the following illustrative example.
When T = 3, the dynamic network with the set of temporal
edges in Table I can be represented as the aggregated graph

TABLE I. Example contacts in a dynamic network.

Edge Time interval

(A, C) [1,1]
(A, D) [2,2]
(B, D) [2,3]
(C, D) [3,3]

where all edges are aggregated into a single graph GS
1,3 or

the series of static networks G1, G2, and G3 as we explained.
The visual representations are shown in Fig. 1. Unlike the
aggregated view of the graph GS

1,3 in Fig. 1 (left), the series
of static networks G1, G2, and G3 in Fig. 1 (right) shows the
temporal relationships effectively.

Although this time series representation of the graph [see
Fig. 1(right)] is intuitive, it is not easy to directly analyze
the temporal characteristics of a dynamic network from its
component snapshots. For example, when an edge (u,v) in a
dynamic network represents the communication channel u and
v, we may want to find the shortest possible route from u to v.
In order to find a path from A to B, we have to wait at t = 0,
use the path from A to D at t = 1, and then use the path from D
to B at t = 2. How can we find this solution more generally?

We now construct the time-ordered graph G = (V,E) as the
asymmetric directed graph shown in Fig. 2. Without loss of
generality, we assume that the message transmission time is
the same as w. In other words, at each time step, we can deliver
a message along a single edge. It has a vertex vt for each v ∈ V

and for each t ∈ {0,1, . . . ,n}; it has edges from ut−1 to vt and
vice versa for an edge (u,v) ∈ E [t]; and it has edges from vt−1

to vt for all v ∈ V and for all t ∈ {1, . . . ,n}.
The point of this construction is that for every path between

two nodes for given start and end times in a dynamic network,
there is exactly one path between the corresponding vertices
in the corresponding time-ordered graph, which thus captures
all the connectivity information in the network. It has much
finer granularity than any existing model [8,9] which assumes
that a message can be delivered to the nodes within h hops at
the same window. Such models are just approximations to a
dynamic network; the time-ordered graph which we present
here is a complete representation.

Its value is that it enables us to extend conventional graph
theory algorithms to dynamic networks. For example, given
a time-ordered graph G, a temporal shortest path from node
u to node v on a time interval [i,j ] where 0 � i < j � n is
defined as any path p = 〈ui, . . . ,vk〉 where i < k � j with
the path length |p| = mini<l�j δ(ui,vl), where δ(u,v) is the
shortest path distance from u to v in a static graph. Thus in

FIG. 1. Comparison of aggregated graph representation (left) and
time series representation (right) of the contacts in Table I.
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FIG. 2. (Color online) The corresponding time-ordered graph G
of Table I. The path consisting of dashed red edges represents a
temporal shortest path from A to B on the time interval [0,3].

Fig. 2 a temporal shortest path from A to B on the time interval
[0,3] is clearly A0, A1, D2, and B3.

We will now develop definitions of centrality metrics
(degree, closeness, betweenness, etc.) that capture the temporal
characteristics of dynamic networks.

A. Temporal degree

First, we need to generalize the concept of vertex degree to
dynamic networks. We construct the temporal degree Di,j (v)
for a node v ∈ V on a time interval [i,j ] where 0 � i < j �
n as the normalized total number of inbound edges to and
outbound edges from v on the time interval [i,j ], disregarding
the “self-edges” from vt−1 to vt for all t ∈ {i + 1, . . . ,j}. Now
if our dynamic network is actually static, this sum is equal
to

∑j

t=i 2Dt (v), where Dt (v) is the degree of v in Gt , so to
normalize it we divide by 2(|V | − 1)m, where m = j − i. Now
a node’s normalized temporal degree is the same as the average
value of the node’s degree in the time series of snapshot graphs.

Given a time-ordered graph G derived from GD
i,j =

(V,Ei,j ), the temporal degree values of all nodes in V can be
computed in O(|V | + |E |) time by checking the nodes adjacent
to each edge in E .

B. Temporal closeness

A more difficult concept is temporal closeness, which we
define as follows. The temporal closeness Ci,j (v) for a node
v ∈ V on a time interval [i,j ] where 0 � i < j � n is the sum
of inverse temporal shortest path distances to all other nodes
in V \ v for each time interval in {[t,j ] : i � t < j}.

More precisely, we define temporal closeness by consid-
ering m time intervals {[t,j ] : i � t < j} where m = j − i

by varying the starting time t of each time interval from i

to j − 1 instead of one time interval [i,j ] with the starting
time i. We note that the time interval [i,j ] contributes the
temporal shortest paths only when the starting time is i; the
temporal shortest paths from node u to node v mean the paths
from node ui to node vk , which is the first node encountered
along a path from ui to a node in {vi+1, . . . ,vj }. However,
the temporal shortest paths from u to v will change as time
increases. Therefore, in addition to the case with the starting
time i, we also need to consider the temporal shortest paths
from node u to node v on the additional m − 1 time intervals
{[t,j ] : i < t < j} by varying t from i + 1 to j − 1 to analyze

FIG. 3. An example of a time-ordered graph G to explain our
design philosophy for temporal closeness and betweenness. If we
consider only the time interval [i,j ], the temporal shortest paths
between all nodes are determined during the time interval [0,1] alone
regardless of subsequent changes, which does not help us measure
the dynamic characteristics of this graph.

dynamic characteristics of the temporal shortest paths between
u and v in a more reasonable manner.

The example in Fig. 3 illustrates our design principle. If
we consider only the time interval [i,j ] ([0,3] here), the
temporal closeness values of all nodes are identical since
all temporal shortest paths are determined during the time
interval [0,1] when the graph is fully connected; the subsequent
interactions will be ignored in the computation. This is not
satisfactory, as node A is clearly much more highly connected
in the network than the other nodes. A reasonable temporal
centrality metric should capture such dynamics. In the existing
work [5], however, temporal metrics are defined with the
time interval [i,j ] alone rather than all the time intervals
{[t,j ] : i � t < j}.

Formally, the temporal closeness for a node v is

Ci,j (v) =
∑

i�t<j

∑

u∈V \v

1

�t,j (v,u)
,

where �t,j (v,u) is the temporal shortest path distance from v

to u on a time interval [t,j ]. If there is no temporal path from
v to u on a time interval [t,j ], �t,j (v,u) is defined as ∞. Also,
we note that �t,j (v,u) is different from �t,j (u,v) since the
time-ordered graph G is a directed graph.

In order to cover the cases when �(v,u) is infinite, we use
a slightly modified definition for closeness which is similar to
the definition proposed by Opsahl et al. [11] for disconnected
graphs. Here we assume 1/∞ = 0. The temporal closeness is
normalized by dividing each closeness value by (|V | − 1)m
where m = j − i.

Given a time-ordered graph G derived from GD
i,j =

(V,Ei,j ), all-pair temporal shortest path distances can be
computed in O(m|V |2) time by using dynamic programming
with the recurrence �t,j (v,u) = �t+1,j (k,u) + 1 if (v,k) ∈
E ; otherwise, �t,j (v,u) = 0. With the computed temporal
shortest path distances, the temporal closeness value Ci,j (v)
of a node v in V can be computed in O(m|V |), and thus the
total running time of the temporal closeness computation for
all nodes in V is O(m|V |2).

C. Temporal betweenness

The betweenness centrality of a node is the proportion of
shortest paths passing through it, so temporal betweenness
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Bi,j (v) for a node v ∈ V on a time interval [i,j ], 0 � i < j �
n, should be the sum of the proportion of all the temporal
shortest paths through the vertex v to the total number of
temporal shortest paths over all pairs of nodes for each
time interval in {[t,j ] : i � t < j}. For the same reason as
in the temporal closeness definition, we consider m time
intervals {[t,j ] : i � t < j} where m = j − i instead of one
time interval [i,j ].

Let Sx,y(u,v) denote the set of temporal shortest paths
from source s to destination d on the time interval [x,y] and
Sx,y(s,d,v) the subset of Sx,y(s,d) consisting of paths that
have v in their interior. Then, the temporal betweenness for a
node v is

Bi,j (v) =
∑

i�t<j

∑

s �= v �= d ∈ V

σt,j (s,d) > 0

σt,j (s,d,v)

σt,j (s,d)
,

where σt,j (s,d) ≡ |St,j (s,d)| and σt,j (s,d,v) ≡ |St,j (s,d,v)|.
Temporal betweenness is normalized by dividing each be-
tweenness value by (V v

s V v
d m) where m = j − i and V v

s ,V v
d ⊆

V \ v, such that σt,j (s,d) > 0 for each s ∈ V v
s , for each

d ∈ V v
d , and for i � t < j .

Given a time-ordered graph G derived from GD
i,j =

(V,Ei,j ), the temporal betweenness values for all nodes in
V can be efficiently calculated by using dynamic program-
ming: For each node ν ∈ V , σt,j (s,d,ν) = σt,k(s,ν)σk,j (ν,d)
if �t,j (s,d) = �t,k(s,ν) + �k,j (ν,d) where s �= d ∈ V and
i � t < k < j . Since G = (V,E) is a directed acyclic graph,
we compute �t,j (ν,v) and σt,j (ν,v) between ν ∈ V and v ∈ V

where i � t < j in O(m2|V |2 + |E |) time. We note that the
worst-case running time of this computation is O(m2|V |2)
since |E | is O(m|V |2) when all nodes are always completely
connected to all nodes at each time step t where i � t < j .
With the computed � and σ values, for all nodes ν ∈ V , we
can compute σt,j (s,d,ν) in O(m3|V |3) time for i � t < j , and
thus the total running time of the temporal betweenness com-
putation is O(m3|V |3). This algorithm requires O(m2|V |2)
space to store � and σ values.

D. Analysis of the example

As a sanity check, we compute our proposed metrics for the
time-ordered graph in Fig. 2. For comparison, we also compute
each node’s centrality value in the aggregated graph [see Fig. 1
(left)] and the average centrality values in G1, G2, and G3

[see Fig. 1 (right)]. The results are shown in Table II. From
this table, we can see that A plays a relatively important role
compared with C in the dynamic network while the network
centrality values of A and C for the aggregated representation
and the average centrality value in G1, G2, and G3 are exactly
identical. Intuitively, our metric seems reasonable as the edge
(A,D) exists only at time t = 2.

In the next two sections we exercise our temporal metrics
with more interesting and realistic test cases.

IV. WHY ARE TEMPORAL METRICS
REALLY NECESSARY?

First, we define a dynamic network model which we call the
traveling merchant graph (TMG) to model disease transmis-

TABLE II. Comparison of present results with static and average
centrality metrics.

Node Type Degree Closeness Betweenness

A Temporal 0.222 0.426 0.133
Aggregated 0.667 0.750 0.000

Average 0.222 0.259 0.000
B Temporal 0.222 0.370 0.000

Aggregated 0.333 0.600 0.000
Average 0.222 0.296 0.000

C Temporal 0.222 0.370 0.000
Aggregated 0.667 0.750 0.000

Average 0.222 0.259 0.000
D Temporal 0.444 0.648 0.750

Aggregated 1.000 1.000 0.667
Average 0.444 0.444 0.222

sion in a traditional society where a few merchants travel but
most people stay in their villages. A TMG G(η,ν,γ,p,b,d)
is defined by six parameters, the number η of merchants,
the number ν of villages, the number γ of residents in each
village, and three other parameters p, b, and d to control the
interconnections between residents in a village. Start with ν

mutually exclusive random graphs Gγ,p and η merchant nodes
which are only connected to a resident node in a random graph;
at every time step, the existing edges are removed and/or the
new edges are added as follows:

(a) Internal movement: For each village Gi = (V i,Ei)
where i ∈ {1, . . . ,ν}, an existing edge e ∈ Ei will disappear
with probability d; while a nonexisting edge ê /∈ Ev will
appear with probability b.

(b) External movement: For each merchant node vj where
j ∈ {1, . . . ,η}, an existing edge (vj ,vold) will disappear and
then a new edge (vj ,vnew) will appear with the mobility
probability Probmobility(vj ), where vold and vnew are resident
nodes in villages Gold and Gnew( �= Gnew), respectively.

We use the probability Probmobility(·) to differentiate the
mobility of each merchant. In other words, merchant u

moves with the probability Probmobility(u). We here set
Probmobility(u) � 0.5. Each merchant moves with a probability
randomly assigned between 0.5 and 1.

Only our temporal metrics capture the merchants’ mobility
in TMG effectively. To show this, we generate 100 traveling
merchant graphs with η = 1, ν = 5, γ = 6, p = 0.4, b = 0.1,
and d = 0.1 during 100 steps, and compute the mean values
of the temporal degree, closeness, and betweenness centrality
metrics, respectively, for merchant and resident nodes. For
comparison, we also compute the mean values of the centrality
metrics in the aggregated graph and the average centrality
metrics in the time series of graphs, respectively. Figure 4
demonstrates these simulation results.

If we use each node’s average centrality values to measure
its relative importance as it is computed from snapshots, the
many temporal paths through the merchant nodes are ignored.
Even though the centrality values in the aggregated graph
can distinguish merchant node from resident nodes well,
these centrality values are highly overestimated because the
interaction frequency is ignored. To show this, we analyze
the relation between the merchants’ centrality values and
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FIG. 4. The comparison between the centrality—degree (left),
closeness (middle), and betweenness (right)—of the resident and
merchant nodes in the aggregated graph, the average centrality of
those in the time series of graphs, and the temporal centrality of those
for TMGs with η = 1, ν = 5, γ = 6, p = 0.4, b = 0.1, and d = 0.1.

mobility by calculating the Pearson correlation coefficients
among them. The results are shown in Table III.

There are some missing values here. In the aggregated
graphs, a merchant node is always on all shortest paths
between all pairs of resident nodes belonging to different
villages it has interacted with, regardless of its mobility, so
its betweenness value is always fixed; and as the Pearson
correlation is defined only if both standard deviations are finite
and nonzero, we cannot define Pearson correlation coefficients
between merchant nodes’ mobility and their betweenness. The
same applies to temporal degree, average degree, and average
betweenness (the standard deviation of a merchant node’s
degree is zero since it is always connected to only one resident
node, and its betweenness is zero in each snapshot since it
is always a an end node of a path). So it is hard to identify
the high-mobility nodes such as the merchants in the TMG
from their betweenness values in an aggregated graph; we do
not even recommend using aggregated degree and closeness
metrics.

On the other hand, the merchant nodes’ temporal closeness
and betweenness values are highly correlated with their
mobility. This is natural; a node with high mobility has high
centrality in dynamic networks since the merchant nodes’
other conditions are all identical. We found that the merchant
node with the highest mobility can be identified with a high
probability in a TMG with multiple merchants by computing
their temporal closeness or betweenness values. We generated
100 TMGs with η = 4, ν = 5, γ = 6, p = 0.4, b = 0.1, and
d = 0.1. We tried to identify the merchant node with the
highest mobility by selecting the merchant node with the
highest centrality value for each metric. When the merchant
node with the highest centrality value is not unique, we
arbitrarily choose one of the nodes with the same highest
centrality value. Table IV shows the accuracy of such selection
based on each centrality metric. In this table, we can see that
the high-mobility nodes are identified with high probability
using the temporal closeness or betweenness.

TABLE III. The correlation analysis between merchants’ central-
ity values and mobility for each metric type.

Type Degree Closeness Betweenness

Temporal 0.936 0.883
Aggregated 0.645 0.653
Average 0.088

TABLE IV. The detection accuracy for the highest-mobility
merchant node.

Type Degree Closeness Betweenness

Temporal 20% 72% 80%
Aggregated 47% 47% 50%
Average 20% 19% 20%

V. EFFECTIVENESS OF TEMPORAL CENTRALITY
ON REAL DYNAMIC NETWORKS

Our next test for our proposed metrics is to try them out on
real-world data sets and see whether they are really meaningful
in practice. When the network topology can change over time
as new edges are created and existing ones removed, can we
use temporal centrality, computed from the nodes’ contact
history, to estimate the importance of nodes in the future? Of
course, if future human behavior were independent of past
contact patterns, this task would be pointless; but we know
already that societies do not work like that. In this section
we discuss the implication of temporal centrality metrics in
the real world. For brevity we will consider only temporal
closeness and betweenness.

We use two contact traces of real mobile devices carried by
humans: the Bluetooth trace of students at the University of
Cambridge Computer Laboratory in the Haggle project [12]
and a similar Bluetooth trace of students and staff at MIT [13].
We shall refer to these as CAMBRIDGE and MIT, respectively.
For MIT, we use the contact trace from the first 5 days of
the fall semester [14] to compare the results with those for
CAMBRIDGE—we note that the only 85 nodes rather than the
full 100 nodes appeared during this period. Table V describes
some characteristics of each data set. These data sets were
constructed from mobile device colocation where participants
were given Bluetooth-enabled mobile devices to carry around;
when two devices came within Bluetooth range, the devices
logged the colocation event.

We evaluate the effectiveness of the proposed centrality
metrics by computing the “message propagation delay” be-
tween nodes on these data sets—we use the first half of
each contact trace for training input (i.e., a known historical
human contact trace) and the rest for testing (i.e., the future
“unknown” human contact traces). Formally, given a trace on a
time interval [0,T ], we use the terms training trace to indicate
the first half of the human contact trace on the time interval
[0,	T/2
] and testing trace to indicate the human contact trace
on the time interval [τ,T ] where 	T/2
 < τ < T . We compute
the temporal centrality values of nodes in the dynamic graph
GD

0,	T/2
 generated from the training trace and then test whether

TABLE V. Experimental data sets.

CAMBRIDGE MIT

Number of nodes 12 100
Start date 25 Jan 2005 26 Jul 2004
Duration 5 days 280 days
Av. contacts per day 846 231
Scanning rate 2 min 5 min
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these values are really meaningful with a testing trace on the
time interval [τ,T ].

To evaluate the test performance, given a testing trace on
the time interval [τ,T ], we define the following metrics:

(a) λ(v,u): The message propagation delay from node v to
node u in the testing trace. The message propagation delay
from v to u specifies how much time has elapsed from the
time τ to the time when v first meets u. If there is no contact
between v and u, λ(v,u) is defined as ∞. We note that λ(v,u) on
the time interval [τ,T ] is different from the temporal shortest
path distance �τ,T (v,u); λ(v,u) can be computed in a totally
independent way, regardless of the underlying dynamic graph.
We use λ(v,u) rather than �τ,T (v,u) to discuss the effects
of the time window size w later since �τ,T (v,u) is generally
changed with w.

(b) λfrom(v): The average message propagation delay from
node v to all the other nodes in the testing trace. This can be
computed as follows:

λfrom(v) = 1

|V | − 1

∑

u∈V \v

1

λ(v,u)
.

Here we assume 1/∞ = 0. This metric is used to quantify in
practical terms how quickly the node u can communicate with
all other nodes at time τ . We test whether λfrom(v) computed
from a testing trace increases with v’s temporal closeness
centrality computed from the training trace.

(c) λsans(v): The average message propagation delay be-
tween all nodes in the testing trace except the contacts related
to node v. This can be computed as follows:

λsans(v) = 1

(|V | − 1)(|V | − 2)

∑

u,w ∈ V \ v
u �= w

1

λ(u,w)
.

This metric is used to quantify how much communication
speeds between all pairs of nodes are affected by removing the
node u. We test whether λsans(v) computed from the testing
trace decreases with v’s temporal betweenness centrality
computed from the training trace.

We first compute the temporal closeness and betweenness
centrality of nodes in the dynamic graph GD

0,	T/2
 generated
from the training trace of each data set where w is set to
the finest window granularity, corresponding to the device
scanning rate (for example, 120 s for CAMBRIDGE) and
plot them in Fig. 5. The computed values are sorted in
descending order. This figure clearly shows that there is a small
number of nodes with extremely high temporal centrality, and
a large number of nodes with moderate or low centrality
values, across all experiments except for the closeness in
CAMBRIDGE. This implies that there exist nodes with high
temporal centrality in practice.

We then analyze the correlation between λfrom (or λsans) and
closeness (or betweenness) centrality over nodes to discover
how much useful centrality information is provided. We find
that greater temporal centrality in the training trace is positively
related to λfrom or λsans in the testing trace. We calculate the
Kendall’s tau (rank) correlation coefficients [15] between
the λfrom (or the reverse of the λsans) ranking of nodes in the
testing trace on the time interval [τ,T ], and the closeness
(or betweenness) centrality ranking in the dynamic graph

FIG. 5. Temporal centrality distribution of nodes: closeness
distribution in CAMBRIDGE (top left), betweenness distribution in
CAMBRIDGE (top right), closeness distribution in MIT (bottom
left), and betweenness distribution in MIT (bottom right). The
computed values are sorted in descending order. For improved
visualization, we use the same range on the y axis except for the
closeness centrality distribution in MIT (bottom left), since the
centrality values in MIT are totally different from those in the other
cases.

GD
0,	T/2
 generated from the training trace. The correlation

results obtained by varying τ every 1 h from w(	T/2
 + 1) are
shown in Fig. 6. For comparison, we also plot the correlation
coefficients between λfrom (or λsans) and the closeness (or
betweenness) centrality in the aggregated and the average
centrality metrics discussed above.

The temporal centrality metrics (red triangles) are clearly
more effective than the aggregated (blue crosses) and average

τ τ

τ τ

FIG. 6. (Color online) Kendall’s tau (rank) correlation coef-
ficients between λfrom (or λsans) and closeness (or betweenness)
centrality: closeness in CAMBRIDGE (top left), betweenness in
CAMBRIDGE (top right), closeness in MIT (bottom left), and
betweenness in MIT (bottom right).
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(black circles) centrality metrics except for the closeness
centrality in MIT. We note that all of the closeness metrics
produced similar centrality ranking of nodes for the closeness
centrality in MIT.

Interestingly, for CAMBRIDGE, we found fluctuation
patterns when τ is around w(	T/2
 + 1) + 13 h while we
cannot see such patterns for MIT. We surmise that underlying
real-world differences may explain this. The contact trace
at Cambridge was generated by 12 students with diverse
lifestyles—some students are active at night, and others during
the daytime. The contact trace at MIT came from a larger
sample of 85 students and staff. Although a few students
have diverse lifestyles, the centrality ranking of most MIT
people is quite stable. Therefore the effects of external calendar
cycles may be averaged over large samples. In other words, the
Cambridge students’ network centrality values change more
dynamically over time than those of MIT students and staff.
Also, for MIT, the effectiveness of the estimated centrality
decreases with τ . These results are natural consequences of
our method since the relative importance of the training trace
decreases when τ increases. However, for CAMBRIDGE, this
trend appears to be rather weak due to the periodic patterns of
students over time.

Finally, we discuss the effect of varying the time window
size w. As w increases, the temporal characteristics of human
contacts are generally underestimated when time ordering and
frequency of contacts within a time window are ignored, but
the cost of computing centrality values decreases. In particular,
the time complexity of the temporal closeness and betweenness
centrality computation in a dynamic network GD

i,j = (V,Ei,j )
can be dramatically cut since m generally dominates the
overall time complexity of the centrality computation where
m = j − i. By increasing w sufficiently, we can cut the total
running time of both the temporal closeness and betweenness

FIG. 7. (Color online) Kendall’s tau (rank) correlation coeffi-
cients between λfrom (or λsans) and the closeness (or betweenness)
centrality by varying w while fixing τ = w(	T/2
 + 1): closeness in
CAMBRIDGE (top left), betweenness in CAMBRIDGE (top right),
closeness in MIT (bottom left), and betweenness in MIT (bottom
right).

computations because all nodes in V are O(|V |2) and O(|V |3),
respectively. Figure 7 shows the effects of varying w from
2 min for CAMBRIDGE (or 5 min for MIT) to 24 h. To
demonstrate this we fix τ = w(	T/2
 + 1).

Unlike our expectation, the Kendall’s tau (rank) correlation
coefficients between the λfrom (or the reverse of the λsans)
ranking of nodes and the closeness (or betweenness) centrality
ranking are almost stable with w although the correlation
coefficients decrease slightly with w for the temporal close-
ness centrality ranking for CAMBRIDGE and the temporal
betweenness centrality ranking for MIT. Thus a certain rough
approximation of node centrality may often be almost as good
as a fine-grained dynamic network. Intuitively, if students’
contact patterns are determined by hourly class changes
or half-daily moves between departments and colleagues,
this level of granularity may be enough for most modeling
purposes. Moreover, the average centrality metrics produce
results similar to those of the temporal centrality metrics as
w increases. Such insights as these enable us to tune our
techniques to improve centrality prediction accuracy for a
given budget.

VI. CONCLUSION

We proposed temporal centrality metrics based on a simple
but powerful model, the time-ordered graph, which embeds
a dynamic network in a larger static one with directed flows.
Our centrality metrics provide a simple extension in principle
of the existing static metrics to the dynamic case.

We demonstrated their robustness and usefulness by ap-
plying them first to a number of interesting edge cases, such
as where paths extend across a number of temporal snapshots,
where a clique in a single snapshot obscures dynamic behavior
at other times, and where connectivity depends on a small
number of highly mobile vertices or edges. These cases show
the inadequacy of existing attempts to extend static metrics
to the dynamic case, and our simulation results show that our
definitions are both feasible and robust.

Finally we applied our metrics to data sets from two real-
world human contact networks. Our analysis showed a clear
difference between the two networks; the Cambridge students’
network centrality values change more dynamically over time
than those of the MIT students and staffs. This may reflect the
underlying real-world fact that the 12 students at Cambridge
may have different life cycles while the effects of external
calendar cycles may be averaged over large samples at MIT.
That is an encouraging initial indicator. We offer our metrics
to the research community as a better tool to measure behavior
in dynamic networks. As part of this ongoing study, we
plan to analyze the reciprocal relationship between temporal
centrality and external (calendar) time to study how to choose
training samples to improve the effectiveness of temporal
centrality.
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